1
|
Zambrano K, Barba D, Castillo K, Robayo P, Argueta-Zamora D, Sanon S, Arizaga E, Caicedo A, Gavilanes AWD. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion 2022; 64:125-135. [PMID: 35337984 DOI: 10.1016/j.mito.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-β in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | | | | | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Wander CM, Tseng JH, Song S, Al Housseiny HA, Tart DS, Ajit A, Ian Shih YY, Lobrovich R, Song J, Meeker RB, Irwin DJ, Cohen TJ. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience 2020; 23:101255. [PMID: 32585593 PMCID: PMC7322077 DOI: 10.1016/j.isci.2020.101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
The microtubule-associated tau protein forms pathological inclusions that accumulate in an age-dependent manner in tauopathies including Alzheimer's disease (AD). Since age is the major risk factor for AD, we examined endogenous tau species that evolve during aging in physiological and diseased conditions. In aged mouse brain, we found tau-immunoreactive clusters embedded within structures that are reminiscent of periodic acid-Schiff (PAS) granules. We showed that PAS granules harbor distinct tau species that are more prominent in 3xTg-AD mice. Epitope profiling revealed hypo-phosphorylated rather than hyper-phosphorylated tau commonly observed in tauopathies. High-resolution imaging and 3D reconstruction suggest a link between tau clusters, reactive astrocytes, and microglia, indicating that early tau accumulation may promote neuroinflammation during aging. Using postmortem human brain, we identified tau as a component of corpora amylacea (CA), age-related structures that are functionally analogous to PAS granules. Overall, our study supports neuroimmune dysfunction as a precipitating event in tau pathogenesis. Tau is present in mouse hippocampal granules and human corpora amylacea Tau accumulates with age in hippocampal granules and is accelerated in 3xTg-AD mice Tau immunoreactive corpora amylacea are present in Alzheimer's disease brain Age-related tau deposits are associated with reactive astrocytes
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sheng Song
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heba A Al Housseiny
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalton S Tart
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aditi Ajit
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Lobrovich
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David J Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Todd J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Lahiani-Cohen I, Touloumi O, Lagoudaki R, Grigoriadis N, Rosenmann H. Exposure to 3-Nitropropionic Acid Mitochondrial Toxin Induces Tau Pathology in Tangle-Mouse Model and in Wild Type-Mice. Front Cell Dev Biol 2020; 7:321. [PMID: 32010684 PMCID: PMC6971403 DOI: 10.3389/fcell.2019.00321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress, particularly of mitochondrial origin, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer’s disease (AD) and other tauopathies. Controversies regarding the responses of tau phosphorylation state to various stimuli causing oxidative stress have been reported. Here we investigated the effect of 3-nitropropionic acid (3NP), a mitochondrial toxin which induces oxidative stress, on the tangle-pathology in our previously generated double mutant (E257T/P301S, DM) -Tau-tg mice and in WT-mice. We detected an increase in tangle pathology in the hippocampus and cortex of the DM-Tau-tg mice following exposure of the mice to the toxin, as well as generation of tangles in WT-mice. This increase was accompanied with alterations in the level of the glycogen synthase kinase 3β (GSK3β), the kinase which phosphorylates the tau protein, and in the phosphorylation state of this kinase. A response of microglial cells was noticed. These results point to the involvement of mitochondrial dysfunction in the development of the tangle-pathology and may suggest that interfering with mitochondrial dysfunction may have an anti-tangle therapeutic potential.
Collapse
Affiliation(s)
- Inbal Lahiani-Cohen
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
LoPresti P. Tau in Oligodendrocytes Takes Neurons in Sickness and in Health. Int J Mol Sci 2018; 19:ijms19082408. [PMID: 30111714 PMCID: PMC6121290 DOI: 10.3390/ijms19082408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes (OLGs), the myelin-forming cells of the central nervous system (CNS), are lifelong partners of neurons. They adjust to the functional demands of neurons over the course of a lifetime to meet the functional needs of a healthy CNS. When this functional interplay breaks down, CNS degeneration follows. OLG processes are essential features for OLGs being able to connect with the neurons. As many as fifty cellular processes from a single OLG reach and wrap an equal number of axonal segments. The cellular processes extend to meet and wrap axonal segments with myelin. Further, transport regulation, which is critical for myelination, takes place within the cellular processes. Because the microtubule-associated protein tau plays a crucial role in cellular process extension and myelination, alterations of tau in OLGs have deleterious effects, resulting in neuronal malfunction and CNS degeneration. Here, we review current concepts on the lifelong role of OLGs and myelin for brain health and plasticity. We present key studies of tau in OLGs and select important studies of tau in neurons. The extensive work on tau in neurons has considerably advanced our understanding of how tau promotes either health or disease. Because OLGs are crucial to neuronal health at any age, an understanding of the functions and regulation of tau in OLGs could uncover new therapeutics for selective CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| |
Collapse
|
5
|
Tseng JH, Xie L, Song S, Xie Y, Allen L, Ajit D, Hong JS, Chen X, Meeker RB, Cohen TJ. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep 2018; 20:2169-2183. [PMID: 28854366 DOI: 10.1016/j.celrep.2017.07.082] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
The initiating events that promote tau mislocalization and pathology in Alzheimer's disease (AD) are not well defined, partly because of the lack of endogenous models that recapitulate tau dysfunction. We exposed wild-type neurons to a neuroinflammatory trigger and examined the effect on endogenous tau. We found that tau re-localized and accumulated within pathological neuritic foci, or beads, comprised of mostly hypo-phosphorylated, acetylated, and oligomeric tau. These structures were detected in aged wild-type mice and were enhanced in response to neuroinflammation in vivo, highlighting a previously undescribed endogenous age-related tau pathology. Strikingly, deletion or inhibition of the cytoplasmic shuttling factor HDAC6 suppressed neuritic tau bead formation in neurons and mice. Using mass spectrometry-based profiling, we identified a single neuroinflammatory factor, the metalloproteinase MMP-9, as a mediator of neuritic tau beading. Thus, our study uncovers a link between neuroinflammation and neuritic tau beading as a potential early-stage pathogenic mechanism in AD.
Collapse
Affiliation(s)
- Jui-Heng Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sheng Song
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Youmei Xie
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Allen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deepa Ajit
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Pinto-Almazán R, Segura-Uribe JJ, Soriano-Ursúa MA, Farfán-García ED, Gallardo JM, Guerra-Araiza C. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone. Neural Regen Res 2018; 13:440-448. [PMID: 29623928 PMCID: PMC5900506 DOI: 10.4103/1673-5374.228726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O3 exposure in rats.
Collapse
Affiliation(s)
- Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia J. Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Marvin A. Soriano-Ursúa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Eunice D. Farfán-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Juan M. Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| |
Collapse
|
7
|
Trzeciakiewicz H, Tseng JH, Wander CM, Madden V, Tripathy A, Yuan CX, Cohen TJ. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci Rep 2017; 7:44102. [PMID: 28287136 PMCID: PMC5347034 DOI: 10.1038/srep44102] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Tau acetylation has recently emerged as a dominant post-translational modification (PTM) in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule (MT)-binding region (MTBR), suggesting acetylation could regulate both normal and pathological tau functions. Here, we combined biochemical and cell-based approaches to uncover a dual pathogenic mechanism mediated by tau acetylation. We show that acetylation specifically at residues K280/K281 impairs tau-mediated MT stabilization, and enhances the formation of fibrillar tau aggregates, highlighting both loss and gain of tau function. Full-length acetylation-mimic tau showed increased propensity to undergo seed-dependent aggregation, revealing a potential role for tau acetylation in the propagation of tau pathology. We also demonstrate that methylene blue, a reported tau aggregation inhibitor, modulates tau acetylation, a novel mechanism of action for this class of compounds. Our study identifies a potential “two-hit” mechanism in which tau acetylation disengages tau from MTs and also promotes tau aggregation. Thus, therapeutic approaches to limit tau K280/K281 acetylation could simultaneously restore MT stability and ameliorate tau pathology in AD and related tauopathies.
Collapse
Affiliation(s)
- Hanna Trzeciakiewicz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Connor M Wander
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Victoria Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chao-Xing Yuan
- Alexion Pharmaceuticals Inc, New Haven, Connecticut 06510, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Yoshiike Y, Yamashita S, Mizoroki T, Maeda S, Murayama M, Kimura T, Sahara N, Soeda Y, Takashima A. Adaptive responses to alloxan-induced mild oxidative stress ameliorate certain tauopathy phenotypes. Aging Cell 2012; 11:51-62. [PMID: 21981382 DOI: 10.1111/j.1474-9726.2011.00756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is considered to promote aging and age-related disorders such as tauopathy. Although recent reports suggest that oxidative stress under certain conditions possesses anti-aging properties, no such conditions have been reported to ameliorate protein-misfolding diseases. Here, we used neuronal and murine models that overexpress human tau to demonstrate that mild oxidative stress generated by alloxan suppresses several phenotypes of tauopathy. Alloxan treatment reduced HSP90 levels and promoted proteasomal degradation of tau, c-Jun N-amino terminal kinase, and histone deacetylase (HDAC) 6. Moreover, reduced soluble tau (phosphorylated tau) levels suppressed the formation of insoluble tau in tau transgenic mice, while reduced HDAC6 levels contributed to microtubule stability by increasing tubulin acetylation. Age-dependent decreases in HDAC2 and phospho-tau levels correlated with spatial memory enhancement in alloxan-injected tau mice. These results suggest that mild oxidative stress, through adaptive stress responses, operates counteractively against some of the tauopathy phenotypes.
Collapse
Affiliation(s)
- Yuji Yoshiike
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Hirosawa, Wako-shi, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
De Vos A, Anandhakumar J, Van den Brande J, Verduyckt M, Franssens V, Winderickx J, Swinnen E. Yeast as a model system to study tau biology. Int J Alzheimers Dis 2011; 2011:428970. [PMID: 21559193 PMCID: PMC3090044 DOI: 10.4061/2011/428970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/21/2011] [Indexed: 11/20/2022] Open
Abstract
Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.
Collapse
Affiliation(s)
- Ann De Vos
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jayamani Anandhakumar
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jeff Van den Brande
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Mathias Verduyckt
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Erwin Swinnen
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
10
|
Vanhelmont T, Vandebroek T, De Vos A, Terwel D, Lemaire K, Anandhakumar J, Franssens V, Swinnen E, Van Leuven F, Winderickx J. Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 2011; 10:992-1005. [PMID: 20662935 DOI: 10.1111/j.1567-1364.2010.00662.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation. The deficiency of Pho85 enhanced significantly the phosphorylation of serine-409 (S409) in all tau mutants, which coincided with marked increases in SinT levels. FTDP mutants tau-P301L and tau-R406W were least phosphorylated at S409 and produced the lowest levels of SinT, indicating that S409 phosphorylation is a direct determinant for tau aggregation. This finding was substantiated by the synthetic tau-S409A mutant that failed to produce significant amounts of SinT, while its pseudophosphorylated counterpart tau-S409E yielded SinT levels higher than or comparable to wild-type tau. Furthermore, S409 phosphorylation reduced the binding of protein tau to preformed microtubules. The highest SinT levels were found in yeast cells subjected to oxidative stress and with mitochondrial dysfunction. Under these conditions, the aggregation of tau was enhanced although the protein is less phosphorylated, suggesting that additional mechanisms are involved. Our results validate yeast as a prime model to identify the genetic and biochemical factors that contribute to the pathophysiology of human tau.
Collapse
Affiliation(s)
- Thomas Vanhelmont
- Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA, Zhu X. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 2009; 468:267-71. [PMID: 19914335 DOI: 10.1016/j.neulet.2009.11.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Tau hyperphosphorylation appears to be a critical event leading to abnormal aggregation and disrupted function of tau in affected neurons in Alzheimer's disease (AD). As a prominent early event during AD pathogenesis, oxidative stress is believed to contribute to tau phosphorylation and the formation of neurofibrillary lesions. However, acute oxidative stress has disparate effects on tau phosphorylation. Given the chronic nature of AD, in this study, we aimed to determine the long-term effect of oxidative stress on tau phosphorylation. In this regard, we established a novel in vitro model of chronic oxidative stress through inhibition of glutathione (GSH) synthesis with BSO. We confirmed that these cells were under a chronic mild oxidative stress by looking at oxidative response, the induction of heme oxygenase 1 (HO-1) without neuronal death. Chronic oxidative stress increased levels of tau phosphorylated at PHF-1 epitope (serine 399/404) in a time-dependent manner. Our data further suggest that increased activity of JNK and p38 and decreased activity of PP2A are likely involved in chronic oxidative stress-induced tau phosphorylation. In conclusion we suggest that chronic oxidative stress contributes to increased tau phosphorylation in vitro and could play a critical role in neurofibrillary pathology in vivo.
Collapse
Affiliation(s)
- Bo Su
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
13
|
Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, Guo J, Ling EA, Liang F. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 2007; 27:2606-16. [PMID: 17344398 PMCID: PMC6672490 DOI: 10.1523/jneurosci.4181-06.2007] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silent information regulator-2 (SIR2) proteins regulate lifespan of diverse organisms, but their distribution and roles in the CNS remain unclear. Here, we show that sirtuin 2 (SIRT2), a mammalian SIR2 homolog, is an oligodendroglial cytoplasmic protein and localized to the outer and juxtanodal loops in the myelin sheath. Among cytoplasmic proteins of OLN-93 oligodendrocytes, alpha-tubulin was the main substrate of SIRT2 deacetylase. In cultured primary oligodendrocyte precursors (OLPs), SIRT2 emergence accompanied elevated alpha-tubulin acetylation and OLP differentiation into the prematurity stage. Small interfering RNA knockdown of SIRT2 increased the alpha-tubulin acetylation, myelin basic protein expression, and cell arbor complexity of OLPs. SIRT2 overexpression had the opposite effects, and counteracted the cell arborization-promoting effect of overexpressed juxtanodin. SIRT2 mutation concomitantly reduced its deacetylase activity and its impeding effect on OLP arborization. These results demonstrated a counterbalancing role of SIRT2 against a facilitatory effect of tubulin acetylation on oligodendroglial differentiation. Selective SIRT2 availability to oligodendroglia may have important implications for myelinogenesis, myelin-axon interaction, and brain aging.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Bin Zhang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Junhong Tang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Chun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Jing Guo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
14
|
Abstract
Oligodendrocytes, myelin-forming glial cells of the central nervous system, are vulnerable to damage in a variety of neurologic diseases. Much is known of primary myelin injury, which occurs in settings of genetic dysmyelination or demyelinating disease. There is growing awareness that oligodendrocytes are also targets of injury in acute ischemia. Recognition of oligodendrocyte damage in animal models of ischemia requires attention to their distinct histologic features or use of specific immunocytochemical markers. Like neurons, oligodendrocytes are highly sensitive to injury by oxidative stress, excitatory amino acids, trophic factor deprivation, and activation of apoptotic pathways. Understanding mechanisms of oligodendrocyte death may suggest new therapeutic strategies to preserve or restore white matter function and structure after ischemic insults.
Collapse
Affiliation(s)
- Deborah Dewar
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Garscube Estate, Bearsden Road, Glasgow C61 1QH, Scotland, UK.
| | | | | |
Collapse
|
15
|
|
16
|
Goldbaum O, Richter-Landsberg C. Activation of PP2A-like phosphatase and modulation of tau phosphorylation accompany stress-induced apoptosis in cultured oligodendrocytes. Glia 2002; 40:271-82. [PMID: 12420308 DOI: 10.1002/glia.10119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In a number of neurodegenerative diseases, tau-positive glial cytoplasmic inclusions (GCIs), immunochemically labeled with antibodies to the small heat shock protein (HSP) alphaB-crystallin, occur in oligodendrocytes. The microtubule-associated protein tau is functionally modulated by phosphorylation. We have shown previously that oxidative stress (OS) and heat shock (HS) induce apoptotic cell death in oligodendrocytes. The present study was undertaken to test whether stress responses in oligodendrocytes cause abnormalities in the expression and posttranslational modification of tau proteins, and whether the dynamic phosphorylation and dephosphorylation of tau are involved in the pathogenesis of glial cells. Cultured rat brain oligodendrocytes were subjected to OS, exerted by hydrogen peroxide, or HS (44 degrees C, 30 min). Immunoblot analysis with a panel of phosphorylation-dependent antibodies shows that OS and HS caused the rapid dephosphorylation of tau proteins at multiple sites, before characteristic features of apoptosis were observed. Concomitantly, ERK1,2 (extracellular signal-regulated kinase) was activated. Tau phosphorylation and rephosphorylation after stress was mediated by glycogen synthase kinase 3beta (GSK-3beta), and not by ERK1,2 and could be suppressed by lithium chloride, a specific inhibitor of GSK-3beta. Stress-induced dephosphorylation could be mimicked by alkaline phosphatase and suppressed by the protein phosphatase inhibitor okadaic acid (OA), indicating that PP2A in oligodendrocytes is activated by stress. OA at low concentrations could prevent stress-induced DNA fragmentation, but eventually exerted cytotoxic effects. Hence, stress-induced activation of PP2A in oligodendrocytes and tau dephosphorylation constitute a major feature of the response to injury in these cells, which eventually undergo apoptotic cell death.
Collapse
Affiliation(s)
- Olaf Goldbaum
- Department of Biology, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|