1
|
Ban W, Jiang X, Lv L, Jiao Y, Huang J, Yang Z, You Y. Illustrate the distribution and metabolic regulatory effects of pterostilbene in cerebral ischemia-reperfusion rat brain by mass spectrometry imaging and spatial metabolomics. Talanta 2024; 266:125060. [PMID: 37598445 DOI: 10.1016/j.talanta.2023.125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Pterostilbene is a promising molecule with superior pharmacological activities and pharmacokinetic characteristics compared to its structural analogue resveratrol, which could be used to treat ischemic stroke. However, its mechanism is still unclear. The cutting-edge air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and spatial metabolomics analysis were applied to investigate the distribution of pterostilbene in ischemic rat brain and the changes of related small molecule metabolic pathways to further explore the potential mechanisms of pterostilbene against cerebral ischemia-reperfusion injury. This research found that pterostilbene could significantly restore cerebral microcirculation blood flow, reduce infarct volume, improve neurological function and ameliorate neuronal damage in ischemic rats. Moreover, pterostilbene was widely and abundantly distributed in ischemic brain tissue, laying a solid foundation for the rescue of ischemic penumbra. Further study revealed that pterostilbene played a therapeutic role in restoring energy supply, rebalancing neurotransmitters, reducing abnormal polyamine accumulation and phospholipid metabolism. These findings offer an opportunity to illustrate novel mechanisms of pterostilbene in the treatment of cerebral ischemia/reperfusion injury resulting from ischemic stroke.
Collapse
Affiliation(s)
- Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Xinyi Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lingjuan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianpeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Herzog C, Greenald D, Larraz J, Keatinge M, Herrgen L. RNA-seq analysis and compound screening highlight multiple signalling pathways regulating secondary cell death after acute CNS injury in vivo. Biol Open 2020; 9:9/5/bio050260. [PMID: 32366533 PMCID: PMC7225090 DOI: 10.1242/bio.050260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular mechanisms that regulate secondary cell death after acute central nervous system (CNS) injury is critical for the development of effective neuroprotective drugs. Previous research has shown that neurotoxic processes including excitotoxicity, oxidative stress and neuroinflammation can cause secondary cell death. Nevertheless, clinical trials targeting these processes have been largely unsuccessful, suggesting that the signalling pathways underlying secondary cell death remain incompletely understood. Due to their suitability for live imaging and their amenability to genetic and pharmacological manipulation, larval zebrafish provide an ideal platform for studying the regulation of secondary cell death in vivo Here, we use RNA-seq gene expression profiling and compound screening to identify signalling pathways that regulate secondary cell death after acute neural injury in larval zebrafish. RNA-seq analysis of genes upregulated in cephalic mpeg1+ macrophage-lineage cells isolated from mpeg1:GFP transgenic larvae after neural injury suggested an involvement of cytokine and polyamine signalling in secondary cell death. Furthermore, screening a library of FDA approved compounds indicated roles for GABA, serotonin and dopamine signalling. Overall, our results highlight multiple signalling pathways that regulate secondary cell death in vivo, and thus provide a starting point for the development of novel neuroprotective treatments for patients with CNS injury.This article has an associated First Person interview with the two first authors of the paper.
Collapse
Affiliation(s)
- Chiara Herzog
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - David Greenald
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Juan Larraz
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Leah Herrgen
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
3
|
Sokolovic D, Bjelakovic G, Nikolic J, Djindjic B, Pavlovic D, Kocic G, Stojanovic I, Pavlovic V. Effect of L-arginine on metabolism of polyamines in rat's brain with extrahepatic cholestasis. Amino Acids 2010; 38:339-45. [PMID: 19283445 DOI: 10.1007/s00726-009-0266-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 01/09/2008] [Indexed: 12/13/2022]
Abstract
Cholestatic encephalopathy results from accumulation of unconjugated bilirubin and hydrophobic bile acids in the brain. The aim of this study was to determine disturbances of polyamine metabolism in the brains of rats with experimental extrahepatic cholestasis and the effects of L-arginine administration. Wister rats were divided into groups: I: sham-operated, II: rats treated with L-arginine, III: animals with bile-duct ligation (BDL), and IV: cholestatic-BDL rats treated with L-arginine. Increased plasma gamma-glutamyltransferase and alkaline phosphatase activity and increased bile-acids and bilirubin levels in BDL rats were reduced by administration of L-arginine (P < 0.001). Cholestasis increased the brain's putrescine (P < 0.001) and decreased spermidine and spermine concentration (P < 0.05). The activity of polyamine oxidase was increased (P < 0.001) and diamine oxidase was decreased (P < 0.001) in the brains of BDL rats. Cholestasis increased the activity of arginase (P < 0.05) and decreased the level of citrulline (P < 0.001). Administration of L-arginine in BDL rats prevents metabolic disorders of polyamines and establishes a neuroprotective role in the brain during cholestasis.
Collapse
Affiliation(s)
- Dusan Sokolovic
- Institute of Biochemistry, Medical Faculty in Nis, , Nis, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sokolovic D, Bjelakovic G, Nikolic J, Djindjic B, Pavlovic D, Kocic G, Stojanovic I, Pavlovic V. Effect of l-arginine on metabolism of polyamines in rat’s brain with extrahepatic cholestasis. Amino Acids 2008. [DOI: 10.1007/s00726-008-0026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
De Biase A, Knoblach SM, Di Giovanni S, Fan C, Molon A, Hoffman EP, Faden AI. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics 2005; 22:368-81. [PMID: 15942019 DOI: 10.1152/physiolgenomics.00081.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in gene expression contribute to pathophysiological alterations following spinal cord injury (SCI). We examined gene expression over time (4 h, 24 h, 7 days) at the impact site, as well as rostral and caudal regions, following mild, moderate, or severe contusion SCI in rats. High-density oligonucleotide microarrays were used that included approximately 27,000 genes/ESTs (Affymetrix RG-U34; A, B and C arrays), together with multiple analyses (MAS 5.0, dChip). Alterations after mild injury were relatively rapid (4 and 24 h), whereas they were delayed and prolonged after severe injury (24 h and 7 days). The number and magnitude of gene expression changes were greatest at the injury site after moderate injury and increased in rostral and caudal regions as a function of injury severity. Sham surgery resulted in expression changes that were similar to mild injury, suggesting the importance of using time-linked surgical controls as well as naive animals for these kinds of studies. Expression of many genes and ESTs was altered; these were classified functionally based on ontology. Overall representation of these functional classes varied with distance from the site of injury and injury severity, as did the individual genes that contributed to each functional class. Different clustering approaches were used to identify changes in neuronal-specific genes and several transcription factors that have not previously been associated with SCI. This study represents the most comprehensive evaluation of gene expression changes after SCI to date. The results underscore the power of microarray approaches to reveal global genomic responses as well as changes in particular gene clusters and/or families that may be important in the secondary injury cascade.
Collapse
Affiliation(s)
- Andrea De Biase
- Children's National Medical Center, Center for Genetic Medicine, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Ekegren T, Gomes-Trolin C. Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal Biochem 2005; 338:179-85. [PMID: 15745737 DOI: 10.1016/j.ab.2004.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/20/2022]
Abstract
A high-performance liquid chromatography (HPLC) assay with fluorescence detection was developed for the determination of the polyamines putrescine, spermidine, spermine in samples of human spinal cord, cerebellum, cerebrospinal fluid (CSF), skeletal muscle, and muscle microdialysates without an extensive sample preparation. The precolumn derivatization was performed with 9-fluorenylmethyl chloroformate (FMOC), and the derivatizated polyamines were stable for at least 14 h at 4 degrees C. All polyamines were separated within 35 min. The method was checked for linearity, and mean correlation coefficient values of 0.995, 0.999, and 0.991 were achieved for putrescine, spermidine, and spermine, respectively. The within- and between-assay coefficient of variation percentages evaluated in standard solutions varied between 1.0 and 4.9% and between 1.3 and 6.9%, respectively. The corresponding values obtained in samples of human spinal cord were between 1.0 and 5.0% and between 0.6 and 5.8%. The values of the recovery, evaluated in spinal cord tissue, varied between 83.7 and 93.5%.
Collapse
Affiliation(s)
- Titti Ekegren
- Department of Neuroscience, Neurology, University Hospital, SE-751 85 Uppsala, Sweden.
| | | |
Collapse
|
7
|
Babu GN, Sailor KA, Beck J, Sun D, Dempsey RJ. Ornithine decarboxylase activity in in vivo and in vitro models of cerebral ischemia. Neurochem Res 2004; 28:1851-7. [PMID: 14649727 DOI: 10.1023/a:1026123809033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ornithine decarboxylase (ODC) is considered the rate-limiting enzyme in polyamine biosynthesis, and an increase in putrescine after central nervous system (CNS) injury appears to be involved in neuronal death. Cerebral ischemia and reperfusion trigger an active series of metabolic events, which eventually lead to neuronal death. In the present study, ODC activity was evaluated following transient focal cerebral ischemia and reperfusion in rat. The middle cerebral artery (MCA) was occluded for 2 h in male rats with an intraluminal suture technique. Animals were sacrificed between 3 and 48 h of reperfusion following MCA occlusion, and ODC activity was assayed in cortex and striatum. ODC activity was also estimated in an in vitro ischemia model using primary rat cortical neuron cultures, at 6-24 h reoxygenation following 1 h oxygen-glucose deprivation (OGD). In cortex, following ischemia, ODC activity was increased at 3 h (P < .05), reached peak levels by 6-9 h (P < .001) and returned to sham levels by 48 h reperfusion. In striatum the ODC activity followed a similar time course, but returned to basal levels by 24 h. This suggests that ODC activity is upregulated in rat CNS following transient focal ischemia and its time course of activation is region specific. In vitro, ODC activity showed a significant rise only at 24 h reoxygenation following ischemic insult. The release of lactate dehydrogenase (LDH), an indicator for cell damage, was also significantly elevated after OGD. 0.25 mM alpha-difluoromethylornithine (DFMO) inhibited ischemia-induced ODC activity, whereas a 10-mM dose of DFMO appears to provide some neuroprotection by suppressing both ODC activity and LDH release in neuronal cultures, suggesting the involvement of polyamines in the development of neuronal cell death.
Collapse
Affiliation(s)
- G Nagesh Babu
- Department of Neurology, SGPG Institute of Medical Sciences, Lucknow, UP, 226014, India.
| | | | | | | | | |
Collapse
|
8
|
Lee SY, Kim CY, Lee JJ, Jung JG, Lee SR. Effects of delayed administration of (-)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull 2003; 61:399-406. [PMID: 12909283 DOI: 10.1016/s0361-9230(03)00139-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
(-)-Epigallocatechin gallate has a potent antioxidant property and can reduce free radical-induced lipid peroxidation as a green tea polyphenol. In previous study, systemic administration of (-)-epigallocatechin gallate immediately after ischemia has been shown to inhibit the hippocampal neuronal damage in the gerbil model of global ischemia. Polyamines are thought to be important in the generation of brain edema and neuronal cell damage associated with various types of excitatory neurotoxicity. We examined the effects of delayed administration of (-)-epigallocatechin gallate on the changes in polyamine levels and neuronal damage after transient global ischemia in gerbils. To produce transient global ischemia, both common carotid arteries were occluded for 3 min with micro-clips. The gerbils were treated with (-)-epigallocatechin gallate (50 mg/kg, i.p.) at 1 or 3 h after ischemia. The polyamines; putrescine, spermidine, and spermine levels were examined using high performance liquid chromatography in the cerebral cortex and hippocampus 24 h after ischemia. Putrescine levels in the cerebral cortex and hippocampus were increased significantly after ischemia and the delayed administrations of (-)-epigallocatechin gallate (1 or 3 h after ischemia) attenuated the increases. Only minor changes were noted in the spermidine and spermine levels after ischemia. In histology, neuronal injuries in the hippocampal CA1 regions were evaluated quantitatively 5 days after ischemia. (-)-Epigallocatechin gallate administered 1 h or 3 after ischemia significantly reduced hippocampal neuronal damage. The present results show that the delayed administrations of (-)-epigallocatechin gallate inhibit the transient global ischemia-induced increase of putrescine levels in the cerebral cortex and hippocampus. (-)-Epigallocatechin gallate is neuroprotective against neuronal damage even when administered up to 3 h after global ischemia. These findings suggest that (-)-epigallocatechin gallate may be promising in the acute treatment of stroke.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Pharmacology, Kyungpook National University, 700-422 Taegu, South Korea
| | | | | | | | | |
Collapse
|
9
|
Zahedi K, Wang Z, Barone S, Prada AE, Kelly CN, Casero RA, Yokota N, Porter CW, Rabb H, Soleimani M. Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2003; 284:F1046-55. [PMID: 12554636 DOI: 10.1152/ajprenal.00318.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the major cause of acute renal failure in native and allograft kidneys. Identifying the molecules and pathways involved in the pathophysiology of renal IRI will yield valuable new diagnostic and therapeutic information. To identify differentially regulated genes in renal IRI, RNA from rat kidneys subjected to an established renal IRI protocol (bilateral occlusion of renal pedicles for 30 min followed by reperfusion) and time-matched kidneys from sham-operated animals was subjected to suppression subtractive hybridization. The level of spermidine/spermine N(1)-acetyltransferase (SSAT) mRNA, an essential enzyme for the catabolism of polyamines, increased in renal IRI. SSAT expression was found throughout normal kidney tubules, as detected by nephron segment RT-PCR. Northern blots demonstrated that the mRNA levels of SSAT are increased by greater than threefold in the renal cortex and by fivefold in the renal medulla at 12 h and returned to baseline at 48 h after ischemia. The increase in SSAT mRNA was paralleled by an increase in SSAT protein levels as determined by Western blot analysis. The concentration of putrescine in the kidney increased by approximately 4- and approximately 7.5-fold at 12 and 24 h of reperfusion, respectively, consistent with increased functional activity of SSAT. To assess the specificity of SSAT for tubular injury, a model of acute renal failure from Na(+) depletion (without tubular injury) was studied; SSAT mRNA levels remained unchanged in rats subjected to Na(+) depletion. To distinguish SSAT increases from the effects of tubular injury vs. uremic toxins, SSAT was increased in cis-platinum-treated animals before the onset of renal failure. The expression of SSAT mRNA and protein increased by approximately 3.5- and >10-fold, respectively, in renal tubule epithelial cells subjected to ATP depletion and metabolic poisoning (an in vitro model of kidney IRI). Our results suggest that SSAT is likely a new marker of tubular cell injury that distinguishes acute prerenal from intrarenal failure.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adibhatla RM, Hatcher JF, Sailor K, Dempsey RJ. Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res 2002; 938:81-6. [PMID: 12031538 DOI: 10.1016/s0006-8993(02)02447-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are ubiquitous cellular components, but their specific role in central nervous system (CNS) injury has yet to be characterized. CNS injury results in increased activities of ornithine decarboxylase and spermidine/spermine-N(1)-acetyltransferase, and accumulation of putrescine. The present study determined the polyamine profile in three models of CNS injury, in two different species (gerbil and rat) and two strains of rats (Sprague-Dawley and spontaneously hypertensive): (1) transient focal cerebral ischemia in spontaneously hypertensive rats (SHR); (2) traumatic brain injury in Sprague-Dawley rats; and (3) transient forebrain ischemia in gerbils. While there was a significant increase in putrescine in all three models, spermine and spermidine levels were unaltered in forebrain ischemia and traumatic brain injury. However, transient focal cerebral ischemia shows depletion of spermine and spermidine levels in injured hemisphere compared to contralateral region. Exogenous spermine significantly restored the spermine as well as spermidine levels in the ipsilateral hemisphere after transient focal cerebral ischemia, but did not alter putrescine levels or the ratio of spermidine to spermine. The loss of spermine in particular, may have several consequences that contribute to ischemic injury, including destabilization of chromatin, decreased mitochondrial Ca(2+) buffering capacity, and increased susceptibility to oxidative stress. Based on our and other studies, we propose a tentative antioxidant mechanism of spermine neuroprotection.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, H4-330, Clinical Science Center, 600 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53792-3232, USA.
| | | | | | | |
Collapse
|
11
|
|