1
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Goepp M, Crittenden S, Zhou Y, Rossi AG, Narumiya S, Yao C. Prostaglandin E 2 directly inhibits the conversion of inducible regulatory T cells through EP2 and EP4 receptors via antagonizing TGF-β signalling. Immunology 2021; 164:777-791. [PMID: 34529833 PMCID: PMC8561111 DOI: 10.1111/imm.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing effector T-cell functions. The actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we employed pharmacological and genetic approaches to examine whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. We found that TGF-β-induced Foxp3 expression and iTreg cell differentiation in vitro is markedly inhibited by PGE2 , which was mediated by the receptors EP2 and EP4. Mechanistically, PGE2 -EP2/EP4 signalling interrupts TGF-β signalling during iTreg differentiation. Moreover, EP4 deficiency in T cells impaired iTreg cell differentiation in vivo. Thus, our results demonstrate that PGE2 negatively regulates iTreg cell differentiation through a direct action on T cells, highlighting the potential for selectively targeting the PGE2 -EP2/EP4 pathway to control T cell-mediated inflammation.
Collapse
Affiliation(s)
- Marie Goepp
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - Siobhan Crittenden
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Chengcan Yao
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| |
Collapse
|
3
|
Culibrk RA, Arabiyat AS, DeKalb CA, Hahn MS. Modeling Sympathetic Hyperactivity in Alzheimer's Related Bone Loss. J Alzheimers Dis 2021; 84:647-658. [PMID: 34569964 DOI: 10.3233/jad-215007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A significant subset of patients with Alzheimer's disease (AD) exhibit low bone mineral density and are therefore more fracture-prone, relative to their similarly aged neurotypical counterparts. In addition to chronic immune hyperactivity, behavioral dysregulation of effector peripheral sympathetic neurons-which densely innervate bone and potently modulate bone remodeling-is implicated in this pathological bone reformation. OBJECTIVE Thus, there exists a pressing need for a robust in vitro model which allows interrogation of the paracrine interactions between the putative mediators of AD-related osteopenia: sympathetic neurons (SNs) and mesenchymal stem cells (MSCs). METHODS Toward this end, activated SN-like PC12 cells and bone marrow derived MSCs were cultured in poly(ethylene glycol) diacrylate (PEGDA) hydrogels in the presence or absence of the AD-relevant inflammatory cytokine tumor necrosis factor alpha (TNF-α) under mono- and co-culture conditions. RESULTS PC12s and MSCs exposed separately to TNF-α displayed increased expression of pro-inflammatory mediators and decreased osteopontin (OPN), respectively. These data indicate that TNF-α was capable of inducing a dysregulated state in both cell types consistent with AD. Co-culture of TNF-α-activated PC12s and MSCs further exacerbated pathological behaviors in both cell types. Specifically, PC12s displayed increased secretion of interleukin 6 relative to TNF-α stimulated monoculture controls. Similarly, MSCs demonstrated a further reduction in osteogenic capacity relative to TNF-α stimulated monoculture controls, as illustrated by a significant decrease in OPN and collagen type I alpha I chain. CONCLUSION Taken together, these data may indicate that dysregulated sympathetic activity may contribute to AD-related bone loss.
Collapse
Affiliation(s)
- Robert A Culibrk
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ahmad S Arabiyat
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carisa A DeKalb
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
4
|
Togari A, Kondo H, Hirai T, Kodama D, Arai M, Goto S. [Regulation of bone metabolism by sympathetic nervous system]. Nihon Yakurigaku Zasshi 2015; 145:140-145. [PMID: 25765496 DOI: 10.1254/fpj.145.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
5
|
Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, Ou C, Cui X, Zhou C, Wang J. Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun 2015; 43:172-83. [PMID: 25110149 PMCID: PMC4258426 DOI: 10.1016/j.bbi.2014.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
Recent evidence has shown that an increase in CD4(+)CD25(+)FoxP3(+) regulatory T (Treg) cells may contribute to stroke-induced immunosuppression. However, the molecular mechanisms that underlie this increase in Treg cells remain unclear. Here, we used a transient middle cerebral artery occlusion model in mice and specific pathway inhibitors to demonstrate that stroke activates the sympathetic nervous system, which was abolished by 6-OHDA. The consequent activation of β2-adrenergic receptor (AR) signaling increased prostaglandin E2 (PGE2) level in bone marrow. β2-AR antagonist prevented the upregulation of PGE2. PGE2, which acts on prostaglandin E receptor subtype 4 (EP4), upregulated the expression of receptor activator for NF-κB ligand (RANKL) in CD4(+) T cells and mediated the increase in Treg cells in bone marrow. Treatment of MCAO mice with RANKL antagonist OPG inhibited the increase in percent of bone marrow Treg cells. PGE2 also elevated the expression of indoleamine 2,3 dioxygenase in CD11C(+) dendritic cells and promoted the development of functional Treg cells. The effect was neutralized by treatment with indomethacin. Concurrently, stroke reduced production of stromal cell-derived factor-1 (SDF-1) via β3-AR signals in bone marrow but increased the expression of C-X-C chemokine receptor (CXCR) 4 in Treg and other bone marrow cells. Treatment of MCAO mice with β3-AR antagonist SR-59230A reduced the percent of Treg cells in peripheral blood after stroke. The disruption of the CXCR4-SDF-1 axis may facilitate mobilization of Treg cells and other CXCR4(+) cells into peripheral blood. This mechanism could account for the increase in Treg cells, hematopoietic stem cells, and progenitor cells in peripheral blood after stroke. We conclude that cerebral ischemia can increase bone marrow CD4(+)CD25(+)FoxP3(+) regulatory T cells via signals from the sympathetic nervous system.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xi Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Menghan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunying Ou
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaobing Cui
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chengguang Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Xiong B, Shi QQ, Miao CH. Dexmedetomidine renders a brain protection on hippocampal formation through inhibition of nNOS-NO signalling in endotoxin-induced shock rats. Brain Inj 2014; 28:1003-8. [DOI: 10.3109/02699052.2014.888765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Bitencourt S, de Mesquita FC, Caberlon E, da Silva GV, Basso BS, Ferreira GA, de Oliveira JR. Capsaicin induces de-differentiation of activated hepatic stellate cell. Biochem Cell Biol 2012; 90:683-90. [DOI: 10.1139/o2012-026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells (HSC) play a key role in liver fibrogenesis. Activation of PPARγ and inhibition of fibrogenic molecules are potential strategies to block HSC activation and differentiation. A number of natural products have been suggested to have antifibrotic effects for the de-activation and de-differentiation of HSCs. The purpose of this study was to investigate the in vitro effects of capsaicin on HSC de-activation and de-differentiation. The results demonstrated that capsaicin induced quiescent phenotype in GRX via PPARγ activation. Significant decrease in COX-2 and type I collagen mRNA expression was observed in the first 24 h of treatment. These events preceded the reduction of TGF-β1 and total collagen secretion. Thus, capsaicin promoted down-regulation of HSC activation by its antifibrotic and anti-inflammatory actions. These findings demonstrate that capsaicin may have potential as a novel therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shanna Bitencourt
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda C. de Mesquita
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Caberlon
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela V. da Silva
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno S. Basso
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela A. Ferreira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas R. de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6681, prédio 12, bloco C, sala 221, CEP 90619-900, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
The neuro-osteogenic network: The sympathetic regulation of bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
9
|
Bataille C, Mauprivez C, Haÿ E, Baroukh B, Brun A, Chaussain C, Marie PJ, Saffar JL, Cherruau M. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone 2012; 50:1162-72. [PMID: 22326888 DOI: 10.1016/j.bone.2012.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/16/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Bone remodeling, the mechanism that modulates bone mass adaptation, is controlled by the sympathetic nervous system through the catecholaminergic pathway. However, resorption in the mandible periosteum envelope is associated with cholinergic Vasoactive Intestinal Peptide (VIP)-positive nerve fibers sensitive to sympathetic neurotoxics, suggesting that different sympathetic pathways may control distinct bone envelopes. In this study, we assessed the role of distinct sympathetic pathways on rat femur and mandible envelopes. To this goal, adult male Wistar rats were chemically sympathectomized or treated with agonists/antagonists of the catecholaminergic and cholinergic pathways; femora and mandibles were sampled. Histomorphometric analysis showed that sympathectomy decreased the number of preosteoclasts and RANKL-expressing osteoblasts in mandible periosteum but had no effect on femur trabecular bone. In contrast, pharmacological stimulation or repression of the catecholaminergic cell receptors impacted the femur trabecular bone and mandible endosteal retromolar zone. VIP treatment of sympathectomized rats rescued the disturbances of the mandible periosteum and alveolar wall whereas the cholinergic pathway had no effect on the catecholaminergic-dependent envelopes. We also found that VIP receptor-1 was weakly expressed in periosteal osteoblasts in the mandible and was increased by VIP treatment, whereas osteoblasts of the retromolar envelope that was innervated only by tyrosine hydroxylase-immunoreactive fibers, constitutively expressed beta-2 adrenergic receptors. These data highlight the complexity of the sympathetic control of bone metabolism. Both the embryological origin of the bone (endochondral for the femur, membranous for the mandibular periosteum and the socket wall) and environmental factors specific to the innervated envelope may influence the phenotype of the sympathetic innervation. We suggest that an origin-dependent imprint of bone cells through osteoblast-nerve interactions determines the type of autonomous system innervating a particular bone envelope.
Collapse
Affiliation(s)
- Caroline Bataille
- EA2496 Laboratoire Pathologies et Biothérapies de l'Organe Dentaire, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120 Montrouge, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Modulation of potassium channels via the α1B-adrenergic receptor in human osteoblasts. Neurosci Lett 2010; 485:102-6. [DOI: 10.1016/j.neulet.2010.08.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 12/29/2022]
|
11
|
Togari A, Arai M. Pharmacological topics of bone metabolism: the physiological function of the sympathetic nervous system in modulating bone resorption. J Pharmacol Sci 2008; 106:542-6. [PMID: 18431037 DOI: 10.1254/jphs.fm0070227] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The vertebrate skeleton is richly innervated with adrenergic and peptidergic nerve terminals, and these play important roles in bone remodeling. Recent studies have generally shown that increased sympathetic nervous activity causes bone loss via an increase in bone resorption and a decrease in bone formation. Increased bone resorption is based on the stimulation of both osteoclast formation and osteoclast activity. These effects are associated with beta(2)-adrenergic activity toward both osteoblastic and osteoclastic cells. Such findings indicate that beta-blockers may be effective against osteoporosis, in which case there is increased sympathetic activity. This review summarizes evidence obtained both in vitro and in vivo implicating sympathetic neuron action in bone resorption.
Collapse
Affiliation(s)
- Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.
| | | |
Collapse
|
12
|
Togari A, Arai M, Kondo A. The role of the sympathetic nervous system in controlling bone metabolism. Expert Opin Ther Targets 2007; 9:931-40. [PMID: 16185149 DOI: 10.1517/14728222.9.5.931] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Experimental studies have generally shown that increased sympathetic nervous activity causes bone loss via an increase in bone resorption and a decrease in bone formation. Increased bone resorption is based on the stimulation of both osteoclast formation and osteoclast activity. These effects are associated with beta2-adrenergic activity towards both osteoblastic and osteoclastic cells. Decreased bone formation is based on the inhibition of osteoblastic activity through beta2-adrenergic receptors on osteoblasts. Such findings indicate that beta-blockers may be effective against osteoporosis, in which case there is increased sympathetic activity. In fact, in a population-based, case-control study, the current use of beta-blockers has been demonstrated to be associated with a reduced risk of fractures. These clinical studies suggest that pharmacological blockade of the beta-adrenergic system is beneficial to the human skeleton. In another prospective study, however, no association between beta-blocker use and fracture risk was shown in perimenopausal and older women. To confirm this important new therapeutic avenue to prevent bone loss, the relationship between the pharmacological effectiveness of beta-blockers and the pathogenesis of osteoporosis must be explored in detail.
Collapse
Affiliation(s)
- Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| | | | | |
Collapse
|
13
|
Ishizuka K, Hirukawa K, Nakamura H, Togari A. Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol. Neurosci Lett 2005; 379:47-51. [PMID: 15814197 DOI: 10.1016/j.neulet.2004.12.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 01/20/2023]
Abstract
The present study was designed to elucidate the mode of action of isoproterenol (Isp; adrenergic beta-agonist) and to characterize the effect of the calcitonin gene-related peptide (CGRP; sensory neuropeptide) on osteoclast formation induced by Isp in a mouse bone marrow culture system. Treatment of mouse bone marrow cells with Isp generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) capable of excavating resorptive pits on dentine slices, and caused an increase in receptor activator of NF-kappaB ligand (RANKL) and a decrease in osteoprotegerin (OPG) production by the marrow cells. The osteoclast formation was significantly inhibited by OPG, suggesting the involvement of the RANKL-RANK system. CGRP inhibited the osteoclast formation caused by Isp or soluble RANKL (s-RANKL) but had no influence on RANKL or OPG production by the bone marrow cells treated with Isp, suggesting that CGRP inhibited the osteoclast formation by interfering with the action of RANKL produced by the Isp-treated bone marrow cells without affecting RANKL or OPG production. This in vitro data suggest the physiological interaction of sympathetic and sensory nerves in osteoclastogenesis in vivo.
Collapse
Affiliation(s)
- Kyoko Ishizuka
- Department of Pharamacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | | | | | | |
Collapse
|