1
|
Nakamura H, Ohta K. Understanding subcortical projections to the lateral posterior thalamic nucleus and its subregions using retrograde neural tracing. Front Neuroanat 2024; 18:1430636. [PMID: 39170852 PMCID: PMC11335648 DOI: 10.3389/fnana.2024.1430636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
2
|
Masterson SP, Govindaiah G, Guido W, Bickford ME. Cell-type specific binocular interactions in mouse visual thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603141. [PMID: 39071360 PMCID: PMC11275773 DOI: 10.1101/2024.07.12.603141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Projections from each eye are segregated in separate domains within the dorsal lateral geniculate nucleus (dLGN). Yet, in vivo studies indicate that the activity of single dLGN neurons can be influenced by visual stimuli presented to either eye. In this study we explored whether intrinsic circuits mediate binocular interactions in the mouse dLGN. We employed dual color optogenetics in vitro to selectively activate input from each eye and recorded synaptic responses in thalamocortical (relay) cells as well as inhibitory interneurons, which have extensive dendritic arbors that are not confined to eye specific domains. While most relay cells received monocular retinal input, most interneurons received binocular retinal input; consequently, the majority of dLGN relay cells received binocular retinogeniculate-evoked inhibition. Moreover, in recordings from adjacent pairs of relay cells and interneurons, the most common relationship observed was binocular excitation of interneurons paired with binocular inhibition of adjacent relay cells. Finally, we found that dLGN interneurons are interconnected, displaying both monocular and binocular inhibition in response to retinal activation. In sum, our results indicate that geniculate interneurons provide one of the first locations where signals from the two eyes can be compared, integrated, and adjusted before being transmitted to cortex, shedding new light on the role of the thalamus in binocular vision. Highlights In vitro dual color optogenetics examined convergence of eye-specific retinal inputs to thalamocortical (relay) cells and interneurons in the dLGNThe majority of relay cells receive monocular excitatory retinogeniculate input while the majority of interneurons receive binocular inputBinocular relay cells are located in and around the ipsilateral patch whereas binocular interneurons are distributed throughout the dLGNThe majority of relay cells receive binocular retinogeniculate-evoked inhibitiondLGN interneurons are interconnected, receiving both monocular and binocular retinogeniculate-evoked inhibition.
Collapse
|
3
|
Van Hook MJ, McCool S. Enhanced Synaptic Inhibition in the Dorsolateral Geniculate Nucleus in a Mouse Model of Glaucoma. eNeuro 2024; 11:ENEURO.0263-24.2024. [PMID: 38937109 PMCID: PMC11242868 DOI: 10.1523/eneuro.0263-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feedforward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the γ-aminobutyric acid (GABA)A-α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling pointed to an ∼1.4-fold increase in GABA receptors at postsynaptic inhibitory synapses, although several pieces of evidence indicate a nonuniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
- Departments of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shaylah McCool
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
4
|
Maher EE, Briegel AC, Imtiaz S, Fox MA, Golino H, Erisir A. 3D electron microscopy and volume-based bouton sorting reveal the selectivity of inputs onto geniculate relay cell and interneuron dendrite segments. Front Neuroanat 2023; 17:1150747. [PMID: 37007643 PMCID: PMC10064015 DOI: 10.3389/fnana.2023.1150747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction The visual signals evoked at the retinal ganglion cells are modified and modulated by various synaptic inputs that impinge on lateral geniculate nucleus cells before they are sent to the cortex. The selectivity of geniculate inputs for clustering or forming microcircuits on discrete dendritic segments of geniculate cell types may provide the structural basis for network properties of the geniculate circuitry and differential signal processing through the parallel pathways of vision. In our study, we aimed to reveal the patterns of input selectivity on morphologically discernable relay cell types and interneurons in the mouse lateral geniculate nucleus. Methods We used two sets of Scanning Blockface Electron Microscopy (SBEM) image stacks and Reconstruct software to manually reconstruct of terminal boutons and dendrite segments. First, using an unbiased terminal sampling (UTS) approach and statistical modeling, we identified the criteria for volume-based sorting of geniculate boutons into their putative origins. Geniculate terminal boutons that were sorted in retinal and non-retinal categories based on previously described mitochondrial morphology, could further be sorted into multiple subpopulations based on their bouton volume distributions. Terminals deemed non-retinal based on the morphological criteria consisted of five distinct subpopulations, including small-sized putative corticothalamic and cholinergic boutons, two medium-sized putative GABAergic inputs, and a large-sized bouton type that contains dark mitochondria. Retinal terminals also consisted of four distinct subpopulations. The cutoff criteria for these subpopulations were then applied to datasets of terminals that synapse on reconstructed dendrite segments of relay cells or interneurons. Results Using a network analysis approach, we found an almost complete segregation of retinal and cortical terminals on putative X-type cell dendrite segments characterized by grape-like appendages and triads. On these cells, interneuron appendages intermingle with retinal and other medium size terminals to form triads within glomeruli. In contrast, a second, presumed Y-type cell displayed dendrodendritic puncta adherentia and received all terminal types without a selectivity for synapse location; these were not engaged in triads. Furthermore, the contribution of retinal and cortical synapses received by X-, Y- and interneuron dendrites differed such that over 60% of inputs to interneuron dendrites were from the retina, as opposed to 20% and 7% to X- and Y-type cells, respectively. Conclusion The results underlie differences in network properties of synaptic inputs from distinct origins on geniculate cell types.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Alex C Briegel
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Shahrozia Imtiaz
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Michael A Fox
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Fralin Biomedical Research Institute, Roanoke, VA, United States
| | - Hudson Golino
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). J Comp Neurol 2021; 529:2558-2575. [PMID: 33458823 DOI: 10.1002/cne.25109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - McKenzie E Prillaman
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Elif N Keskinoz
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
An Individual Interneuron Participates in Many Kinds of Inhibition and Innervates Much of the Mouse Visual Thalamus. Neuron 2020; 106:468-481.e2. [PMID: 32142646 DOI: 10.1016/j.neuron.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
One way to assess a neuron's function is to describe all its inputs and outputs. With this goal in mind, we used serial section electron microscopy to map 899 synaptic inputs and 623 outputs in one inhibitory interneuron in a large volume of the mouse visual thalamus. This neuron innervated 256 thalamocortical cells spread across functionally distinct subregions of the visual thalamus. All but one of its neurites were bifunctional, innervating thalamocortical and local interneurons while also receiving synapses from the retina. We observed a wide variety of local synaptic motifs. While this neuron innervated many cells weakly, with single en passant synapses, it also deployed specialized branches that climbed along other dendrites to form strong multi-synaptic connections with a subset of partners. This neuron's diverse range of synaptic relationships allows it to participate in a mix of global and local processing but defies assigning it a single circuit function.
Collapse
|
7
|
Whyland KL, Slusarczyk AS, Bickford ME. GABAergic cell types in the superficial layers of the mouse superior colliculus. J Comp Neurol 2019; 528:308-320. [PMID: 31396959 DOI: 10.1002/cne.24754] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
To begin to unravel the complexities of GABAergic circuits in the superior colliculus (SC), we utilized mouse lines that express green fluorescent protein (GFP) in cells that contain the 67 kDa isoform of glutamic acid decarboxylase (GAD67-GFP), or Cre-recombinase in cells that contain glutamic acid decarboxylase (GAD; GAD2-cre). We used Cre-dependent virus injections in GAD2-Cre mice and tracer injections in GAD67-GFP mice, as well as immunocytochemical staining for gamma amino butyric acid (GABA) and parvalbumin (PV) to characterize GABAergic cells that project to the pretectum (PT), ventral lateral geniculate nucleus (vLGN) or parabigeminal nucleus (PBG), and interneurons in the stratum griseum superficiale (SGS) that do not project outside the SC. We found that approximately 30% of SGS neurons in the mouse are GABAergic. Of these GABAergic neurons, we identified three categories of potential interneurons in the GAD67-GFP line (GABA+GFP ~45%, GABA+GFP + PV ~15%, and GABA+PV ~10%). GABAergic cells that did not contain GFP or PV were identified as potential projection neurons (GABA only ~30%). We found that GABAergic neurons that project to the PBG are primarily located in the SGS and exhibit narrow field vertical, stellate, and horizontal dendritic morphologies, while GABAergic neurons that project to the PT and vLGN are primarily located in layers ventral to the SGS. In addition, we examined GABA and GAD67-containing elements of the mouse SGS using electron microscopy to further delineate the relationship between GABAergic circuits and retinotectal input. Approximately 30% of retinotectal synaptic targets are the presynaptic dendrites of GABAergic interneurons, and GAD67-GFP interneurons are a source of these presynaptic dendrites.
Collapse
Affiliation(s)
- Kyle L Whyland
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | | | - Martha E Bickford
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Bickford ME. Synaptic organization of the dorsal lateral geniculate nucleus. Eur J Neurosci 2018; 49:938-947. [PMID: 29575193 DOI: 10.1111/ejn.13917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
A half century after Ray Guillery's classic descriptions of cell types, axon types, and synaptic architecture of the dorsal lateral geniculate nucleus, the functional organization of this nucleus, as well as all other thalamic nuclei, is still of enormous interest. This review will focus on two classic papers written by Ray Guillery: 'A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat', and 'The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat', as well as the studies that most directly followed from the insights these landmark manuscripts provided. It is hoped that this review will honor Ray Guillery by encouraging further investigations of the synaptic organization of the dorsal thalamus.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, 511 South Floyd, Room 111, Louisville, KY, 40202, USA
| |
Collapse
|
9
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
10
|
Retinal and Tectal "Driver-Like" Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2015. [PMID: 26203147 DOI: 10.1523/jneurosci.3375-14.2015] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) is a model system for understanding thalamic organization and the classification of inputs as "drivers" or "modulators." Retinogeniculate terminals provide the primary excitatory drive for the relay of information to visual cortex (V1), while nonretinal inputs act in concert to modulate the gain of retinogeniculate signal transmission. How do inputs from the superior colliculus, a visuomotor structure, fit into this schema? Using a variety of anatomical, optogenetic, and in vitro physiological techniques in mice, we show that dLGN inputs from the superior colliculus (tectogeniculate) possess many of the ultrastructural and synaptic properties that define drivers. Tectogeniculate and retinogeniculate terminals converge to innervate one class of dLGN neurons within the dorsolateral shell, the primary terminal domain of direction-selective retinal ganglion cells. These dLGN neurons project to layer I of V1 to form synaptic contacts with dendrites of deeper-layer neurons. We suggest that tectogeniculate inputs act as "backseat drivers," which may alert shell neurons to movement commands generated by the superior colliculus. Significance statement: The conventional view of the dorsal lateral geniculate nucleus (dLGN) is that of a simple relay of visual information between the retina and cortex. Here we show that the dLGN receives strong excitatory input from both the retina and the superior colliculus. Thus, the dLGN is part of a specialized visual channel that provides cortex with convergent information about stimulus motion and eye movement and positioning.
Collapse
|
11
|
Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W. Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2010; 518:622-35. [PMID: 20034053 DOI: 10.1002/cne.22223] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model system in the study of thalamic circuit development. However, there is still a lack of information regarding how and when various types of retinal and nonretinal synapses develop. We examined the synaptic organization of the developing mouse dLGN in the common pigmented C57/BL6 strain, by recording the synaptic responses evoked by electrical stimulation of optic tract axons, and by investigating the ultrastructure of identified synapses. At early postnatal ages (<P12), optic tract evoked responses were primarily excitatory. The full complement of inhibitory responses did not emerge until after eye opening (>P14), when optic tract stimulation routinely evoked an excitatory postsynaptic potential/inhibitory postsynaptic potential (EPSP/IPSP) sequence, with the latter having both a GABA(A) and GABA(B) component. Electrophysiological and ultrastructural observations were consistent. At P7, many synapses were present, but synaptic profiles lacked the ultrastructural features characteristic of the adult dLGN, and little gamma-aminobutyric acid (GABA) could be detected by using immunocytochemical techniques. In contrast, by P14, GABA staining was robust, mature synaptic profiles of retinal and nonretinal origin were easily distinguished, and the size and proportion of synaptic contacts were similar to those of the adult. The emergence of nonretinal synapses coincides with pruning of retinogeniculate connections, and the transition of retinal activity from spontaneous to visually driven. These results indicate that the synaptic architecture of the mouse dLGN is similar to that of other higher mammals, and thus provides further support for its use as a model system for visual system development.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB. Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 2008; 508:264-85. [PMID: 18314907 DOI: 10.1002/cne.21671] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the synaptic targets of large non-gamma-aminobutyric acid (GABA)-ergic profiles that contain round vesicles and dark mitochondria (RLD profiles) in the perigeniculate nucleus (PGN) and the dorsal lateral geniculate nucleus (dLGN). RLD profiles can provisionally be identified as the collaterals of thalamocortical axons, because their ultrastrucure is distinct from all other previously described dLGN inputs. We also found that RLD profiles are larger than cholinergic terminals and contain the type 2 vesicular glutamate transporter. RLD profiles are distributed throughout the PGN and are concentrated within the interlaminar zones (IZs) of the dLGN, regions distinguished by dense binding of Wisteria floribunda agglutinin (WFA). To determine the synaptic targets of thalamocortical axon collaterals, we examined RLD profiles in the PGN and dLGN in tissue stained for GABA. For the PGN, we found that all RLD profiles make synaptic contacts with GABAergic PGN somata, dendrites, and spines. In the dLGN, RLD profiles primarily synapse with GABAergic dendrites that contain vesicles (F2 profiles) and non-GABAergic dendrites in glomerular arrangements that include triads. Occasional synapses on GABAergic somata and proximal dendrites were also observed in the dLGN. These results suggest that correlated dLGN activity may be enhanced via direct synaptic contacts between thalamocortical cells, whereas noncorrelated activity (such as that occurring during binocular rivalry) could be suppressed via thalamocortical collateral input to PGN cells and dLGN interneurons.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB. Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): A hodological and GABA-immunocytochemical study. J Comp Neurol 2008; 507:1351-78. [DOI: 10.1002/cne.21635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Born G, Schmidt M. GABAergic pathways in the rat subcortical visual system: a comparative study in vivo and in vitro. Eur J Neurosci 2007; 26:1183-92. [PMID: 17767497 DOI: 10.1111/j.1460-9568.2007.05700.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitory pathways project from the pretectal nuclear complex to the ipsilateral superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Both pathways arise from GABAergic neurones that are located in the dorsal pretectal nuclear complex. In the present experiments, we compared the anatomy and physiology of these two pathways with the objective of determining whether they have similar functions. First, we injected retrograde axonal tracers that fluoresce at different wavelengths in the dLGN and SC of single animals to determine if individual GABAergic neurones in the pretectum project to both structures. The results showed that the dLGN and SC receive input from different cell groups. Next, morphological reconstructions of cells labelled after in-vitro whole-cell patch-clamp recordings demonstrated that the pretectal-recipient cells in the dLGN are GABAergic interneurones, whereas those in the SC are projection cells. Finally, with in-vitro whole-cell patch-clamp recordings we showed that inhibitory currents generated by both pathways are mediated by GABA(A) receptors. Taken together, these results suggest that these inhibitory projections may function to facilitate the relay of information from the dLGN to the visual cortex by suppressing the activity of dLGN interneurones, and to reduce the level of activity leaving the SC by inhibiting the projection neurones. These hypotheses will be discussed in the context of the known functions of the pretectal complex.
Collapse
Affiliation(s)
- Gesche Born
- Allgemeine Zoologie & Neurobiologie, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
15
|
Prochnow N, Lee P, Hall WC, Schmidt M. In vitro properties of neurons in the rat pretectal nucleus of the optic tract. J Neurophysiol 2007; 97:3574-84. [PMID: 17344379 DOI: 10.1152/jn.00039.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus of the optic tract (NOT) has been implicated in the initiation of the optokinetic reflex (OKR) and in the modulation of visual activity during saccades. The present experiments demonstrate that these two functions are served by separate cell populations that can be distinguished by differences in both their cellular physiology and their efferent projections. We compared the response properties of NOT cells in rats using target-directed whole cell patch-clamp recording in vitro. To identify the cells at the time of the recording experiments, they were prelabeled by retrograde axonal transport of WGA-apo-HRP-gold (15 nm), which was injected into their primary projection targets, either the ipsilateral superior colliculus (iSC), or the contralateral NOT (cNOT), or the ipsilateral inferior olive (iIO). Retrograde labeling after injections in single animals of either WGA-apo-HRP-gold with different particle sizes (10 and 20 nm) or two different fluorescent dyes distinguished two NOT cell populations. One projects to both the iSC and cNOT. These cells are spontaneously active in vitro and respond to intracellular depolarizations with temporally regular tonic firing. The other population projects to the iIO and consists of cells that show no spontaneous activity, respond phasically to intracellular depolarization, and show irregular firing patterns. We propose that the spontaneously active pathway to iSC and cNOT is involved in modulating the level of visual activity during saccades and that the phasically active pathway to iIO provides a short-latency relay from the retina to premotor mechanisms involved in reducing retinal slip.
Collapse
Affiliation(s)
- N Prochnow
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, ND 6/32, D-44780 Bochum, Germany.
| | | | | | | |
Collapse
|
16
|
Van Horn SC, Sherman SM. Fewer driver synapses in higher order than in first order thalamic relays. Neuroscience 2007; 146:463-70. [PMID: 17320295 PMCID: PMC1941769 DOI: 10.1016/j.neuroscience.2007.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 12/13/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
We used electron microscopy to determine the relative numbers of the three synaptic terminal types, RL (round vesicle, large terminal), RS (round vesicles, small terminal), and F (flattened vesicles), found in several representative thalamic nuclei in cats chosen as representative examples of first and higher order thalamic nuclei, where the first order nuclei relay subcortical information mainly to primary sensory cortex, and the higher order nuclei largely relay information from one cortical area to another. The nuclei sampled were the first order ventral posterior nucleus (somatosensory) and the ventral portion of the medial geniculate nucleus (auditory), and the higher order posterior nucleus (somatosensory) and the medial portion of the medial geniculate nucleus (auditory). We found that the relative percentage of synapses from RL terminals varied significantly among these nuclei, these values being higher for first order nuclei (12.6% for the ventral posterior nucleus and 8.2% for the ventral portion of the medial geniculate nucleus) than for the higher order nuclei (5.4% for the posterior nucleus, and 3.5% for the medial portion of the medial geniculate nucleus). This is consistent with a similar analysis of first and higher order nuclei for the visual system (the lateral geniculate nucleus and pulvinar, respectively). Since synapses from RL terminals represent the main information to be relayed, whereas synapses from F and RS terminals are modulatory in function, we conclude that there is relatively more modulation of the thalamic relay in the cortico-thalamo-cortical higher order pathway than in first order relays.
Collapse
Affiliation(s)
- S C Van Horn
- Department of Neurobiology, State University of New York, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
17
|
Cao P, Yang Y, Yang Y, Wang SR. Differential modulation of thalamic neurons by optokinetic nuclei in the pigeon. Brain Res 2006; 1069:159-65. [PMID: 16405870 DOI: 10.1016/j.brainres.2005.11.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
The visual system in the pigeon is composed of the tectofugal, thalamofugal and accessory optic pathways. Though their anatomy and physiology have been extensively studied, the functional interactions between these pathways are largely unknown. The present study shows by using multiple electrophysiological techniques that firing activity in the nucleus opticus principalis thalami (OPT) of the thalamofugal pathway is differentially modulated by the pretectal nucleus lentiformis mesencephali (nLM) and the nucleus of the basal optic root (nBOR) of the accessory optic system, two optokinetic nuclei responsible for generating eye movements to stabilize the image on the retina. Reversible inactivation, electrical stimulation, microiontophoresis and receptive field mapping experiments all consistently indicate that the nBOR-OPT pathway is inhibitory and mediated by GABA as a transmitter and its GABAA receptors, whereas the nLM-OPT pathway is excitatory and mediated by glutamate as a transmitter and its NMDA receptors. They also differentially modulate the size and/or responsiveness of receptive fields in OPT cells as well. Numerous electrode tip sites were histologically confirmed in the neural structures under study. The results suggest that these optokinetic nuclei may dually modulate the transfer of visual information from the retina to the telencephalon at the thalamic level during eye movements.
Collapse
Affiliation(s)
- Peng Cao
- Laboratory for Visual Information Processing, State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China
| | | | | | | |
Collapse
|
18
|
Abstract
Research over the past two decades in mammals, especially primates, has greatly improved our understanding of the afferent and efferent connections of two retinorecipient pretectal nuclei, the nucleus of the optic tract (NOT) and the pretectal olivary nucleus (PON). Functional studies of these two nuclei have further elucidated some of the roles that they play both in oculomotor control and in relaying oculomotor-related signals to visual relay nuclei. Therefore, following a brief overview of the anatomy and retinal projections to the entire mammalian pretectum, the connections and potential roles of the NOT and the PON are considered in detail. Data on the specific connections of the NOT are combined with data from single-unit recording, microstimulation, and lesion studies to show that this nucleus plays critical roles in optokinetic nystagmus, short-latency ocular following, smooth pursuit eye movements, and adaptation of the gain of the horizontal vestibulo-ocular reflex. Comparable data for the PON show that this nucleus plays critical roles in the pupillary light reflex, light-evoked blinks, rapid eye movement sleep triggering, and modulating subcortical nuclei involved in circadian rhythms.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
BALDAUF ZSOLTB, WANG SITING, CHOMSUNG RANIDAD, MAY PAULJ, BICKFORD MARTHAE. Ultrastructural analysis of projections to the pulvinar nucleus of the cat. II: Pretectum. J Comp Neurol 2005; 485:108-26. [PMID: 15776450 PMCID: PMC2561319 DOI: 10.1002/cne.20487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pretectum (PT) can supply the pulvinar nucleus (PUL), and concomitantly the cortex, with visual motion information through its dense projections to the PUL. We examined the morphology and synaptic targets of pretecto-pulvinar (PT-PUL) terminals labeled by anterograde transport in the cat. By using postembedding immunocytochemical staining for gamma-aminobutyric acid (GABA), we additionally determined whether PT-PUL terminals or their postsynaptic targets were GABAergic. We found that the main projection from the PT to the PUL is an ipsilateral, non-GABAergic projection (72.4%) that primarily contacts thalamocortical cell dendrites (87.6%), and also the dendritic terminals of interneurons (F2 profiles; 12.4%). The PT additionally provides GABAergic innervation to the PUL (27.6% of the ipsilateral projection), which chiefly contacts relay cell dendrites (84.6%) but also GABAergic profiles (15.4%). These GABAergic pretectal terminals are smaller, beaded fibers that likely branch to bilaterally innervate the PUL and dLGN, and possibly other targets. We also examined the neurochemical nature of PT-PUL cells labeled by retrograde transport and found that most are non-GABAergic cells (79%) and devoid of calbindin. Taking existing physiological and our present morphological data into account, we suggest that, in addition to the parietal cortex, the non-GABAergic PT-PUL projection may also strongly influence PUL activity. The GABAergic pretectal fibers, however, may provide a more widespread influence on thalamic activity.
Collapse
Affiliation(s)
- ZSOLT B. BALDAUF
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292
| | - SITING WANG
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292
| | - RANIDA D. CHOMSUNG
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292
| | - PAUL J. MAY
- Department of Anatomy, Department of Ophthalmology, Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - MARTHA E. BICKFORD
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292
- Correspondence to: Martha E. Bickford, Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, Louisville, KY 40292. E-mail:
| |
Collapse
|
20
|
Bokor H, Frère SGA, Eyre MD, Slézia A, Ulbert I, Lüthi A, Acsády L. Selective GABAergic Control of Higher-Order Thalamic Relays. Neuron 2005; 45:929-40. [PMID: 15797553 DOI: 10.1016/j.neuron.2005.01.048] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 11/20/2022]
Abstract
GABAergic signaling is central to the function of the thalamus and has been traditionally attributed primarily to the nucleus reticularis thalami (nRT). Here we present a GABAergic pathway, distinct from the nRT, that exerts a powerful inhibitory effect selectively in higher-order thalamic relays of the rat. Axons originating in the anterior pretectal nucleus (APT) innervated the proximal dendrites of relay cells via large GABAergic terminals with multiple release sites. Stimulation of the APT in an in vitro slice preparation revealed a GABA(A) receptor-mediated, monosynaptic IPSC in relay cells. Activation of presumed single APT fibers induced rebound burst firing in relay cells. Different APT neurons recorded in vivo displayed fast bursting, tonic, or rhythmic firing. Our data suggest that selective extrareticular GABAergic control of relay cell activity will result in effective, state-dependent gating of thalamocortical information transfer in higher-order but not in first-order relays.
Collapse
Affiliation(s)
- Hajnalka Bokor
- Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, 1450 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
21
|
Born G, Schmidt M. Inhibition of superior colliculus neurons by a GABAergic input from the pretectal nuclear complex in the rat. Eur J Neurosci 2005; 20:3404-12. [PMID: 15610173 DOI: 10.1111/j.1460-9568.2004.03820.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammalian pretectal nuclear complex (PNC) is a visual and visuomotor control structure which is strongly connected to other subcortical visual structures. This indicates that the PNC also controls subcortical visual information flow during the execution of various oculomotor programs. A prominent, presumably GABAergic, projection from the PNC targets the superficial grey layer of the superior colliculus (SC), which itself is a central structure for visual information processing necessary for the generation of saccadic eye movements. In order to characterize the pretectotectal projection in vitro, we performed whole-cell patch-clamp recordings from SC and PNC neurons in slices obtained from 3-6-week-old pigmented rats. Focal glutamate injections into the PNC and electrical PNC stimulation were used to induce postsynaptic responses in SC neurons. Electrical stimulation of the SC allowed electrophysiological identification of PNC neurons that provide the inhibitory pretectotectal input. Only inhibitory postsynaptic currents could be elicited in SC neurons both by pharmacological and by electrical activation of the ipsilateral PNC. Concomitantly, a small number of PNC neurons could be antidromically activated from the ipsilateral SC. Most SC cells postsynaptic to the prectectal input showed the dendritic morphology of wide-field and narrow-field cells and are therefore regarded as projection neurons. All inhibitory currents evoked by PNC activation could be completely blocked by bath application of the selective GABA(A) receptor antagonist bicuculline. Together these results indicate that SC projection neurons receive a direct inhibitory input from the ipsilateral PNC and that this input is mediated by GABA(A) receptors.
Collapse
Affiliation(s)
- Gesche Born
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, ND 6/25, D-44780 Bochum, Germany
| | | |
Collapse
|
22
|
Kenigfest N, Rio JP, Belekhova M, Repérant J, Vesselkin N, Ward R. Pretectal and tectal afferents to the dorsal lateral geniculate nucleus of the turtle: An electron microscopic axon tracing and γ-aminobutyric acid immunocytochemical study. J Comp Neurol 2004; 475:107-27. [PMID: 15176088 DOI: 10.1002/cne.20159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pretectal and tectal projections to the dorsal lateral geniculate nucleus (GLd) of two species of turtle (Emys orbicularis and Testudo horsfieldi) were examined under the electron microscope by using axonal tracing techniques (horseradish peroxidase or biotinylated dextran amine) and postembedding gamma-aminobutyric acid (GABA) immunocytochemistry. After injection of tracer into the pretectum, two types of axon terminals were identified as those of pretectogeniculate pathways. Both contained pleomorphic synaptic vesicles and were more numerous in the inner part of the nucleus. They could be distinguished on the bases of size and shape of their synaptic vesicles, type of synaptic contact, and level of GABA immunoreactivity. One type had a higher density of immunolabeling and established symmetric synaptic contacts, whereas the other, less densely immunolabeled, made asymmetric synaptic contacts. In both cases, synaptic contacts were mainly with relay cells and occasionally with interneurons. We suggest that these two types of pretectogeniculate terminals originate in two separate pretectal nuclei. After injection of tracer into the optic tectum, a single population of GABA-immunonegative tracer-labeled terminals was identified as belonging to the tectogeniculate pathway. These were small, had smooth contours, contained very small round synaptic vesicles, and established asymmetric synaptic contacts with long active zones, predominantly with relay cells and less frequently with interneurons, in the inner part of the nucleus. In addition, a population of GABA-negative and occasionally GABA-positive terminals, labeled by tracer injected into either the pretectum or the tectum, was identified as retinal terminals; these were presumably labeled by the retrograde transport of tracer in collateral branches of visual fibers innervating both the GLd and the pretectum or tectum. Comparison of the present ultrastructural findings in turtles with those previously reported in mammals shows that the cytological features, synaptic morphology, and immunochemical properties of the pretectogeniculate and tectogeniculate terminals of both groups share many similarities. Nevertheless, the postsynaptic targets of these two categories of terminals display some pronounced differences between the two groups, which are discussed in terms of their possible functional significance.
Collapse
Affiliation(s)
- Natalia Kenigfest
- Muséum National d'Histoire Naturelle USM-0501, Bâtiment d'Anatomie Comparée, 55 Rue Buffon, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
23
|
Baldauf ZB, Wang XP, Wang S, Bickford ME. Pretectotectal pathway: an ultrastructural quantitative analysis in cats. J Comp Neurol 2003; 464:141-58. [PMID: 12898608 DOI: 10.1002/cne.10792] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both the pretectum (PT) and the superior colliculus (SC) play an important role in directing eye movements and in sensorimotor coupling. A reciprocal connection between the PT and the SC has been described, which suggests a strong interplay between these two structures. We injected the cat SC with retrograde tracers and examined the labeled pretectotectal (PTT) cells at the light and electron microscopic level. PTT cells were distributed mostly in the nucleus of the optic tract and 93.1% contained gamma amino butyric acid (GABA). We also observed that PTT cells are located outside of pretectal regions distinguished by dense retinal terminals and clusters of cells that contain calbindin. This suggests that the GABAergic PTT cells are distinct from the GABAergic pretectogeniculate cells that have been previously described as being distributed within these regions. Finally, to determine the synaptic targets of PTT terminals, we injected the PT with anterograde tracers and examined terminals labeled in the SC at the ultrastructural level. The labeled PTT terminals were beaded fibers that were distributed mainly within the stratum griseum superficiale (SGS) of the SC. Using postembedding immunocytochemistry, 94.5% were found to be GABAergic. The PTT terminals were mostly small in size and primarily contacted GABA-negative dendrites (88.1%) and in some cases somata (4.7%). The remainder terminated on GABAergic dendrites (7.2%). Our results suggest that the PTT cells constitute a separate population of GABAergic efferent cells in the PT, which may function to inhibit the activity of non-GABAergic SC efferent cells in the SGS.
Collapse
Affiliation(s)
- Zsolt B Baldauf
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
24
|
Wang S, Eisenback MA, Bickford ME. Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the "driver/modulator" theory of thalamic function. J Comp Neurol 2002; 454:482-94. [PMID: 12455011 DOI: 10.1002/cne.10453] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To provide a quantitative comparison of the synaptic organization of "first-order" and "higher-order" thalamic nuclei, we followed bias-corrected sampling methods identical to a previous study of the cat dorsal lateral geniculate nucleus (dLGN; Van Horn et al. [2000] J. Comp. Neurol. 416:509-520) to examine the distribution of terminal types within the cat pulvinar nucleus. We observed the following distribution of synaptic contacts: large terminals that contain loosely packed round vesicles (RL profiles), 3.5%; presynaptic profiles that contain densely packed pleomorphic vesicles (F1 profiles), 7.3%; profiles that could be both presynaptic and postsynaptic that contain loosely packed pleomorphic vesicles (F2 profiles), 5.0%; and small terminals that contain densely packed round vesicles (RS profiles), 84.2%. Postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) was used to distinguish the postsynaptic targets as thalamocortical cells or interneurons. The distribution of synaptic contacts on thalamocortical cells was as follows: RL profiles, 2.1%; F1 profiles, 6.9%; F2 profiles, 5.4%; and RS profiles, 85.6%. The distribution of synaptic contacts on interneurons was as follows: RL profiles, 11.8%; F1 profiles, 9.7%; F2 profiles, 2.8%; and RS profiles, 75.6%. These distributions are similar to that found within the dLGN in that the RS inputs (the presumed "modulators") far outnumber the RL inputs (the presumed "drivers"). However, in comparison to the dLGN, the pulvinar nucleus receives significantly fewer numbers of RL, F1, and F2 contacts and significantly higher numbers of RS contacts. Thus, the RS/RL synapse ratio in the pulvinar nucleus is 24:1, in contrast to the 5:1 RS/RL synapse ratio in the dLGN (Van Horn et al., 2000). In first-order nuclei, the lower RS/RL synapse ratio may result in the transfer of visual information that is largely unmodified. In contrast, in higher-order nuclei, the higher RS/RL synapse ratio may allow for a finer modulation of driving inputs.
Collapse
Affiliation(s)
- Siting Wang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
25
|
Coomes DL, Bickford ME, Schofield BR. GABAergic circuitry in the dorsal division of the cat medial geniculate nucleus. J Comp Neurol 2002; 453:45-56. [PMID: 12357431 DOI: 10.1002/cne.10387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the thalamus. We used postembedding immunocytochemistry to examine the synaptic organization of GABA-positive profiles in the dorsal superficial subdivision of the cat medial geniculate nucleus (MGN). Three groups of GABA-positive profiles participate in synapses: axon terminals, dendrites, and presynaptic dendrites. The presynaptic GABA-positive terminals target mainly GABA-negative dendrites. The GABA-positive postsynaptic profiles receive input primarily from GABA-negative axons. The results indicate that the synaptic organization of GABA-positive profiles in the dorsal superficial subdivision of the MGN nucleus is very similar to that in other thalamic nuclei.
Collapse
Affiliation(s)
- Diana L Coomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|