1
|
Bressi F, Casale M, Papalia R, Moffa A, Di Martino A, Miccinilli S, Salvinelli F, Denaro V, Sterzi S. Cervical spine disorders and its association with tinnitus: The "triple" hypothesis. Med Hypotheses 2016; 98:2-4. [PMID: 28012597 DOI: 10.1016/j.mehy.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
Subjective tinnitus and cervical spine disorders (CSD) are among the most common complaints encountered by physicians. Although the relationship between tinnitus and CSD has attracted great interest during the past several years, the pathogenesis of tinnitus induced by CSD remains unclear. Conceivably, CSD could trigger a somatosensory pathway-induced disinhibition of dorsal cochlear nucleus (DCN) activity in the auditory pathway; furthermore, CSD can cause inner ear blood impairment induced by vertebral arteries hemodynamic alterations and trigeminal irritation. In genetically -predisposed CSD patients with reduced serotoninergic tone, signals from chronically stimulated DCNs could activate specific cortical neuronal networks and plastic neural changes resulting in tinnitus. Therefore, an early specific tailored CSD treatments and/or boosting serotoninergic activity may be required to prevent the creation of 'tinnitus memory circuits' in CSD patients.
Collapse
Affiliation(s)
- Federica Bressi
- Department of Physical and Rehabilitation Medicine, Campus Bio-Medico University, Rome, Italy
| | - Manuele Casale
- Department of Otolaryngology, Campus Bio-Medico University, Rome, Italy.
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Rome, Italy
| | - Antonio Moffa
- Department of Otolaryngology, Campus Bio-Medico University, Rome, Italy
| | - Alberto Di Martino
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Rome, Italy
| | - Sandra Miccinilli
- Department of Physical and Rehabilitation Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Rome, Italy
| | - Silvia Sterzi
- Department of Physical and Rehabilitation Medicine, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
2
|
Saldaña E. All the way from the cortex: a review of auditory corticosubcollicular pathways. THE CEREBELLUM 2016; 14:584-96. [PMID: 26142291 DOI: 10.1007/s12311-015-0694-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrico Mugnaini has devoted part of his long and fruitful neuroscientific career to investigating the structural similarities between the cerebellar cortex and one of the first relay stations of the mammalian auditory pathway: the dorsal cochlear nucleus. The hypothesis of the cerebellar-like nature of the superficial layers of the dorsal cochlear nucleus received definitive support with the discovery and extensive characterization in his laboratory of unipolar brush cells, a neuron type unique to certain regions of the cerebellar cortex and to the granule cell domains of the cochlear nuclei. Paradoxically, a different line of research carried out in his laboratory revealed that, unlike the mammalian cerebellar cortex, the dorsal cochlear nucleus receives direct projections from the cerebral cortex, a fact that constitutes one of the main differences between the cerebellum and the dorsal cochlear nucleus. In an article published in 1995, Mugnaini's group described in detail the novel direct projections from the rat auditory neocortex to various subcollicular auditory centers, including the nucleus sagulum, the paralemniscal regions, the superior olivary complex, and the cochlear nuclei (Feliciano et al., Auditory Neuroscience 1995; 1:287-308). This review gives Enrico Mugnaini credit for his seminal contribution to the knowledge of auditory corticosubcollicular projections and summarizes how this growing field has evolved in the last 20 years.
Collapse
Affiliation(s)
- Enrique Saldaña
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007, Salamanca, Spain. .,Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Laramée ME, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circuits 2015; 8:149. [PMID: 25620914 PMCID: PMC4286719 DOI: 10.3389/fncir.2014.00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/09/2014] [Indexed: 12/27/2022] Open
Abstract
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Collapse
Affiliation(s)
- Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven-University of Leuven Leuven, Belgium
| | - Denis Boire
- Département d'anatomie, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| |
Collapse
|
4
|
Soleymani T, Pieton D, Pezeshkian P, Miller P, Gorgulho AA, Pouratian N, De Salles AAF. Surgical approaches to tinnitus treatment: A review and novel approaches. Surg Neurol Int 2011; 2:154. [PMID: 22140639 PMCID: PMC3228384 DOI: 10.4103/2152-7806.86834] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background: Tinnitus, a profoundly widespread auditory disorder, is characterized by the perception of sound in the absence of external stimulation. The aim of this work is to review the various surgical treatment options for tinnitus, targeting the various disruption sites along the auditory pathway, as well as to indicate novel neuromodulatory techniques as a mode of tinnitus control. Methods: A comprehensive analysis was conducted on published clinical and basic neuroscience research examining the pathophysiology and treatment options of tinnitus. Results: Stereotactic radiosurgery methods and microvascular decompressions are indicated for tinnitus caused by underlying pathologies such as vestibular schwannomas or neurovascular conflicts of the vestibulocochlear nerve at the level of the brainstem. However, subsequent hearing loss and secondary tinnitus may occur. In patients with subjective tinnitus and concomitant sensorineural hearing loss, cochlear implantation is indicated. Surgical ablation of the cochlea, vestibulocochlear nerve, or dorsal cochlear nucleus, though previously suggested in earlier literature as viable treatment options for tinnitus, has been shown to be ineffective and contraindicated. Recently, emerging research has shown the neuromodulatory capacity of the somatosensory system at the level of the trigeminal nerve on the auditory pathway through its inputs at various nuclei in the central auditory pathway. Conclusion: Tinnitus remains to be a difficult disorder to treat despite the many surgical interventions aimed at eliminating the aberrant neuronal activity in the auditory system. A promising novel neuromodulatory approach using the trigeminal system to control such a bothersome and difficult-to-treat disorder deserves further investigation and controlled clinical trials.
Collapse
Affiliation(s)
- Teo Soleymani
- School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
6
|
Single neuron recordings in dorsal cochlear nucleus (DCN) of awake gerbil. Hear Res 2009; 255:44-57. [DOI: 10.1016/j.heares.2009.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 11/24/2022]
|
7
|
Dehmel S, Cui YL, Shore SE. Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. Am J Audiol 2008; 17:S193-209. [PMID: 19056923 PMCID: PMC2760229 DOI: 10.1044/1059-0889(2008/07-0045)] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This review outlines the anatomical and functional bases of somatosensory influences on auditory processing in the normal brainstem and midbrain. It then explores how interactions between the auditory and somatosensory system are modified through deafness, and their impact on tinnitus is discussed. METHOD Literature review, tract tracing, immunohistochemistry, and in vivo electrophysiological recordings were used. RESULTS Somatosensory input originates in the dorsal root ganglia and trigeminal ganglia, and is transmitted directly and indirectly through 2nd-order nuclei to the ventral cochlear nucleus, dorsal cochlear nucleus (DCN), and inferior colliculus. The glutamatergic somatosensory afferents can be segregated from auditory nerve inputs by the type of vesicular glutamate transporters present in their terminals. Electrical stimulation of the somatosensory input results in a complex combination of excitation and inhibition, and alters the rate and timing of responses to acoustic stimulation. Deafness increases the spontaneous rates of those neurons that receive excitatory somatosensory input and results in a greater sensitivity of DCN neurons to trigeminal stimulation. CONCLUSIONS Auditory-somatosensory bimodal integration is already present in 1st-order auditory nuclei. The balance of excitation and inhibition elicited by somatosensory input is altered following deafness. The increase in somatosensory influence on auditory neurons when their auditory input is diminished could be due to cross-modal reinnervation or increased synaptic strength, and may contribute to mechanisms underlying somatic tinnitus.
Collapse
Affiliation(s)
- S Dehmel
- Kresge Hearing Research Institute, 1150 West Medical Center Drive, Room 5434A, Ann Arbor, MI 48109-5616, USA
| | | | | |
Collapse
|
8
|
Bell CC, Han V, Sawtell NB. Cerebellum-Like Structures and Their Implications for Cerebellar Function. Annu Rev Neurosci 2008; 31:1-24. [DOI: 10.1146/annurev.neuro.30.051606.094225] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Curtis C. Bell
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006; ,
| | - Victor Han
- Oregon Regional Primate Center, Oregon Health and Science University, Beaverton, Oregon 97006;
| | - Nathaniel B. Sawtell
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006; ,
| |
Collapse
|
9
|
Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nucleus. Neuroscience 2008; 154:29-50. [PMID: 18343594 DOI: 10.1016/j.neuroscience.2008.01.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/16/2008] [Indexed: 11/21/2022]
Abstract
In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN's main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the rat UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, metabotropic glutamate receptor 1alpha (mGluR1alpha), epidermal growth factor substrate 8 (Eps8) and the transcription factor T-box gene Tbr2 (Tbr2). Eps8 and Tbr2 labeled most of the CN's UBCs, if not the entire population, while calretinin and mGluR1alpha distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the alpha6 GABA receptor A (GABAA) subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of ventral cochlear nucleus, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC's dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and spatially, synchronizing pools of target neurons.
Collapse
|
10
|
Zhan X, Ryugo DK. Projections of the lateral reticular nucleus to the cochlear nucleus in rats. J Comp Neurol 2007; 504:583-98. [PMID: 17701985 DOI: 10.1002/cne.21463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The lateral reticular nucleus (LRN) resides in the rostral medulla and caudal pons, is implicated in cardiovascular regulation and cranial nerve reflexes, and gives rise to mossy fibers in the cerebellum. Retrograde tracing data revealed that medium-sized multipolar cells from the magnocellular part of the LRN project to the cochlear nucleus (CN). We sought to characterize the LRN projection to the CN using BDA injections. Anterogradely labeled terminals in the ipsilateral CN appeared as boutons and mossy fibers, and were examined with light and electron microscopy. The terminal field in the CN was restricted to the granule cell domain (GCD), specifically in the superficial layer along the anteroventral CN and in the granule cell lamina. Electron microscopy showed that the smallest LRN boutons formed 1-3 synapses, and as boutons increased in size, they formed correspondingly more synapses. The largest boutons were indistinguishable from the smallest mossy fibers, and the largest mossy fiber exhibited 15 synapses. Synapses were asymmetric with round vesicles and formed against thin dendritic profiles characterized by plentiful microtubules and the presence of fine filopodial extensions that penetrated the ending. These structural features of the postsynaptic target are characteristic of the terminal dendritic claw of granule cells. LRN projections are consistent with known organizational principles of non-auditory inputs to the GCD.
Collapse
Affiliation(s)
- Xiping Zhan
- Department of Otolaryngology--Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
11
|
Shore S, Zhou J, Koehler S. Neural mechanisms underlying somatic tinnitus. PROGRESS IN BRAIN RESEARCH 2007; 166:107-23. [PMID: 17956776 DOI: 10.1016/s0079-6123(07)66010-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic tinnitus is clinically observed modulation of the pitch and loudness of tinnitus by somatic stimulation. This phenomenon and the association of tinnitus with somatic neural disorders indicate that neural connections between the somatosensory and auditory systems may play a role in tinnitus. Anatomical and physiological evidence supports these observations. The trigeminal and dorsal root ganglia relay afferent somatosensory information from the periphery to secondary sensory neurons in the brainstem, specifically, the spinal trigeminal nucleus and dorsal column nuclei, respectively. Each of these structures has been shown to send excitatory projections to the cochlear nucleus. Mossy fibers from the spinal trigeminal and dorsal column nuclei terminate in the granule cell domain while en passant boutons from the ganglia terminate in the granule cell domain and core region of the cochlear nucleus. Sources of these somatosensory-auditory projections are associated with proprioceptive and cutaneous, but not nociceptive, sensation. Single unit and evoked potential recordings in the dorsal cochlear nucleus indicate that these pathways are physiologically active. Stimulation of the dorsal column and the cervical dorsal root ganglia elicits short- and long-latency inhibition separated by a transient excitatory peak in DCN single units. Similarly, activation of the trigeminal ganglion elicits excitation in some DCN units and inhibition in others. Bimodal integration in the DCN is demonstrated by comparing responses to somatosensory and auditory stimulation alone with responses to paired somatosensory and auditory stimulation. The modulation of firing rate and synchrony in DCN neurons by somatatosensory input is physiological correlate of somatic tinnitus.
Collapse
Affiliation(s)
- Susan Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
12
|
Zhan X, Pongstaporn T, Ryugo DK. Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. J Comp Neurol 2006; 496:335-48. [PMID: 16566003 PMCID: PMC2736115 DOI: 10.1002/cne.20917] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physiological, anatomical, and clinical data have demonstrated interactions between somatosensory and auditory brainstem structures. Spinal nerve projections influence auditory responses, although the nature of the pathway(s) is not known. To address this issue, we injected biotinylated dextran amine into the cochlear nucleus or dorsal root ganglion (DRG) at the second cervical segment (C2). Cochlear nucleus injections retrogradely labeled small ganglion cells in C2 DRG. C2 DRG injections produced anterograde labeling in the external cuneate nucleus, cuneate nucleus, nucleus X, central cervical nucleus, dorsal horn of upper cervical spinal segments, and cochlear nucleus. The terminal field in the cochlear nucleus was concentrated in the subpeduncular corner and lamina of the granule cell domain, where endings of various size and shapes appeared. Examination under an electron microscope revealed that the C2 DRG terminals contained numerous round synaptic vesicles and formed asymmetric synapses, implying depolarizing influences on the target cell. Labeled endings synapsed with the stalk of the primary dendrite of unipolar brush cells, distal dendrites of presumptive granule cells, and endings containing pleomorphic synaptic vesicles. These primary somatosensory projections contribute to circuits that are hypothesized to mediate integrative functions of hearing.
Collapse
Affiliation(s)
- Xiping Zhan
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tan Pongstaporn
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David K. Ryugo
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
13
|
Shore SE, Zhou J. Somatosensory influence on the cochlear nucleus and beyond. Hear Res 2006; 216-217:90-9. [PMID: 16513306 DOI: 10.1016/j.heares.2006.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/19/2022]
Abstract
Interactions between somatosensory and auditory systems occur at peripheral levels in the central nervous system. The cochlear nucleus (CN) receives innervation from trigeminal sensory structures: the ophthalmic division of the trigeminal ganglion and the caudal and interpolar regions of the spinal trigeminal nucleus (Sp5I and Sp5C). These projections terminate primarily in the granule cell domain, but also in magnocellular regions of the ventral and dorsal CN. Additionally, new evidence is presented demonstrating that cells in the lateral paragiganticular regions of the reticular formation (RF) also project to the CN. Not unlike the responses obtained from electrically stimulating the trigeminal system, stimulating RF regions can also result in excitation/inhibition of dorsal CN neurons. The origins and central connections of these projection neurons are associated with systems controlling vocalization and respiration. Electrical stimulation of trigeminal and RF projection neurons can suppress acoustically driven activity of not only CN neurons, but also neurons in the inferior colliculus. Together with the anatomical observations, these physiological observations suggest that one function of somatosensory input to the auditory system is to suppress responses to "expected" body-generated sounds such as vocalization or respiration. This would serve to enhance responses to "unexpected" externally-generated sounds, such as the vocalizations of other animals.
Collapse
Affiliation(s)
- Susan E Shore
- University of Michigan, Otolaryngology, 1301 E Ann St, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
14
|
Schofield BR, Coomes DL. Projections from auditory cortex contact cells in the cochlear nucleus that project to the inferior colliculus. Hear Res 2005; 206:3-11. [PMID: 16080994 DOI: 10.1016/j.heares.2005.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 03/07/2005] [Indexed: 11/21/2022]
Abstract
Anterograde and retrograde tracing techniques were combined to determine whether auditory cortical axons contact cells in the cochlear nucleus that project to the inferior colliculus. FluoroRuby or fluorescein dextran was injected into auditory cortex to label cortical axons by anterograde transport. Different fluorescent tracers (Fast Blue, FluoroGold, FluoroRuby or fluorescein dextran) were injected into one or both inferior colliculi to label cells in the cochlear nucleus. After 12-15 days, the brain was processed for fluorescence microscopy and the cochlear nuclei were examined for apparent contacts between cortical axons and retrogradely labeled cochlear nucleus cells. The results suggest that axons from the ipsilateral or contralateral cortex contact fusiform and giant cells in the dorsal cochlear nucleus and multipolar cells in the ventral cochlear nucleus that project directly to the inferior colliculus. The contacts occur on cell bodies and dendrites. The target cells in the cochlear nucleus include cells that project ipsilaterally, contralaterally or bilaterally to the inferior colliculus. The results suggest that auditory cortex is in a position to exert direct effects on the monaural pathways that ascend from the cochlear nucleus.
Collapse
Affiliation(s)
- Brett R Schofield
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 500 S. Preston Street, Louisville, KY 40202, United States.
| | | |
Collapse
|
15
|
Haenggeli CA, Pongstaporn T, Doucet JR, Ryugo DK. Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. J Comp Neurol 2005; 484:191-205. [PMID: 15736230 DOI: 10.1002/cne.20466] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The integration of information across sensory modalities enables sound to be processed in the context of position, movement, and object identity. Inputs to the granule cell domain (GCD) of the cochlear nucleus have been shown to arise from somatosensory brain stem structures, but the nature of the projection from the spinal trigeminal nucleus is unknown. In the present study, we labeled spinal trigeminal neurons projecting to the cochlear nucleus using the retrograde tracer, Fast Blue, and mapped their distribution. In a second set of experiments, we injected the anterograde tracer biotinylated dextran amine into the spinal trigeminal nucleus and studied the resulting anterograde projections with light and electron microscopy. Spinal trigeminal neurons were distributed primarily in pars caudalis and interpolaris and provided inputs to the cochlear nucleus. Their axons gave rise to small (1-3 microm in diameter) en passant swellings and terminal boutons in the GCD and deep layers of the dorsal cochlear nucleus. Less frequently, larger (3-15 microm in diameter) lobulated endings known as mossy fibers were distributed within the GCD. Ventrally placed injections had an additional projection into the anteroventral cochlear nucleus, whereas dorsally placed injections had an additional projection into the posteroventral cochlear nucleus. All endings were filled with round synaptic vesicles and formed asymmetric specializations with postsynaptic targets, implying that they are excitatory in nature. The postsynaptic targets of these terminals included dendrites of granule cells. These projections provide a structural substrate for somatosensory information to influence auditory processing at the earliest level of the central auditory pathways.
Collapse
Affiliation(s)
- Charles-André Haenggeli
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
16
|
Herráiz C, Hernández-Calvín FJ, Plaza G, Toledano A, De los Santos G. [Multi-sensory interaction in tinnitus: visual evoked potentials and somatosensory stimulation]. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2003; 54:329-36. [PMID: 12916476 DOI: 10.1016/s0001-6519(03)78421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anomalous cross-modal interactions along the audiovestibular, visual and soma-tosensorial pathways could be the responsible for aberrant signals, clinically expressed as phantom perceptions. This results in tinnitus that can be modified by gaze movements or somatosensorial stimulation through skin, orofacial (jaw) and cervical movements. This phenomenon has also been described in some patients with acute unilateral deafferentation of the auditory peripheral system as a result of surgery to remove a tumour in the posterior fossal. Neuroimaging preliminary studies (PET, f-MRI) describe multisensorial interactions and cortical reorganisation processes in chronic tinnitus. Treatment approaches are still unknown although counselling regarding the benignity of the process and the high percentage of habituation to the symptom is the most effective framework. We present our experience in four cases.
Collapse
Affiliation(s)
- C Herráiz
- Unidad de Otorrinolaringología, Fundación Hospital Alcorcón, Madrid.
| | | | | | | | | |
Collapse
|
17
|
Abstract
A neural connection between the trigeminal ganglion and the auditory brainstem was investigated by using retrograde and anterograde tract tracing methods: iontophoretic injections of biocytin or biotinylated dextran-amine (BDA) were made into the guinea pig trigeminal ganglion, and anterograde labeling was examined in the cochlear nucleus and superior olivary complex. Terminal labeling after biocytin and BDA injections into the ganglion was found to be most dense in the marginal cell area and secondarily in the magnocellular area of the ventral cochlear nucleus (VCN). Anterograde and retrograde labeling was also seen in the shell regions of the lateral superior olivary complex and in periolivary regions. The labeling was seen in the neuropil, on neuronal somata, and in regions surrounding blood vessels. Retrograde labeling was investigated using either wheatgerm agglutinin-horseradish peroxidase (WGA-HRP), BDA, or a fluorescent tracer, iontophoretically injected into the VCN. Cells filled by retrograde labeling were found in the ophthalmic and mandibular divisions of the trigeminal ganglion. We have previously shown that these divisions project to the cochlea and middle ear, respectively. This study provides the first evidence that the trigeminal ganglion innervates the cochlear nucleus and superior olivary complex. This projection from a predominantly somatosensory ganglion may be related to integration mechanisms involving the auditory end organ and its central targets.
Collapse
Affiliation(s)
- S E Shore
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The objective of the present study was the identification and characterization of the trigemino-diencephalic target areas in the Madagascan lesser hedgehog tenrec in order to get a more comprehensive view on the mammalian somatosensory thalamus, its evolution and representation in different species. Such an analysis has been considered important because in lower mammals the head and face are relatively well represented, but their ascending trigeminal projections have scarcely been analysed. Following injections of different tracer substances into the rostral and caudal portions of the trigeminal nuclear complex the most prominent area of termination was found in the medial ventroposterior nucleus. These projections were patchy and scarcely overlapped the region previously shown to receive spinal and dorsal column nuclear afferents. On the basis of the laterality and the intensity of the projections, two subdivisions were distinguished, the principal portion and the accessory portion receiving a dense contralateral and a weak bilateral input, respectively. They were considered equivalents to the magnocellular and parvocellular subdivisions of the medial ventroposterior nucleus in more differentiated mammals. In the latter species, however, the overlap between trigeminal and parabrachial fibres appears less extensive than in the tenrec. In addition, a weak bilateral projection was shown from the caudal trigeminal nucleus to the caudal and dorsal subdivision of the nucleus submedius. There was little, if any evidence for a trigeminal projection to the intralaminar nuclei and we failed to identify a correlate to the posterior nuclear complex of higher mammals. On the other hand, there was a distinct contralateral projection to the ventral portion of the zona incerta. This projection was of similar strength as the projection to the medial ventroposterior nucleus; it supports the notion that the zona incerta may play a crucial role in relaying trigeminal information.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Germany
| |
Collapse
|
19
|
Künzle H. Origin and terminal distribution of the trigeminal projections to the inferior and superior colliculi in the lesser hedgehog tenrec. Eur J Neurosci 1998; 10:368-76. [PMID: 9753145 DOI: 10.1046/j.1460-9568.1998.00020.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trigemino-tectal projections were investigated with anterograde and retrograde tracing techniques in the Madagascan lesser hedgehog tenrec, Echinops telfairi. There were prominent contralateral projections to the inferior colliculus (CoI) and the superior colliculus (CoS), each showing its own characteristic pattern of terminations. While the projections to the CoI were confined consistently to a circumscribed region in its ventrolateral, external portion, the projections from particularly the rostral trigeminal subdivision to the CoS were distributed inhomogenously across almost the entire rostro-caudal and mediolateral extents. Comparing these data with the spino-tectal projections published previously, it demonstrates that the somatotopic organization of ascending tectal afferents is more distinct in the CoI than in the CoS. There were roughly twice as many trigeminal neurones projecting to the CoS than to the CoI. This difference might be due to the fact that the cells projecting to CoS were distributed extensively across the trigeminal nuclear complex (peak densities in the principal and interpolar subdivisions), while the neurones projecting to the CoI were largely confined to the interpolar and caudal trigeminal subdivisions. The latter cells were located adjacent to the spinal trigeminal tract; the neurones projecting to the CoS occupied preferentially the ventral trigeminal regions at rostral levels, while from the interpolar subdivision caudalward the labelled cells shifted dorsolaterally. In comparison to other mammals the trigeminal projection to the tenrec's CoI is unique. There is evidence for such a projection in other species too, but it is poorly documented, presumably due to technical reasons.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Germany.
| |
Collapse
|