1
|
Nilsson IAK. The anx/anx Mouse - A Valuable Resource in Anorexia Nervosa Research. Front Neurosci 2019; 13:59. [PMID: 30804742 PMCID: PMC6370726 DOI: 10.3389/fnins.2019.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Animal models are invaluable resources in research concerning the neurobiology of anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None of the existing models can capture all aspects of AN but they are able to mirror the core features of the disorder e.g., elective starvation, emaciation and premature death. The anorectic anx/anx mouse is of particular value for the understanding of the abnormal response to negative energy balance seen in AN. These mice appear normal at birth but gradually develops starvation and emaciation despite full access to food, and die prematurely around three weeks of age. Several changes in hypothalamic neuropeptidergic and -transmitter systems involved in regulating food intake and metabolism have been documented in the anx/anx mouse. These changes are accompanied by signs of inflammation and degeneration in the same hypothalamic regions; including activation of microglia cells and expression of major histocompatibility complex I by microglia and selective neuronal populations. These aberrances are likely related to the dysfunction of complex I (CI) in the oxidative phosphorylation system of the mitochondria, and subsequent increased oxidative stress, which also has been revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has been shown in leukocytes from patients with AN. In addition, a higher expression of the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx hypothalamus. This agrees with AN being associated with specific variants of the genes for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An increased incidence of eating disorders has been reported for young diabetic women, and as well has increased levels of circulating FFAs in AN. Also similar to individuals with AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum. Thus, the anx/anx mouse shares several characteristics with patients with AN, including emaciation, starvation, premature death, diabetic features, increased FFA and low leptin, and is therefore a unique resource in research on the (neuro)biology of AN.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
|
3
|
Nilsson IAK, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hökfelt T, Johansen JE. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2010; 59:45-57. [DOI: 10.1002/glia.21075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022]
|
4
|
Oriá RB, Costa CMC, Lima AAM, Patrick PD, Guerrant RL. Semantic fluency: a sensitive marker for cognitive impairment in children with heavy diarrhea burdens? Med Hypotheses 2009; 73:682-6. [PMID: 19520520 DOI: 10.1016/j.mehy.2009.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 04/29/2009] [Accepted: 05/03/2009] [Indexed: 12/01/2022]
Abstract
One of the most affected cognitive impairments in children who experienced heavy burdens of diarrhea is semantic fluency, the same impairment that is most affected in Alzheimer's dementia. These findings are leading us into provocative genetic studies that may elucidate the evolution of such genetic polymorphisms as the APOE alleles. Alternatively, diarrhea could launch the cognitive deficits that might later progress in neurodegenerative diseases. In addition, they suggest that semantic fluency could provide a simple mean to assess cognitive impairment in impoverished settings so as to determine preventive measures.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Center for Global Health, Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
5
|
Hökfelt T, Stanic D, Sanford SD, Gatlin JC, Nilsson I, Paratcha G, Ledda F, Fetissov S, Lindfors C, Herzog H, Johansen JE, Ubink R, Pfenninger KH. NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition 2009; 24:860-8. [PMID: 18725084 DOI: 10.1016/j.nut.2008.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/09/2008] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The role of neuropeptides in nervous system function is still in many cases undefined. In the present study we examined a possible role of the 36-amino acid neuropeptide Y (NPY) with regard to three functions: axon guidance and attraction/repulsion, adult neurogenesis, and control of food intake. METHODS Growth cones from embryonic dorsal root ganglion neurons were studied in culture during asymmetrical gradient application of NPY. Growth cones were monitored over a 60-min period, and final turning angle and growth rate were recorded. In the second part the NPY Y(1) and Y(2) receptors were studied in the subventricular zone, the rostral migratory stream, and the olfactory bulb in normal mice and mice with genetically deleted NPY Y(1) or Y(2) receptors. In the third part an anorectic mouse was analyzed with immunohistochemistry. RESULTS 1) NPY elicited an attractive turning response and an increase in growth rate, effects exerted via the NPY Y(1) receptor. 2) The NPY Y(1) receptor was expressed in neuroblasts in the anterior rostral migratory stream. Mice deficient in the Y(1) or Y(2) receptor had fewer proliferating precursor cells and neuroblasts in the subventricular zone and rostral migratory stream and fewer neurons in the olfactory bulb expressing calbindin, calretinin or tyrosine hydroxylase. 3) In the anorectic mouse markers for microglia were strongly upregulated in the arcuate nucleus and in projection areas of the NPY/agouti gene-related protein arcuate system. CONCLUSION NPY participates in several mechanisms involved in the development of the nervous system and is of importance in the control of food intake.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nilsson I, Lindfors C, Fetissov SO, Hökfelt T, Johansen JE. Aberrant agouti-related protein system in the hypothalamus of the anx/anx mouse is associated with activation of microglia. J Comp Neurol 2008; 507:1128-40. [PMID: 18098136 DOI: 10.1002/cne.21599] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Agouti-related protein (AgRP) is a key orexigenic neuropeptide expressed in the hypothalamic arcuate nucleus and a marker for neurons conveying hormonal signals of hunger to the brain. Mice homozygous for the anorexia (anx) mutation are characterized by decreased food intake, starvation, and death by 3-5 weeks of age. At this stage immunoreactivity for AgRP is increased in cell bodies but decreased in the nerve terminals. We studied when during early postnatal development the aberrant phenotype of the AgRP system becomes apparent in anx/anx mice and possible underlying mechanisms. AgRP and ionized calcium binding adapter molecule (Iba1), a marker for activated microglia, as well as Toll-like receptor 2 (TLR-2), were studied by immunohistochemistry at postnatal days P1, P5, P10, P12, P15 and P21 in anx/anx and wild-type mice. We found that the AgRP system in the anx/anx mouse develops similarly to the wild type until P12, when AgRP fibers in anx/anx mice cease to increase in density in the main projection areas. At P21, AgRP fiber density in anx/anx mice was significantly reduced vs. P15, in certain regions. At P21, many strongly AgRP-positive cell bodies were observed in the anx/anx arcuate nucleus vs. only few and weakly fluorescent ones in the wild type. The decrease in AgRP fiber density in anx/anx mice overlapped with an increase in Iba1 and TLR-2 immunoreactivities. Thus, the aberrant appearance of the AgRP system in the anx/anx mouse in the early postnatal development could involve a microglia-associated process and the innate immune system.
Collapse
Affiliation(s)
- Ida Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, Phillips W, Barker RA. Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. Eur J Neurosci 2006; 23:1829-38. [PMID: 16623840 DOI: 10.1111/j.1460-9568.2006.04715.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous work has demonstrated that the transgenic R6/1 mouse model of Huntington's disease has decreased proliferation of neural precursor cells (NPCs) in the dentate gyrus of the hippocampus. This study therefore examined the survival and differentiation of NPCs in presymptomatic and symptomatic R6/1 mice and the effects of environmental enrichment on these variables. Here it is demonstrated that the survival of bromodeoxyuridine-positive (BrdU+) NPCs in the dentate gyrus is decreased in the transgenic mice. In addition, the number of doublecortin-positive (DCX+) cells is greatly reduced in these mice, as is the total number of new mature neurons, while the proportion of BrdU+ cells differentiating into mature neurons was not significantly different between genotypes. Furthermore, the DCX+ cells in the R6/1 mice had smaller and irregular-shaped somas, shorter neurites, and migrated a shorter distance into the granular cell layer compared with wild-type mice. Older symptomatic mice housed in an enriched environment had an increased number of BrdU+ and DCX+ cells as well as longer neurites and increased migration of DCX+ cells. There was no significant difference between genotypes or environments in the number of BrdU+ cells in the subventricular zone. These results suggest that decreased neurogenesis might be responsible, in part, for the hippocampal deficits observed in these mice and that environmental enrichment produces morphological changes in newborn granule neurons in both wild-type and R6/1 mice, which could underlie some of the beneficial effects of enrichment.
Collapse
Affiliation(s)
- Stanley E Lazic
- Centre for Brain Repair, University of Cambridge, Cambridge CB2 2PY, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lachuer J, Ouyang L, Legras C, Del Rio J, Barlow C. Gene expression profiling reveals an inflammatory process in the anx/anx mutant mice. ACTA ACUST UNITED AC 2005; 139:372-6. [PMID: 16006007 DOI: 10.1016/j.molbrainres.2005.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/05/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Anorexia (anx) is a recessive mutation that causes lethal starvation in homozygous mice. Studies of anx/anx mice hypothalamus have shown abnormalities in the orexigenic (NPY/AGRP neurons) and the anorexigenic (POMC/CART neurons) pathways. By gene expression profiling using cDNA and oligonucleotide microarrays, we have shown that a surexpression of genes involved in inflammatory process occurred in anx mice hypothalamus. This inflammatory process could be the cause of the anorexia phenotype observed in these mice.
Collapse
Affiliation(s)
- Joel Lachuer
- Experimental Neurobiology and Physiopathology Laboratory, Inserm U433, University Claude Bernard Lyon1, 8 rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | |
Collapse
|
9
|
Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci U S A 2004; 101:13363-7. [PMID: 15340159 PMCID: PMC516572 DOI: 10.1073/pnas.0403678101] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neurogenesis continues in the adult brain and is increased in certain pathological states. We reported recently that neurogenesis is enhanced in hippocampus of patients with Alzheimer's disease (AD). We now report that the effect of AD on neurogenesis can be reproduced in a transgenic mouse model. PDGF-APP(Sw,Ind) mice, which express the Swedish and Indiana amyloid precursor protein mutations, show increased incorporation of BrdUrd and expression of immature neuronal markers in two neuroproliferative regions: the dentate gyrus and subventricular zone. These changes, consisting of approximately 2-fold increases in the number of BrdUrd-labeled cells, were observed at age 3 months, when neuronal loss and amyloid deposition are not detected. Because enhanced neurogenesis occurs in both AD and an animal model of AD, it seems to be caused by the disease itself and not by confounding clinical factors. As neurogenesis is increased in PDGF-APP(Sw,Ind) mice in the absence of neuronal loss, it must be triggered by more subtle disease manifestations, such as impaired neurotransmission. Enhanced neurogenesis in AD and animal models of AD suggests that neurogenesis may be a compensatory response and that measures to enhance neurogenesis further could have therapeutic potential.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Kim SA, Choi YM, Park H, Lee H, Han JA, Kang SA, Choue RW, Kwon YK, Kim C, Chung J. Decrease of c‐Fos expression in hippocampus of anorexia(anx/anx)mice. ACTA ACUST UNITED AC 2001. [DOI: 10.1080/12265071.2001.9647598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|