1
|
Kellis DM, Kaigler KF, Witherspoon E, Fadel JR, Wilson MA. Cholinergic neurotransmission in the basolateral amygdala during cued fear extinction. Neurobiol Stress 2020; 13:100279. [PMID: 33344731 PMCID: PMC7739185 DOI: 10.1016/j.ynstr.2020.100279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023] Open
Abstract
Cholinergic neuromodulation plays an important role in numerous cognitive functions including regulating arousal and attention, as well as associative learning and extinction processes. Further, studies demonstrate that cholinergic inputs from the basal forebrain cholinergic system influence physiological responses in the basolateral amygdala (BLA) as well as fear extinction processes. Since rodent models display individual differences in conditioned fear and extinction responses, this study investigated if cholinergic transmission in the BLA during fear extinction could contribute to differences between extinction resistant and extinction competent phenotypes in outbred Long-Evans male rats. Experiment 1 used in vivo microdialysis to test the hypothesis that acetylcholine (ACH) efflux in the BLA would increase with presentation of an auditory conditioned stimulus (CS+) during extinction learning. Acetylcholine efflux was compared in rats exposed to the CS+, a CS- (the tone never paired with a footshock), or to a context shift alone (without CS+ tone presentation). Consistent with acetylcholine's role in attention and arousal, ACH efflux in the BLA was increased in all three groups (CS+, CS-, Shift Alone) by the initial context shift into the extinction learning chamber, but returned more rapidly to baseline levels in the Shift Alone group (no CS+). In contrast, in the group exposed to the CS+, ACH efflux in the BLA remained elevated during continued presentation of conditioned cues and returned to baseline more slowly, leading to an overall increase in ACH efflux compared with the Shift Alone group. Based on the very dense staining in the BLA for acetylcholinesterase (ACHE), Experiment 2 examined if individual differences in fear extinction were associated with differences in cholinesterase enzyme activity (CHE) in the BLA and/or plasma with a separate cohort of animals. Cholinesterase activity (post-testing) in both the BLA and plasma was higher in extinction competent rats versus rats resistant to extinction learning. There was also a significant negative correlation between BLA CHE activity and freezing during extinction learning. Taken together, our results support a role for ACH efflux in the BLA during cued fear extinction that may be modulated by individual differences in ACHE activity, and are associated with behavioral responses during fear extinction. These findings implicate individual differences in cholinergic regulation in the susceptibility to disorders with dysregulation of extinction learning, such post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Devin M. Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Kris Ford Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Eric Witherspoon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | | |
Collapse
|
2
|
Ferreira‐Junior NC, Lagatta DC, Kuntze LB, Fujiwara EA, Firmino EMS, Borges‐Assis AB, Resstel LBM, Sampaio KN. Dorsal hippocampus cholinergic and nitrergic neurotransmission modulates the cardiac baroreflex function in rats. Eur J Neurosci 2020; 51:991-1010. [DOI: 10.1111/ejn.14599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Davi Campos Lagatta
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Luciana Bärg Kuntze
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Eduardo Akira Fujiwara
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| | - Egidi Mayara Silva Firmino
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Anna Bárbara Borges‐Assis
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | | | - Karla Nívea Sampaio
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| |
Collapse
|
3
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
4
|
Fassini A, Antero LS, Corrêa FMA, Joca SR, Resstel LBM. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats. J Neurosci Res 2015; 93:830-8. [PMID: 25594849 DOI: 10.1002/jnr.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/06/2022]
Abstract
The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.
Collapse
Affiliation(s)
- Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
5
|
Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. Neuropsychopharmacology 2012; 37:2047-56. [PMID: 22510723 PMCID: PMC3398732 DOI: 10.1038/npp.2012.52] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K(+) channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K(+) channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders.
Collapse
|
6
|
Noori HR, Fliegel S, Brand I, Spanagel R. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: A meta-analysis. Synapse 2012; 66:893-901. [DOI: 10.1002/syn.21581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
|
7
|
Pires RGW, Pereira SRC, Oliveira-Silva IF, Franco GC, Ribeiro AM. Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome. Behav Brain Res 2005; 162:11-21. [PMID: 15922063 DOI: 10.1016/j.bbr.2005.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 02/25/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
This is a factorial (2 x 2 x 2) spatial memory and cholinergic parameters study in which the factors are chronic ethanol, thiamine deficiency and naivety in Morris water maze task. Both learning and retention of the spatial version of the water maze were assessed. To assess retrograde retention of spatial information, half of the rats were pre-trained on the maze before the treatment manipulations of pyrithiamine (PT)-induced thiamine deficiency and post-tested after treatment (pre-trained group). The other half of the animals was only trained after treatment to assess anterograde amnesia (post-trained group). Thiamine deficiency, associated to chronic ethanol treatment, had a significant deleterious effect on spatial memory performance of post-trained animals. The biochemical data revealed that chronic ethanol treatment reduced acetylcholinesterase (AChE) activity in the hippocampus while leaving the neocortex unchanged, whereas thiamine deficiency reduced both cortical and hippocampal AChE activity. Regarding basal and stimulated cortical acetylcholine (ACh) release, both chronic ethanol and thiamine deficiency treatments had significant main effects. Significant correlations were found between both cortical and hippocampal AChE activity and behaviour parameters for pre-trained but not for post-trained animals. Also for ACh release, the correlation found was significant only for pre-trained animals. These biochemical parameters were decreased by thiamine deficiency and chronic ethanol treatment, both in pre-trained and post-trained animals. But the correlation with the behavioural parameters was observed only for pre-trained animals, that is, those that were retrained and assessed for retrograde retention.
Collapse
Affiliation(s)
- Rita G W Pires
- Departamento de Bioquímica-Imunologia, Laboratório de Neurociência e Comportamento, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | | | | | | | | |
Collapse
|
8
|
Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 2004; 11:21-7. [PMID: 14747513 DOI: 10.1101/lm.68104] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular levels variations were correlated to changes in neuronal activity. This was done initially by means of the cup technique and then by the microdialysis technique. The latter, notwithstanding some technical limitations, makes it possible to detect variations in extracellular levels of ACh in unrestrained, behaving animals. This review summarizes and discusses the results obtained investigating the changes in ACh release during performance of operant tasks, exposition to novel stimuli, locomotor activity, and the performance of spatial memory tasks, working memory, and place preference memory tasks. Activation of the forebrain cholinergic system has been demonstrated in many tasks and conditions in which the environment requires the animal to analyze novel stimuli that may represent a threat or offer a reward. The sustained cholinergic activation, demonstrated by high levels of extracellular ACh observed during the behavioral paradigms, indicates that many behaviors occur within or require the facilitation provided by the cholinergic system to the operation of pertinent neuronal pathways.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Pharmacology, University of Florence, 50139 Florence, Italy.
| | | |
Collapse
|
9
|
Maruki K, Izaki Y, Akema T, Nomura M. Effects of acetylcholine antagonist injection into the prefrontal cortex on the progress of lever-press extinction in rats. Neurosci Lett 2003; 351:95-8. [PMID: 14583390 DOI: 10.1016/j.neulet.2003.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine the relationship between cholinergic modulation within the rat medial prefrontal cortex (mPFC) and the progress of lever-press extinction, we conducted an experiment in which muscarinic and nicotinic acetylcholine (ACh) receptor antagonists were microinjected into the mPFC. The muscarinic antagonist injected immediately before the initial extinction training did not affect the progress of extinction during the training (no within-session effect), but disrupted a second re-training session the next day (across-session effect). By contrast, the nicotinic antagonist disrupted the progress of extinction both within and across training sessions. These results confirm that ACh in the mPFC modulates lever-press extinction and suggest that nicotinic and muscarinic receptors are involved in short- and long-term memory processes.
Collapse
MESH Headings
- Acetylcholine/antagonists & inhibitors
- Acetylcholine/metabolism
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Animals
- Behavior, Animal/drug effects
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/metabolism
- Conditioning, Operant
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Male
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Muscarinic Antagonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Wistar
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Kiyoyuki Maruki
- Department of Neuropsychiatry, Saitama Medical School, Saitama 350-0495, Japan
| | | | | | | |
Collapse
|
10
|
Izaki Y, Maruki K, Hori K, Nomura M. Effects of rat medial prefrontal cortex temporal inactivation on a delayed alternation task. Neurosci Lett 2001; 315:129-32. [PMID: 11716980 DOI: 10.1016/s0304-3940(01)02366-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To determine the involvement of the medial prefrontal cortex (mPFC) in operant-type delayed alternation, microinjections of muscimol into the mPFC were used for temporal inactivation during behavioral tests in rats. The temporal mPFC inactivation showed effects related to both dorsal (decreased delay-dependent correct ratio, indicating working memory-related deficits) and ventral hippocampus inactivation (increased tendency to repeat errors) reported in our recent paper, without motor or sensory effects. These findings suggest that the mPFC integrates information from different hippocampal regions during a delayed alternation task.
Collapse
Affiliation(s)
- Y Izaki
- Department of Physiology, Saitama Medical School, 38 Morohongo, Moroyama, Iruma, Saitama 350-0495, Japan.
| | | | | | | |
Collapse
|