1
|
CD73 Predicts Favorable Prognosis in Patients with Nonmuscle-Invasive Urothelial Bladder Cancer. DISEASE MARKERS 2015; 2015:785461. [PMID: 26543299 PMCID: PMC4620269 DOI: 10.1155/2015/785461] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/01/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
Abstract
Aims. CD73 is a membrane associated 5′-ectonucleotidase that has been proposed as prognostic biomarker in various solid tumors. The aim of this study is to evaluate CD73 expression in a cohort of patients with primary bladder cancer in regard to its association with clinicopathological features and disease course. Methods. Tissue samples from 174 patients with a primary urothelial carcinoma were immunohistochemically assessed on a tissue microarray. Associations between CD73 expression and retrospectively obtained clinicopathological data were evaluated by contingency analysis. Survival analysis was performed to investigate the predictive value of CD73 within the subgroup of pTa and pT1 tumors in regard to progression-free survival (PFS). Results. High CD73 expression was found in 46 (26.4%) patients and was significantly associated with lower stage, lower grade, less adjacent carcinoma in situ and with lower Ki-67 proliferation index. High CD73 immunoreactivity in the subgroup of pTa and pT1 tumors (n = 158) was significantly associated with longer PFS (HR: 0.228; p = 0.047) in univariable Cox regression analysis. Conclusion. High CD73 immunoreactivity was associated with favorable clinicopathological features. Furthermore, it predicts better outcome in the subgroup of pTa and pT1 tumors and may thus serve as additional tool for the selection of patients with favorable prognosis.
Collapse
|
2
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
3
|
Abstract
Most early studies of the role of nucleotides in development have evidenced their crucial importance as carriers of energy in all organisms. However, an increasing number of studies are now available to suggest that purines and pyrimidines, acting as extracellular ligands specifically on receptors of the plasma membrane, may play a pivotal role throughout pre- and postnatal development in a wide variety of organisms including amphibians, birds, and mammals. Purinergic receptor expression and functions have been studied in the development of many organs, including the autonomic nervous system (ANS). Nucleotide receptors can induce a multiplicity of cellular signalling pathways via crosstalk with bioactive molecules acting on growth factors and neurotransmitter receptors which are fundamental for the development of a mature and functional ANS. Purines and pyrimidines may influence all the stages of neuronal development, including neural cell proliferation, migration, differentiation and phenotype determination of differentiated cells. Indeed, the normal development of the ANS is disturbed by dysfunction of purinergic signalling in animal models. To establish the primitive and fundamental nature of purinergic neurotransmission in the ontogeny of the ANS, in this review the roles of purines and pyrimidines as signalling molecules during embryological and postnatal development are considered.
Collapse
Affiliation(s)
- Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy.
| |
Collapse
|
4
|
Prévilon M, Le Gall M, Chafey P, Federeci C, Pezet M, Clary G, Broussard C, François G, Mercadier JJ, Rouet-Benzineb P. Comparative differential proteomic profiles of nonfailing and failing hearts after in vivo thoracic aortic constriction in mice overexpressing FKBP12.6. Physiol Rep 2013; 1:e00039. [PMID: 24303125 PMCID: PMC3834996 DOI: 10.1002/phy2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pressure overload (PO) induces pathological left ventricular hypertrophy (LVH) leading to congestive heart failure (HF). Overexpression of FKBP12.6 (FK506-binding protein [K]) in mice should prevent Ca2+-leak during diastole and may improve overall cardiac function. In order to decipher molecular mechanisms involved in thoracic aortic constriction (TAC)-induced cardiac remodeling and the influence of gender and genotype, we performed a proteomic analysis using two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and bioinformatics techniques to identify alterations in characteristic biological networks. Wild-type (W) and K mice of both genders underwent TAC. Thirty days post-TAC, the altered cardiac remodeling was accompanied with systolic and diastolic dysfunction in all experimental groups. A gender difference in inflammatory protein expression (fibrinogen, α-1-antitrypsin isoforms) and in calreticulin occurred (males > females). Detoxification enzymes and cytoskeletal proteins were noticeably increased in K mice. Both non- and congestive failing mouse heart exhibited down- and upregulation of proteins related to mitochondrial function and purine metabolism, respectively. HF was characterized by a decrease in enzymes related to iron homeostasis, and altered mitochondrial protein expression related to fatty acid metabolism, glycolysis, and redox balance. Moreover, two distinct differential protein profiles characterized TAC-induced pathological LVH and congestive HF in all TAC mice. FKBP12.6 overexpression did not influence TAC-induced deleterious effects. Huntingtin was revealed as a potential mediator for HF. A broad dysregulation of signaling proteins associated with congestive HF suggested that different sets of proteins could be selected as useful biomarkers for HF progression and might predict outcome in PO-induced pathological LVH.
Collapse
|
5
|
Abstract
Ecto-5'-nucleotidase (CD73) is a membrane-bound enzyme, which catalyzes the conversion of adenosine monophosphate to adenosine. CD73 has been postulated to play an important role in carcinogenesis, as adenosine promotes tumor progression and CD73-expressing cancer cell lines are more aggressive. However, other studies have shown that activated adenosine receptors may also inhibit cell proliferation. This study investigated the clinical significance of CD73 expression in breast cancer. The study group included 136 consecutive stage I-III breast cancer patients treated between 2001 and 2008 at 2 institutions. CD73 expression was examined by immunohistochemistry (IHC) on tissue microarrays, using antihuman mouse monoclonal antibody. Survival curves were generated by the Kaplan-Meier method and compared using the log-rank test. CD73 staining was expressed as the score calculated by multiplying the staining intensity (0=negative, 1=weak, 2=intermediate, 3=strong) and percentage of positive cells (0% to 100%). The median score among all samples was 100. Positive CD73 staining (defined as score equal or higher than 100) occurred in 74% of the cases. No correlation was found between CD73 expression and grading, tumor size, lymph node status, histologic type, estrogen receptor, or progesterone receptor status. Positive CD73 expression strongly correlated with longer disease-free survival (hazard ratio=0.26; 95% confidence interval, 0.1-0.66; P=0.0044) and overall survival (hazard ratio =0.24; 95% confidence interval, 0.07-0.85; P=0.027). Multivariate analysis for disease-free survival revealed correlation with tumor size and CD73 status. Elevated CD73 expression in breast cancer can predict a good prognosis. However, the actual role of CD73 in cancerogenesis remains unclear and requires further analysis.
Collapse
|
6
|
Kim Y, Lee E, Park S, Kim N, Kim C. Proteomic analysis of plasma from a Tau transgenic mouse. Int J Dev Neurosci 2012; 30:277-83. [DOI: 10.1016/j.ijdevneu.2012.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yoon‐Ha Kim
- School of Life Sciences and BiotechnologyKorea UniversitySeoul138‐701Republic of Korea
| | - Eun‐Kyung Lee
- School of Life Sciences and BiotechnologyKorea UniversitySeoul138‐701Republic of Korea
| | - Seung‐Ah Park
- School of Life Sciences and BiotechnologyKorea UniversitySeoul138‐701Republic of Korea
| | - Nam‐Hee Kim
- School of Life Sciences and BiotechnologyKorea UniversitySeoul138‐701Republic of Korea
| | - Chan‐Wha Kim
- School of Life Sciences and BiotechnologyKorea UniversitySeoul138‐701Republic of Korea
| |
Collapse
|
7
|
Burnstock G, Ulrich H. Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 2011; 68:1369-94. [PMID: 21222015 PMCID: PMC11114541 DOI: 10.1007/s00018-010-0614-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 01/23/2023]
Abstract
Nucleotides are of crucial importance as carriers of energy in all organisms. However, the concept that in addition to their intracellular roles, nucleotides act as extracellular ligands specifically on receptors of the plasma membrane took longer to be accepted. Purinergic signaling exerted by purines and pyrimidines, principally ATP and adenosine, occurs throughout embryologic development in a wide variety of organisms, including amphibians, birds, and mammals. Cellular signaling, mediated by ATP, is present in development at very early stages, e.g., gastrulation of Xenopus and germ layer definition of chick embryo cells. Purinergic receptor expression and functions have been studied in the development of many organs, including the heart, eye, skeletal muscle and the nervous system. In vitro studies with stem cells revealed that purinergic receptors are involved in the processes of proliferation, differentiation, and phenotype determination of differentiated cells. Thus, nucleotides are able to induce various intracellular signaling pathways via crosstalk with other bioactive molecules acting on growth factor and neurotransmitter receptors. Since normal development is disturbed by dysfunction of purinergic signaling in animal models, further studies are needed to elucidate the functions of purinoceptor subtypes in developmental processes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | | |
Collapse
|
8
|
Niemoeller OM, Bentzen PJ, Lang E, Lang F. Adenosine protects against suicidal erythrocyte death. Pflugers Arch 2007; 454:427-39. [PMID: 17285297 DOI: 10.1007/s00424-007-0218-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2006] [Revised: 11/21/2006] [Accepted: 01/19/2007] [Indexed: 01/13/2023]
Abstract
Suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The cell membrane scrambling is triggered by an increase in cytosolic Ca(2+) activity and activation of protein kinase C (PKC). Phosphatidylserine exposure fosters adherence of affected erythrocytes to the vascular wall. Thus, microcirculation in ischemic tissues may be impaired by the appearance of eryptotic erythrocytes. Ischemia leads to release of adenosine, which in most tissues leads to vasodilation and protects against cell injury. The present experiments explored whether adenosine influences mechanisms underlying eryptosis. Erythrocyte phosphatidylserine exposure was estimated from annexin V binding, cell volume from forward scatter and cytosolic Ca(2+) activity from Fluo3 fluorescence. Glucose depletion (for 24 or 48 h) significantly increased annexin binding and decreased forward scatter, effects partially reversed by adenosine. The protective effect of adenosine reached statistical significance (s.d.) at > =30 microM. Low Cl(-) solution (Cl(-) exchanged by gluconate for 24 h) similarly increased annexin binding and decreased forward scatter, effects again reversed by adenosine (s.d. at > or =10 and 30 microM, respectively). Similarly, phosphatase inhibitor okadaic acid (OA, 1 microM) and PKC activator phorbol 12-myristate-13-acetate (PMA, 3 microM) significantly enhanced annexin binding and decreased forward scatter. Adenosine significantly blunted the effects of OA and PMA on annexin V binding (s.d. at > or =30 and 10 microM, respectively) and the effect of OA on forward scatter (s.d. at > or =10 microM). In conclusion, adenosine inhibits eryptosis by a mechanism presumably effective downstream of PKC. The effect may participate in the maintenance of microcirculation in ischemic tissue.
Collapse
|
9
|
Abstract
Extracellular ATP (ATPo) and adenosine are cytotoxic to several cancer cell lines, suggesting their potential use for anticancer therapy. Adenosine causes cytotoxicity, either when added exogenously or when generated from ATPo hydrolysis, via mechanisms which are not mutually exclusive and which involve, adenosine receptor activation, pyrimidine starvation and/or increases in intracellular S-adenosylhomocysteine: S-adenosylmethionine ratio. Given that adenosine also appears to protect against cytotoxicity via mechanisms including immunity against damage by oxygen free radicals, an understanding of the contribution of adenosine to ATPo-induced cytotoxicity is thus crucial, when considering any potential therapeutic use for these compounds. However, such an understanding has been largely hindered by the fact that many studies have not focused enough on the possibility that both ATPo and adenosine may mediate cytotoxicity in the same system. Such studies can benefit from use a range of ATPo concentrations when assessing the contribution of adenosine to ATPo-induced cytotoxicity. Whilst future molecular and pharmacological studies are needed to establish the nature of the cytotoxic adenosine receptor, it is possible that more than just one adenosine receptor type is involved and that the cytotoxic receptor(s) type is more likely to have a low affinity for adenosine. Activation of the adenosine receptor(s) would thus lead to cytotoxicity only at relatively high adenosine concentrations, while lower adenosine concentrations mediate non-cytotoxic physiological effects.
Collapse
|
10
|
Fountoulakis M, Tsangaris GT, Maris A, Lubec G. The rat brain hippocampus proteome. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819:115-29. [PMID: 15797529 DOI: 10.1016/j.jchromb.2005.01.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2004] [Accepted: 01/31/2005] [Indexed: 11/23/2022]
Abstract
The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.
Collapse
|
11
|
Abstract
Agonist stimulation of adenosine A(1) receptors has been consistently shown to result in reduction of brain damage following experimentally induced global and focal brain ischaemia in animals. Unsurprisingly, the use of adenosine A(1) receptors as targets for the development of clinical therapeutics suitable for treatment of ischaemic brain disorders has been suggested by many authors. The latest studies of adenosine and its receptors indicate that adenosine-mediated actions might be far more complex than originally anticipated, casting some doubt about the rapid development of stroke treatment based on adenosine. This review discusses the possible role of adenosine receptor subtypes (A(1), A(2) and A(3)) in the context of their potential as therapeutics in stroke.
Collapse
Affiliation(s)
- D K von Lubitz
- Emergency Medicine Research Laboratories, Department of Emergency Medicine, University of Michigan Medical Center, TC/B1354/0303, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0303, USA.
| |
Collapse
|
12
|
Wakade AR, Przywara DA, Wakade TD. Intracellular, nonreceptor-mediated signaling by adenosine: induction and prevention of neuronal apoptosis. Mol Neurobiol 2001; 23:137-53. [PMID: 11817216 DOI: 10.1385/mn:23:2-3:137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Inhibitory effect of adenosine on the isolated heart muscle and vascular system were first described in 1929. Since then, numerous reviews have been published on the diverse actions of this nucleoside on a wide variety of cell types. Essentially all effects of adenosine in neurons and non-neuronal cells are mediated by activation of nucleoside membrane receptors coupled to specific intracellular second messenger pathways. This brief review describes two novel actions of adenosine in peripheral sympathetic neurons, which are not mediated by adenosine receptors. First is described how adenosine and related nucleosides are able to induce apoptosis during the initial stages of neuronal growth and development in vitro and in vivo. Second is discussed how adenosine is able to prevent or delay apoptosis in more mature sympathetic neurons subjected to nerve growth factor deprivation in culture. Both the induction and prevention of apoptosis are independent of receptor activation, and totally dependent on the intracellular accumulation and subsequent phosphorylation of adenosine. The physiological significance and mechanisms by which adenosine can induce apoptosis in one situation, and rescue from apoptosis in another, are described in this article.
Collapse
Affiliation(s)
- A R Wakade
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
13
|
Abstract
Extracellular adenosine (Ado) accumulates during brain ischemia. To investigate the pathophysiological role of Ado on glial cells under ischemic conditions, we examined the effect of Ado on the survival of C6 glial cells exposed to chemical ischemia (CI). Treatment with Ado during exposure to CI showed a marked protective effect, that was mediated via intracellular transport and conversion of Ado to inosine (Ino). In contrast, Ado exacerbated CI-mediated cell death when it was added during the recovery time after exposure to CI. Ado cytotoxicity was largely mediated via intracellular transport, but conversion of Ado to Ino abolished its toxicity. Ado-induced cell death was characteristic of apoptosis, and Ado increased the expression of a pro-apoptotic product Bax but decreased that of an anti-apoptotic product Bcl-2. Ado also suppressed the induction of two stress proteins HSC70 and HSP27. Furthermore, Ado induced cytochrome c release and increased caspase-3-like activity. These results indicate the dual opposing effects of Ado on glial cell survival. Intracellular accumulation of Ado can be both cytoprotective and cytotoxic, depending on its metabolic pathway.
Collapse
Affiliation(s)
- T Imura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
14
|
Harrington EO, Smeglin A, Parks N, Newton J, Rounds S. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38alpha. Am J Physiol Lung Cell Mol Physiol 2000; 279:L733-42. [PMID: 11000134 DOI: 10.1152/ajplung.2000.279.4.l733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH(2)-terminal kinase-1, or p38beta activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38alpha activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38alpha activity.
Collapse
Affiliation(s)
- E O Harrington
- Pulmonary and Critical Care Medicine Section, Providence Veterans Affairs Medical Center, Brown University School of Medicine, Providence, Rhode Island 02908, USA.
| | | | | | | | | |
Collapse
|
15
|
de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:258-74. [PMID: 11011069 DOI: 10.1016/s0165-0173(00)00033-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
A neuroprotective role for adenosine is commonly assumed. Recent studies revealed that adenosine may unexpectedly, under certain circumstances, have the opposite effects contributing to neuronal damage and death. The basis for this duality may be the activation of distinct subtypes of adenosine receptors, interactions between these receptors, differential actions on neuronal and glial cells, and various time frames of adenosinergic compounds administration. If these aspects are understood, adenosine should remain an interesting target for therapeutical neuroprotective approaches after all.
Collapse
Affiliation(s)
- A de Mendonça
- Laboratory of Neurosciences, Faculty of Medicine of Lisbon, Av. Professor Egas Moniz, 1649-035, Lisbon, Portugal.
| | | | | |
Collapse
|