1
|
Voshavar C, Shah M, Xu L, Dutta AK. Assessment of Protective Role of Multifunctional Dopamine Agonist D-512 Against Oxidative Stress Produced by Depletion of Glutathione in PC12 Cells: Implication in Neuroprotective Therapy for Parkinson's Disease. Neurotox Res 2015; 28:302-18. [PMID: 26201265 PMCID: PMC6158776 DOI: 10.1007/s12640-015-9548-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022]
Abstract
Oxidative stress has been strongly implicated in the progression of Parkinson's disease (PD). Depletion of cytoplasmic glutathione levels is one of the indications of oxidative stress, which occur in the substantia nigra of PD patients at an early stage of the disease process. It has been shown that glutathione depletion causes the inhibition of mitochondrial complex I, thus affecting mitochondrial function leading to oxidative stress via production of reactive oxygen species. Studies were carried out to investigate the role of D-512, a potent multifunctional neuroprotective D2/D3 receptor agonist, in protecting dopaminergic PC12 cells treated with buthionine sulfoximine (BSO), an inhibitor of key enzyme in glutathione synthesis and 6-hydroxydopamine (6-OHDA), a widely used neurotoxin. D-512 was able to restore level of glutathione against BSO/6-OHDA-mediated glutathione depletion. D-512 also showed significant neuroprotection in PC12 cells against toxicity induced by combined treatment of BSO and 6-OHDA. Furthermore, D-512 was able to restore both phospho-extracellular signal-regulated kinase and phospho-Jun N-terminal kinase levels upon treatment with 6-OHDA providing an evidence on the possible mechanism of action for neuroprotection by modulating mitogen-activated protein kinases. We have further demonstrated the neuroprotective effects of D-512 against oxidative insult produced by BSO and 6-OHDA in PC12 cells.
Collapse
Affiliation(s)
| | - Mrudang Shah
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Rm# 3128, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Fan Y, Li J, Zhang YQ, Jiang LH, Zhang YN, Yan CQ. Protein kinase C delta mediated cytotoxicity of 6-Hydroxydopamine via sustained extracellular signal-regulated kinase 1/2 activation in PC12 cells. Neurol Res 2013; 36:53-64. [PMID: 24107416 DOI: 10.1179/1743132813y.0000000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The incidence of Parkinson's disease (PD) is increasing as the global population ages. 6-hydroxydopamine (6-OHDA) can induce PD-like neuropathology and biochemical changes in both in vitro and in vivo models. Therefore, clarification of the molecular mechanism of 6-OHDA-induced cell death might contribute to the understanding of the pathogenesis of PD. METHODS With this goal in mind, we investigated the role of protein kinase C delta (PKC delta) in 6-OHDA-dependent death using the pheochromocytoma cell line, PC12. Cells were treated with 6-OHDA to induce toxicity with or without pretreatment using rottlerin (a PKC delta inhibitor), bisindolylmaleimide I (a general PKC inhibitor), Gö6976 (a PKC inhibitor selective for calcium-dependent PKC isoforms), or phorbol-12-myristate-13-acetate (PMA, a PKC activator). RESULTS Phorbol-12-myristate-13-acetate decreased cell survival and increased the rate of apoptosis while rottlerin increased cell survival and decreased the rate of apoptosis. In contrast, neither bisindolylmaleimide I nor Gö6976 affected 6-OHDA-induced cell death. Western analysis demonstrated that phosphorylation of PKC delta on Thr 505 as well as extracellular signal-regulated kinase (ERK) phosphorylation increased after exposure to 6-OHDA. This increase in PKC delta phosphorylation was potentiated by PMA. However, rottlerin attenuated the 6-OHDA-stimulated increase in PKC delta and ERK phosphorylation. CONCLUSION These data suggest that PKC delta, rather than classic-type PKC (alpha, beta1, beta2, gamma), participates in 6-OHDA-induced neurotoxicity in PC12 cells, and PKC delta activity is required for subsequent ERK activation during cell death.
Collapse
|
3
|
Tiwari MN, Agarwal S, Bhatnagar P, Singhal NK, Tiwari SK, Kumar P, Chauhan LKS, Patel DK, Chaturvedi RK, Singh MP, Gupta KC. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med 2013; 65:704-718. [PMID: 23933227 DOI: 10.1016/j.freeradbiomed.2013.07.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/02/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022]
Abstract
For some instances of Parkinson disease (PD), current evidence in the literature is consistent with reactive oxygen species being involved in the etiology of the disease. The management of PD is still challenging owing to its ambiguous etiology and lack of permanent cure. Because nicotine offers neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, the neuroprotective efficacy of nicotine-encapsulated poly(lactic-co-glycolic) acid (PLGA) nanoparticles and the underlying mechanism of improved efficacy, if any, over bulk nicotine were assessed in this study. The selected indicators of oxidative stress, dopaminergic neurodegeneration and apoptosis, were measured in both in vitro and rodent models of parkinsonism in the presence or absence of "nanotized" or bulk nicotine. The levels of dopamine and its metabolites were measured in the striatum, nicotine and its metabolite in the nigrostriatal tissues while the immunoreactivities of tyrosine hydroxylase (TH), metallothionein-III (MT-III), inducible nitric oxide synthase (iNOS) and microglial activation were checked in the substantia nigra of controls and treated mice. GSTA4-4, heme oxygenase (HO)-1, tumor suppressor protein 53 (p53), caspase-3, lipid peroxidation (LPO), and nitrite levels were measured in the nigrostriatal tissues. Nicotine-encapsulated PLGA nanoparticles improved the endurance of TH-immunoreactive neurons and the number of fiber outgrowths and increased the mRNA expression of TH, neuronal cell adhesion molecule, and growth-associated protein-43 over bulk against 1-methyl-4-phenyl pyridinium ion-induced degeneration in the in vitro model. MPTP reduced TH immunoreactivity and levels of dopamine and its metabolites and increased microglial activation, expression of GSTA4-4, iNOS, MT-III, HO-1, p53, and caspase-3, and levels of nitrite and LPO. Whereas both bulk nicotine and nicotine-encapsulated PLGA nanoparticles modulated the changes toward controls, the modulation was more pronounced in nicotine-encapsulated PLGA nanoparticle-treated parkinsonian mice. The levels of nicotine and cotinine were elevated in nicotine-encapsulated PLGA nanoparticle-treated PD mouse brain compared with bulk. The results obtained from this study demonstrate that nanotization of nicotine improves neuroprotective efficacy by enhancing its bioavailability and subsequent modulation in the indicators of oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | - Swati Agarwal
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Priyanka Bhatnagar
- CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India
| | | | - Shashi Kant Tiwari
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India
| | | | | | - Rajnish Kumar Chaturvedi
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India.
| | | | - Kailash Chand Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India.
| |
Collapse
|
4
|
An electroporation protocol for efficient DNA transfection in PC12 cells. Cytotechnology 2013; 66:543-53. [PMID: 23846478 PMCID: PMC4082779 DOI: 10.1007/s10616-013-9608-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/14/2013] [Indexed: 11/02/2022] Open
Abstract
A wide variety of mammalian cell types is used in gene transfection studies. Establishing transfection methods that enable highly efficient DNA uptake has become increasingly important. PC12 is an established rat pheochromocytoma cell line, which responds to exposure to NGF with cessation of growth, expression of cytoplasmic processes, and differentiation into cells resembling sympathetic neurons. Although PC12 cells represent an important model system to study a variety of neuronal functions, they proved relatively difficult to transfect. We have compared the efficiency of three different chemical transfection reagents (Lipofectamine 2000, Lipofectamine LTX and TransIT-LT1) and of two electroporation systems (Neon and Gene Pulser Xcell) in transiently transfecting undifferentiated PC12 cells. By comparing efficiencies from replicate experiments we proved electroporation (in particular Neon) to be the method of choice. By optimizing different parameters (voltage, pulse width and number of pulses) we reached high efficiency of transfection (90 %) and viability (99 %). We also demonstrated that, upon electroporation, cells are not altered by the transfection and maintain their ability to differentiate.
Collapse
|
5
|
Choi I, Yang YI, Song HD, Lee JS, Kang T, Sung JJ, Yi J. Lipid molecules induce the cytotoxic aggregation of Cu/Zn superoxide dismutase with structurally disordered regions. Biochim Biophys Acta Mol Basis Dis 2010; 1812:41-8. [PMID: 20837142 DOI: 10.1016/j.bbadis.2010.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/18/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023]
Abstract
Cu/Zn-superoxide dismutase (SOD1) is present in the cytosol, nucleus, peroxisomes and mitochondrial intermembrane space of human cells. More than 114 variants of human SOD1 have been linked to familial amyotrophic lateral sclerosis (ALS), which is also known as Lou Gehrig's disease. Although the ultimate mechanisms underlying SOD1-mediated cytotoxicity are largely unknown, SOD1 aggregates have been strongly implicated as a common feature in ALS. This study examined the mechanism for the formation of SOD1 aggregates in vitro as well as the nature of its cytotoxicity. The aggregation propensity of SOD1 species was investigated using techniques ranging from circular dichroism spectroscopy to fluorescence dye binding methods, as well as electron microscopic imaging. The aggregation of SOD1 appears to be related to its structural instability. The demetallated (apo)-SOD1 and aggregated SOD1 species, with structurally disordered regions, readily undergo aggregation in the presence of lipid molecules, whereas metallated (holo)-SOD1 does not. The majority of aggregated SOD1s that are induced by lipid molecules have an amorphous morphology and exhibit significant cytotoxicity. The lipid binding propensity of SOD1 was found to be closely related to the changes in surface hydrophobicity of the proteins, even at very low levels, which induced further binding and assembly with lipid molecules. These findings suggest that lipid molecules induce SOD1 aggregation under physiological conditions and exert cytotoxicity, and might provide a possible mechanism for the pathogenesis of ALS.
Collapse
Affiliation(s)
- Inhee Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Siddiqui MA, Kashyap MP, Al-Khedhairy AA, Musarrat J, Khanna VK, Yadav S, Pant AB. Protective potential of 17β-estradiol against co-exposure of 4-hydroxynonenal and 6-hydroxydopamine in PC12 cells. Hum Exp Toxicol 2010; 30:860-9. [DOI: 10.1177/0960327110382130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
4-hydroxynonenal (4-HNE) and 6-hydroxydopamine (6-OHDA)-mediated damage in dopaminergic neurons is well documented. Protective potential of steroidal hormone (17β-estradiol) has also been suggested. However, therapeutic potential of such promising hormone is hampered due to complex brain anatomy and physiology. Thus, the present investigations were studied to suggest the applicability of dopamine expressing PC12 cells as in vitro tool to screen the pharmacological potential of 17β-estradiol against 4-HNE and 6-OHDA. MTT assay was conducted for cytotoxicity assessment of both 4-HNE (1 μM to 50 μM) and 6-OHDA (10-4 to 10-7 M). Non-cytotoxic concentrations, that is, 4-HNE (1 μM) and 6-OHDA (10-6 M) were selected to study the synergetic/additive responses. PC12 cells were found to be more vulnerable towards co-exposure of individual exposure of 4-HNE and 6-OHDA, even at non-cytotoxic concentrations. Then, cells were subjected to pre-treatment (24 hours) of 17β-estradiol (1 μM), followed by a permutation of combinations of both 4-HNE and 6-OHDA. Pretreatment of 17β-estradiol was found to be significantly effective against the cytotoxic responses of 4-HNE and 6-OHDA, when the damage was at lower level. However, 17β-estradiol was found to be ineffective against higher concentrations. Physiological-specific responses of PC12 cells against 4-HNE/6-OHDA and 17β-estradiol suggest its applicability as first tier of screening tool.
Collapse
Affiliation(s)
- MA Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - MP Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AA Al-Khedhairy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J. Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - VK Khanna
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - S. Yadav
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AB Pant
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India,
| |
Collapse
|
7
|
Nishimura M, Okimura Y, Fujita H, Yano H, Lee J, Suzaki E, Inoue M, Utsumi K, Sasaki J. Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-carnitine. Cell Biochem Funct 2008; 26:881-91. [DOI: 10.1002/cbf.1521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Lee JH, Ahn HH, Kim KS, Lee JY, Kim MS, Lee B, Khang G, Lee HB. Polyethyleneimine‐mediated gene delivery into rat pheochromocytoma PC‐12 cells. J Tissue Eng Regen Med 2008; 2:288-95. [DOI: 10.1002/term.94] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Abstract
Cytotoxic concentrations of dopamine (100-500 microM DA) induce expression of tumour necrosis factor receptor-1 (TNF-R1) and tumour necrosis factor-alpha (TNFalpha) in SH-SY5Y human neuroblastoma cells. TNFalpha expression is dose-dependent and can also be detected after 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium iodide (MPP) treatment. The expression of TNF-R1 is also dose-dependent, but was not observed in 6-OHDA or MPP-treatment. Cells not expressing TNF-R1 were insensitive to TNFalpha, whereas those treated with DA showed a further decrease in viability when subsequently treated with TNFalpha. Thus, DA treatment confers sensitivity to TNFalpha. The decrease of cell viability caused by DA was in part prevented by neutralizing TNFalpha with anti-TNFalpha. As TNF-R1 is increased in substantia nigra of Parkinsonian brains, we suggest that nonvesiculated DA might also play a role in inducing TNF-R1 expression and predispose the neuron to the action of cytokines released in a microglia-mediated inflammatory response.
Collapse
|
10
|
Nilsson A, Sköld K, Sjögren B, Svensson M, Pierson J, Zhang X, Caprioli RM, Buijs J, Persson B, Svenningsson P, Andrén PE. Increased Striatal mRNA and Protein Levels of the Immunophilin FKBP-12 in Experimental Parkinson's Disease and Identification of FKBP-12-Binding Proteins. J Proteome Res 2007; 6:3952-61. [PMID: 17877381 DOI: 10.1021/pr070189e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FKBP-12, a 12 kDa FK506-binding protein (neuroimmunophilin), acts as a receptor for the immunosuppressant drug FK506. Neuroimmunophilins, including FKBP-12, are abundant in the brain and have been shown to be involved in reversing neuronal degeneration and preventing cell death. In this report, we have utilized several analytical techniques, such as in situ hybridization, Western blotting, two-dimensional gel electrophoresis, and liquid chromatography electrospray tandem mass spectrometry to study the transcriptional expression as well as protein levels of FKBP-12 in the unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. The FKBP-12 protein was also detected directly on brain tissue sections using mass spectrometry profiling. We found increased levels of FKBP-12 mRNA and protein in the dorsal and middle part of the 6-OHDA lesioned striatum. Thus, these studies clearly demonstrate that FKBP-12 is increased in the brain of a common animal model of Parkinson's disease (PD). Additionally, we have identified potential binding partners to FKBP-12 that may be implicated in the pathophysiology of Parkinson's disease, such as alpha-enolase, 14-3-3 zeta/delta, pyruvate kinase isozymes, and heat shock protein 70, using surface plasmon resonance sensor technology in combination with mass spectrometry. In conclusion, these data strongly suggests that FKBP-12 is altered in an experimental model of PD.
Collapse
Affiliation(s)
- Anna Nilsson
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, P.O. Box 583 Biomedical Centre, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith MP, Cass WA. Oxidative stress and dopamine depletion in an intrastriatal 6-hydroxydopamine model of Parkinson's disease. Neuroscience 2006; 144:1057-66. [PMID: 17110046 PMCID: PMC2048571 DOI: 10.1016/j.neuroscience.2006.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 12/22/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is unknown, a common element of most theories is the involvement of oxidative stress, either as a cause or effect of the disease. There have been relatively few studies that have characterized oxidative stress in animal models of PD. In the present study a 6-hydroxydopamine (6-OHDA) rodent model of PD was used to investigate the in vivo production of oxidative stress after administration of the neurotoxin. 6-OHDA was injected into the striatum of young adult rats and the production of protein carbonyls and 4-hydroxynonenal (HNE) was measured at 1, 3, 7, and 14 days after administration. A significant increase in both markers was found in the striatum 1 day after neurotoxin administration, and this increase declined to basal levels by day 7. There was no significant increase found in the substantia nigra at any of the time points investigated. This same lesion paradigm produced dopamine depletions of 90-95% in the striatum and 63-80% in the substantia nigra by 14-28 days post-6-OHDA. Protein carbonyl and HNE levels were also measured in middle-aged and aged animals 1 day after striatal 6-OHDA. Both protein carbonyl and HNE levels were increased in the striatum of middle-aged and aged animals treated with 6-OHDA, but the increases were not as great as those observed in the young adult animals. Similar to the young animals, there were no increases in either marker in the substantia nigra of the middle-aged and aged animals. There was a trend for an age-dependent increase in basal amounts of oxidative stress markers when comparing the non-lesioned side of the brains of the three age groups. These results support that an early event in the course of dopamine depletion following intrastriatal 6-OHDA administration is the generation of oxidative stress.
Collapse
Affiliation(s)
| | - Wayne A. Cass
- *Corresponding Author: Wayne A. Cass, Ph.D., Department of Anatomy and Neurobiology, MN-225 Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, Telephone (859) 323-1142, FAX (859) 323-5946, E-mail:
| |
Collapse
|
12
|
Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, Kumai T, Kitaoka Y, Hayashi Y, Watanabe M, Takeda H, Hirata K, Ueno S. Pro-apoptotic role of c-Jun in NMDA-induced neurotoxicity in the rat retina. J Neurosci Res 2006; 83:907-18. [PMID: 16477618 DOI: 10.1002/jnr.20786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the role of c-Jun on N-methyl-D-aspartate (NMDA)-induced neurotoxicity in the rat retina. An increase in c-Jun mRNA, c-Jun protein and phosphorylated c-Jun (p-c-Jun) levels in the retina was detected 3 hr after intravitreal injection of NMDA (20 nmol). These levels peaked after 12 hr, and then returned to their control levels by 24 hr. c-Jun and p-c-Jun immunoreactivities were observed in the retinal ganglion cell layer (RGCL), especially in retinal ganglion cells (RGCs), and in the inner nuclear layer (INL) 12 hr after NMDA injection, and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive cells were immunopositive for c-Jun and p-c-Jun. A c-Jun antisense oligodeoxynucleotide (AS ODN), which was simultaneously injected with NMDA, penetrated the cells in the RGCL and the INL, suppressed the NMDA-induced increase in c-Jun and p-c-Jun protein levels and reduced the number of TUNEL-positive cells in the RGCL 12 hr after the injection. The protective effect of c-Jun AS ODN on the NMDA-treated retina was also shown by the RGCL cell count and measurement of the IPL thickness, as well as by quantitative real-time PCR analysis of Thy-1 mRNA 7 days after the injection. These results suggest that c-Jun synthesis and phosphorylation participate in NMDA-induced neuronal cell death.
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hanrott K, Gudmunsen L, O'Neill MJ, Wonnacott S. 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 2005; 281:5373-82. [PMID: 16361258 DOI: 10.1074/jbc.m511560200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
6-Hydroxydopamine is a neurotoxin commonly used to lesion dopaminergic pathways and generate experimental models for Parkinson disease, however, the cellular mechanism of 6-hydroxydopamine-induced neurodegeneration is not well defined. In this study we have explored how 6-hydroxydopamine neurotoxicity is initiated. We have also investigated downstream signaling pathways activated in response to 6-hydroxydopamine, using a neuronal-like, catecholaminergic cell line (PC12 cells) as an in vitro model system. We have shown that 6-hydroxydopamine neurotoxicity is initiated via extracellular auto-oxidation and the induction of oxidative stress from the oxidative products generated. Neurotoxicity is completely attenuated by preincubation with catalase, suggesting that hydrogen peroxide, at least in part, evokes neuronal cell death in this model. 6-Hydroxydopamine does not initiate toxicity by dopamine transporter-mediated uptake into PC12 cells, because both GBR-12909 and nisoxetine (inhibitors of dopamine and noradrenaline transporters, respectively) failed to reduce toxicity. 6-Hydroxydopamine has previously been shown to induce both apoptotic and necrotic cell-death mechanisms. In this study oxidative stress initiated by 6-hydroxydopamine caused mitochondrial dysfunction, activation of caspases 3/7, nuclear fragmentation, and apoptosis. We have shown that, in this model, proteolytic activation of the proapoptotic protein kinase Cdelta (PKCdelta) is a key mediator of 6-hydroxydopamine-induced cell death. 6-Hydroxydopamine induces caspase 3-dependent cleavage of full-length PKCdelta (79 kDa) to yield a catalytic fragment (41 kDa). Inhibition of PKCdelta (with rottlerin or via RNA interference-mediated gene suppression) ameliorates the neurotoxicity evoked by 6-hydroxydopamine, implicating this kinase in 6-hydroxydopamine-induced neurotoxicity and Parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Katharine Hanrott
- Department of Biology & Biochemistry, University of Bath, 4 South, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
14
|
Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 2005; 18:54-74. [PMID: 15649696 DOI: 10.1016/j.nbd.2004.08.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/22/2004] [Accepted: 08/07/2004] [Indexed: 12/21/2022] Open
Abstract
We employed Serial Analysis of Gene Expression to identify transcriptional changes in a cellular model of Parkinson Disease (PD). The model consisted of neuronally differentiated PC12 cells compared before and after 8 hours' exposure to 6-hydroxydopamine. Approximately 1200 transcripts were significantly induced by 6-OHDA and approximately 500 of these are currently matched to known genes. Here, we categorize the regulated genes according to known functional activities and discuss their potential roles in neuron death and survival and in PD. We find induction of multiple death-associated genes as well as many with the capacity for neuroprotection. This suggests that survival or death of individual neurons in PD may reflect an integrated response to both protective and destructive gene changes. Our findings identify a number of regulated genes as candidates for involvement in PD and therefore as potential targets for therapeutic intervention. Such intervention may include both inhibiting the induction/activity of death-promoting genes and enhancing those with neuroprotective activity.
Collapse
Affiliation(s)
- Elizabeth J Ryu
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
15
|
Agrawal AK, Chaturvedi RK, Shukla S, Seth K, Chauhan S, Ahmad A, Seth PK. Restorative potential of dopaminergic grafts in presence of antioxidants in rat model of Parkinson's disease. J Chem Neuroanat 2004; 28:253-64. [PMID: 15531136 DOI: 10.1016/j.jchemneu.2004.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 05/08/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Free radical mediated damage has been reported to contribute significantly towards low survival (5-10%) of grafted dopaminergic neurons, post transplantation. In the present study, an attempt has been made to explore the neuroprotective potential of the combination of two major antioxidants ascorbic acid (AA) and glutathione (GSH) on ventral mesencephalic cells (VMC) and nigral dopamine (DA) neurons when co-transplanted together with VMC in rat model of Parkinson's disease (PD). GSH and AA have been reported to act co-operatively in the conditions of oxidative stress thereby helping in maintaining the cellular GSH/GSSG redox status. Functional recovery was assessed 12 weeks post transplantation, where a significant restoration (p<0.001) in d-amphetamine induced circling behavior (62%), spontaneous locomotor activity (SLA; 64%), dopamine-D2 receptor binding (63%), dopamine (65%) and 3,4-dihydroxy phenyl acetic acid (DOPAC) level (64%) was observed in co-transplanted animals as compared to lesioned and VMC alone grafted rats. VMC and GSH+AA co-transplanted animals exhibited a significantly higher surviving TH-immunoreactive (TH-ir) neurons number (p<0.01), TH-ir fibers outgrowth (p<0.05) in striatal graft and TH-ir neurons in substantia nigra pars compacta (SNpc) (p<0.01), as compared to VMC alone transplanted rats. An attempt was made to further confirm our in vivo observations through in vitro experiments where following in vitro exposure to 6-OHDA, a higher cell survival (p<0.01), TH-ir cell counts (p<0.001) and DA and DOPAC levels (p<0.01) were also observed in 8-day-old VMC culture in presence of GSH+AA as compared to VMC cultured in absence of antioxidants. The results suggest that GSH+AA when co-transplanted with VMC provide higher restoration probably by increasing the survival of grafted VMC and simultaneously supporting nigral TH-immunopositive neurons in rat model of PD.
Collapse
Affiliation(s)
- A K Agrawal
- Developmental Toxicology Division, Industrial Toxicology Research Centre, Post Box 80, M.G. Marg, Lucknow 226 001, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mazzio EA, Reams RR, Soliman KFA. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 2004; 1004:29-44. [PMID: 15033417 DOI: 10.1016/j.brainres.2003.12.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 11/16/2022]
Abstract
The neurotoxin, 6-hydroxydopamine (6-OHDA) has been implicated in the neurodegenerative process of Parkinson's disease. The current study was designed to elucidate the toxicological effects of 6-OHDA on energy metabolism in neuroblastoma (N-2A) cells. The toxicity of 6-OHDA corresponds to the total collapse of anaerobic/aerobic cell function, unlike other mitochondrial toxins such as MPP+ that target specific loss of aerobic metabolism. The toxicity of 6-OHDA paralleled the loss of mitochondrial oxygen (O2) consumption (MOC), glycolytic activity, ATP, H+ ion gradients, membrane potential and accumulation of the autoxidative product, hydrogen peroxide (H2O2). Removing H2O2 with nonenzymatic stoichiometric scavengers, such as carboxylic acids, glutathione and catalase yielded partial protection. The rapid removal of H2O2 with pyruvate or catalase restored only anaerobic glycolysis, but did not reverse the loss of MOC, indicating mitochondrial impairment is independent of H2O2. The H2O2 generated by 6-OHDA contributed toward the loss of anaerobic glycolysis through lipid peroxidation and lactic acid dehydrogenase inhibition. The ability of 6-OHDA to maintain oxidized cytochrome c (CYT-C-OX) in its reduced form (CYT-C-RED), appears to play a role in mitohondrial impairment. The reduction of CYT-C by 6-OHDA, was extensive, occurred within minutes, preceded formation of H2O2 and was unaffected by catalase or superoxide dismutase. At similar concentrations, 6-OHDA readily altered the valence state of iron [Fe(III)] to Fe(II), which would also theoretically sustain CYT-C in its reduced form. In isolated mitochondria, 6-OHDA had negligible effects on complex I, inhibited complex II and interfered with complex III by maintaining the substrate, CYT-C in a reduced state. 6-OHDA caused a transient and potent surge in isolated cytochrome oxidase (complex IV) activity, with rapid recovery as a result of 6-OHDA recycling CYT-C-OX to CYT-C-RED. Typical mitochondrial toxins such as MPP+, azide and antimycin appeared to inhibit the catalytic activity of ETC enzymes. In contrast, 6-OHDA alters the redox of the cytochromes, resulting in loss of substrate availability and obstruction of oxidation-reduction events. Complete cytoprotection against 6-OHDA toxicity and restored MOC was achieved by combining catalase with CYT-C (horse heart). In summary, CYT-C reducing properties are unique to catecholamine neurotransmitters, and may play a significant role in selective vulnerability of dopaminergic neurons to mitochondrial insults.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|