1
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
2
|
Anthony SS, Date I, Yasuhara T. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ 2017; 3:124-129. [PMID: 30276313 PMCID: PMC6057693 DOI: 10.4103/bc.bc_16_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Patients who are bedridden often suffer from muscular atrophy due to reduced daily activities and can become depressed. However, patients who undergo physical therapy sometimes demonstrate positive benefits including a reduction of stressful and depressed behavior. Regenerative medicine has seen improvements in two stem cell-based therapies for central nervous system disorders. One therapy is through the transfer of exogenous stem cells. The other therapy is a more natural method and focuses on the increasing endogenous neurogenesis and restoring the neurological impairments. This study overviews how immobilization-induced disuse atrophy affects neurogenesis in rats, specifically hypothesizing that immobilization diminishes circulating trophic factor levels, like vascular endothelial growth factors or brain-derived neurotrophic factor, which in turn limits neurogenesis. This hypothesis requires the classification of the stem cell microenvironment by probing growth factors in addition to other stress-related proteins that correlate with exercise-induced neurogenesis. There is research examining the effects of increased exercise on neurogenesis while limiting exercise, which better demonstrates the pathological states of immobile stroke patients, remains relatively unexplored. To examine the effects of immobilization on neurogenesis quantitative measurements of movements, 5-bromo-2deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and neurological levels of trophic factors, growth factors, and stress-related proteins will indicate levels of neurogenesis. In further research, studies are needed to show how in vivo stimulation, or lack thereof, affects stem cell microenvironments to advance treatment procedures for strengthening neurogenesis in bedridden patients. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Stefan S. Anthony
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
3
|
Lippert T, Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. Detrimental effects of physical inactivity on neurogenesis. Brain Circ 2016; 2:80-85. [PMID: 30276277 PMCID: PMC6126252 DOI: 10.4103/2394-8108.186278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Patients diagnosed with neurological disorders exhibit a variety of physical and psychiatric symptoms, including muscle atrophy, general immobility, and depression. Patients who participate in physical rehabilitation at times show unexpected clinical improvement, which includes diminished depression and other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for central nervous system (CNS) disorders, transplantation of exogenous stem cells, and enhancing the endogenous neurogenesis. The latter therapy utilizes a natural method of re-innervating the injured brain, which may mend neurological impairments. In this study, we examine how inactivity-induced atrophy, using the hindlimb suspension model, alters neurogenesis in rats. The hypothesis is that inactivity inhibits neurogenesis by decreasing circulation growth or trophic factors, such as vascular endothelial growth or neurotrophic factors. The restriction modifies neurogenesis and stem cell differentiation in the CNS, the stem cell microenvironment is examined by the trophic and growth factors, including stress-related proteins. Despite growing evidence revealing the benefits of “increased” exercise on neurogenesis, the opposing theory involving “physical inactivity,” which simulates pathological states, continues to be neglected. This novel theory will allow us to explore the effects on neurogenesis by an intransigent stem cell microenvironment likely generated by inactivity. 5-bromo-2-deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid, and brain levels of trophic factors, growth factors, and stress-related proteins are suggested identifiers of neurogenesis, while evaluation of spontaneous movements will give insight into the psychomotor effects of inactivity. Investigations devised to show how in vivo stimulation, or lack thereof, affects the stem cell microenvironment are necessary to establish treatment methods to boost neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. No pain, no gain: lack of exercise obstructs neurogenesis. Cell Transplant 2015; 24:591-7. [PMID: 25806858 DOI: 10.3727/096368915x687723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bedridden patients develop atrophied muscles, their daily activities greatly reduced, and some display a depressive mood. Patients who are able to receive physical rehabilitation sometimes show surprising clinical improvements, including reduced depression and attenuation of other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for CNS disorders, namely, transplantation of exogenous stem cells and amplification of endogenous neurogenesis. The latter strategy embraces a natural way of reinnervating the damaged brain and correcting the neurological impairments. In this study, we discussed how immobilization-induced disuse atrophy, using the hindlimb suspension model, affects neurogenesis in rats. The overarching hypothesis is that immobilization suppresses neurogenesis by reducing the circulating growth or trophic factors, such as vascular endothelial growth factor or brain-derived neurotrophic factor. That immobilization alters neurogenesis and stem cell differentiation in the CNS requires characterization of the stem cell microenvironment by examining the trophic and growth factors, as well as stress-related proteins that have been implicated in exercise-induced neurogenesis. Although accumulating evidence has revealed the contribution of "increased" exercise on neurogenesis, the reverse paradigm involving "lack of exercise," which mimics pathological states (e.g., stroke patients are often immobile), remains underexplored. This novel paradigm will enable us to examine the effects on neurogenesis by a nonpermissive stem cell microenvironment likely produced by lack of exercise. BrdU labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and brain levels of trophic factors, growth factors, and stress-related proteins are proposed as indices of neurogenesis, while quantitative measurements of spontaneous movements will reveal psychomotor components of immobilization. Studies designed to reveal how in vivo stimulation, or lack thereof, alters the stem cell microenvironment are needed to begin to develop treatment strategies for enhancing neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep 2014; 65:1451-61. [PMID: 24552992 DOI: 10.1016/s1734-1140(13)71505-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Indexed: 01/28/2023]
Abstract
The early life of most mammals is spent in close contact with the mother, and for the neonate, early maternal separation is a traumatic event that, depending on various conditions, may shape its behavioral and neurochemical phenotype in adulthood. Studies on rodents demonstrated that a very brief separation followed by increased maternal care may positively affect the development of the offspring but that prolonged separation causes significant amounts of stress. The consequences of this stress (particularly the hyperreactivity of the HPA (hypothalamic-pituitary-adrenal) axis are expressed in adulthood and persist for life. Maternal separation in rodents, particularly rats, was used as a model for various psychotic conditions, especially depression. The most popular separation procedure of a 3-h daily separation from the second to the 12th postpartum day yields a depression model of high construct and predictive validity. The results of studies on maternal separation in rats and monkeys prompt a discussion of the consequences of traditional procedures in the maternity wards of developed countries where attention is focused on the hygiene of the neonates and not on their psychological needs. This alternate focus results in a drastic limitation of mother-infant contact and prolonged periods of separation. It is tempting to speculate that differences in the course and severity of various mental disorders, which are usually less prevalent in underdeveloped countries than in developed countries (as noted by Kraepelin), may be related to different modes of infant care. Only recently has so-called kangaroo mother care (establishing mother-infant skin-to-skin contact immediately after birth) become popular in developed countries. In addition to its instant benefits for the neonates, this procedure may also be beneficial for the mental health of the offspring in adulthood.
Collapse
Affiliation(s)
- Jerzy Vetulani
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
6
|
Jiang X, Wang Y, Chen Z, Cai Z, Zhang L, Zhou H, Xu N. Polymorphisms in porcine TRH and TRHR gene and associations with growth and fatness traits. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Pecori Giraldi F, Pesce S, Maroni P, Pagliardini L, Lasio G, Losa M, Cavagnini F. Inhibitory effect of prepro-thyrotrophin-releasing hormone (178-199) on adrenocorticotrophic hormone secretion by human corticotroph tumours. J Neuroendocrinol 2010; 22:294-300. [PMID: 20136686 DOI: 10.1111/j.1365-2826.2010.01959.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prepro-thyrotrophin-releasing hormone (TRH) (178-199), a 22-amino acid cleavage product of the TRH prohormone, has been postulated to act as an adrenocorticotrophin hormone (ACTH)-release inhibitor. Indeed, although in vitro evidence indicates that this peptide may inhibit basal and stimulated ACTH secretion in rodent anterior pituitary primary cultures and cell lines, not all studies concur and no study has as yet evaluated the effect of this peptide in Cushing's disease. The present study aimed to test the effect of preproTRH(178-199) in human tumoural corticotrophs. Twenty-four human ACTH-secreting pituitary tumours (13 macroadenomas, 11 microadenomas) were collected during surgery and incubated with 10 or 100 nm preproTRH(178-199). ACTH secretion was assessed after 4 and 24 h of incubation by immunometric assay and expressed relative to levels observed in control, unchallenged wells (= 100%). Parallel experiments were performed in rat anterior pituitary primary cultures. A clear inhibition of ACTH secretion at 4 and 24 h was observed in 12 specimens (for 10 nm ppTRH: 70 +/- 4% control at 4 h and 83 +/- 5% control at 24 h; for 100 nm ppTRH: 70 +/- 4% control at 4 h and 85 +/- 5% control at 24 h), whereas a mild and short-lasting stimulatory effect was observed in three tumours and no changes in ACTH secretion in the remaining nine tumoural specimens. The inhibitory effect of preproTRH(178-199) was more evident in macroadenomas and significantly correlated with sensitivity to dexamethasone inhibition. Significant inhibition of ACTH secretion by preproTRH(178-199) in rat pituitary cultures was observed after 24 h of incubation. The present study conducted in a large series of human corticotroph tumours shows that preproTRH(178-199) inhibits tumoural ACTH secretion in a sizable proportion of specimens, in close relation to the size of the tumour and its sensitivity to glucocorticoid negative feedback. This appears a promising avenue of research and further studies are warranted to explore the full scope of preproTRH(178-199) as a regulator of ACTH secretion.
Collapse
Affiliation(s)
- F Pecori Giraldi
- Chair of Endocrinology, University of Milan, Ospedale San Luca IRCCS, Istituto Auxologico Italiano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Thyrotropin-releasing hormone (TRH) is localized in the brain hypothalamus and stimulates the secretion and synthesis of pituitary thyrotropin (TSH). Although TRH deficiency caused by artificial hypothalamic destructions has been reported to result in significant decreases in TSH secretion in rodents, clinical observations from the patients with possible TRH deficiency did not entirely agree with these animal results. Because of its ubiquitous distribution throughout the brain and in the peripheral tissues, TRH has been suggested to possess a wide variety of functions in these regions. However, the neurobehavioral and peripheral actions of TRH still remains to be established. It has been, therefore, anticipated that detailed analysis of TRH-knockout mice might provide insight into the physiological significance of endogenous TRH. The present review focuses on the phenotypic findings of mice deficient in TRH.
Collapse
Affiliation(s)
- Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
9
|
Blanchard DC, Griebel G, Blanchard RJ. The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 2003; 463:97-116. [PMID: 12600704 DOI: 10.1016/s0014-2999(03)01276-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Mouse Defense Test Battery was developed from tests of defensive behaviors in rats, reflecting earlier studies of both acute and chronic responses of laboratory and wild rodents to threatening stimuli and situations. It measures flight, freezing, defensive threat and attack, and risk assessment in response to an unconditioned predator stimulus, as well as pretest activity and postthreat (conditioned) defensiveness to the test context. Factor analyses of these indicate four factors relating to cognitive and emotional aspects of defense, flight, and defensiveness to the test context. In the Mouse Defense Test Battery, GABA(A)-benzodiazepine anxiolytics produce consistent reductions in defensive threat/attack and risk assessment, while panicolytic and panicogenic drugs selectively reduce and enhance, respectively, flight. Effects of GABA(A)-benzodiazepine, serotonin, and neuropeptide ligands in the Mouse Defense Test Battery are reviewed. This review suggests that the Mouse Defense Test Battery is a sensitive and appropriate tool for preclinical evaluation of drugs potentially effective against defense-related disorders such as anxiety and panic.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biomedical Research Center, University of Hawaii, 1993 East-West Road, Honolulu 96822, USA.
| | | | | |
Collapse
|