1
|
Baker JE, Plaska SW, Qin Z, Liu CJ, Rege J, Rainey WE, Udager AM. Targeted RNA sequencing of adrenal zones using immunohistochemistry-guided capture of formalin-fixed paraffin-embedded tissue. Mol Cell Endocrinol 2021; 530:111296. [PMID: 33915228 PMCID: PMC8456741 DOI: 10.1016/j.mce.2021.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Adequate access to fresh or frozen normal adrenal tissue has been a primary limitation to the enhanced characterization of the adrenal zones via RNA sequencing (RNAseq). Herein, we describe the application of targeted RNAseq to formalin-fixed paraffin-embedded (FFPE) normal adrenal gland specimens. Immunohistochemistry (IHC) was used to visualize and guide the capture of the adrenocortical zones and medulla. Following IHC-based tissue capture and isolation of RNA, high-throughput targeted RNAseq highlighted clear transcriptomic differences and identified differentially expressed genes among the adrenal zones. Our data demonstrate the ability to capture FFPE adrenal zone tissue for targeted transcriptomic analyses. Future comparison of normal adrenal zones will improve our understanding of transcriptomic patterns and help identify potential novel pathways controlling zone-specific steroid production.
Collapse
Affiliation(s)
- Jessica E Baker
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samuel W Plaska
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrine, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Aaron M Udager
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Gupta M, Lloyd RV, Fischer-Colbrie R, Tischler AS, Dayal Y. Immunohistochemical expression of neuroendocrine secretory protein-55 (NESP-55) in pituitary adenomas. Endocr Pathol 2011; 22:150-4. [PMID: 21584660 DOI: 10.1007/s12022-011-9162-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuroendocrine secretory protein-55 (NESP-55) is a recently described member of the chromogranin family and appears to be a marker of the constitutive secretory pathway in certain neural, neuroendocrine, and endocrine cell types. It has been shown to be selectively expressed in tumors differentiating towards the adrenal chromaffin and pancreatic islet cell phenotypes. The highest levels of NESP-55 expression, at least in animals, appear to be in the adrenal medulla and the pituitary gland. However, very little is known about the status of NESP-55 expression in pituitary adenomas. We therefore studied the immunohistochemical profile of NESP-55 expression in a series of 30 well-characterized pituitary adenomas (five each of FSH/LH and ACTH, four GH, three TSH, seven prolactin, and six null cells). All tumors were positive for one or more generic marker(s) (chromogranin A, synaptophysin, neuron-specific enolase) of neuroendocrine differentiation. All pituitary adenomas selected for study were stained for NESP-55 with appropriate positive and negative controls. NESP-55 immunoreactivity, seen as brown finely granular cytoplasmic staining of the tumor cells with prominent perinuclear accentuation, was graded as focal (<10% tumor cells staining), moderate (10-50% tumor cells staining), and diffuse (>50% tumor cell staining). Four of seven prolactinomas were positive for NESP-55 (one focal, two moderate, and one diffuse). Two of four GH adenomas were also positive (one focal and one diffuse) while only 1/5 FSH tumors showed a moderately intense immunoreactivity. All other pituitary adenomas were completely negative for NESP-55. Our results indicate that, in human pituitary adenomas, NESP-55 has a more restricted pattern of expression than that of chromogranins A and B. Since immunohistochemical expression of NESP-55 is largely confined to prolactinomas and GH adenomas, it raises the possibility that NESP-55 may somehow be involved in the secretory pathways of these specific cell types.
Collapse
Affiliation(s)
- Mamta Gupta
- Department of Pathology, Johns Hopkins Medical Center, Weinberg 2268 East Baltimore Campus 401 N Broadway, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
3
|
Bastepe M. The GNAS Locus: Quintessential Complex Gene Encoding Gsalpha, XLalphas, and other Imprinted Transcripts. Curr Genomics 2011; 8:398-414. [PMID: 19412439 PMCID: PMC2671723 DOI: 10.2174/138920207783406488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 09/22/2007] [Accepted: 09/28/2007] [Indexed: 12/14/2022] Open
Abstract
The currently estimated number of genes in the human genome is much smaller than previously predicted. As an explanation for this disparity, most individual genes have multiple transcriptional units that represent a variety of biologically important gene products. GNAS exemplifies a gene of such complexity. One of its products is the alpha-subunit of the stimulatory heterotrimeric G protein (Gsalpha), a ubiquitous signaling protein essential for numerous different cellular responses. Loss-of-function and gain-of-function mutations within Gsalpha-coding GNAS exons are found in various human disorders, including Albright's hereditary osteodystrophy, pseudohypoparathyroidism, fibrous dysplasia of bone, and some tumors of different origin. While Gsalpha expression in most tissues is biallelic, paternal Gsalpha expression is silenced in a small number of tissues, playing an important role in the development of phenotypes associated with GNAS mutations. Additional products derived exclusively from the paternal GNAS allele include XLalphas, a protein partially identical to Gsalpha, and two non-coding RNA molecules, the A/B transcript and the antisense transcript. The maternal GNAS allele leads to NESP55, a chromogranin-like neuroendocrine secretory protein. In vivo animal models have demonstrated the importance of each of the exclusively imprinted GNAS products in normal mammalian physiology. However, although one or more of these products are also disrupted by most naturally occurring GNAS mutations, their roles in disease pathogenesis remain unknown. To further our understanding of the significance of this gene in physiology and pathophysiology, it will be important to elucidate the cellular roles and the mechanisms regulating the expression of each GNAS product.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sikora KM, Magee DA, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Machugh DE, Spillane C. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits. BMC Genet 2011; 12:4. [PMID: 21214909 PMCID: PMC3025900 DOI: 10.1186/1471-2156-12-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/07/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. RESULTS SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. CONCLUSIONS Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.
Collapse
Affiliation(s)
- Klaudia M Sikora
- Genetics and Biotechnology Laboratory, Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Guérin M, Guillemot J, Thouënnon E, Pierre A, El-Yamani FZ, Montero-Hadjadje M, Dubessy C, Magoul R, Lihrmann I, Anouar Y, Yon L. Granins and their derived peptides in normal and tumoral chromaffin tissue: Implications for the diagnosis and prognosis of pheochromocytoma. ACTA ACUST UNITED AC 2010; 165:21-9. [PMID: 20600356 DOI: 10.1016/j.regpep.2010.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Pheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases. The diagnosis of pheochromocytomas depends mainly upon the demonstration of catecholamine excess by 24-h urinary catecholamines and metanephrines or plasma metanephrines. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions, which are associated with a poor survival rate. The characterization of tissue, circulating or genetic markers is therefore crucial for the management of these tumors. Proteins of the granin family and their derived peptides are present in dense-core secretory vesicles and secreted into the bloodstream, making them useful markers for the identification of neuroendocrine cells and neoplasms. In this context, we will focus here on reviewing the distribution and characterization of granins and their processing products in normal and tumoral chromaffin cells, and their clinical usefulness for the diagnosis and prognosis of pheochromocytomas. It appears that, except SgIII, all members of the granin family i.e. CgA, CgB, SgII, SgIV-SgVII and proSAAS, and most of their derived peptides are present in adrenomedullary chromaffin cells and in pheochromocytes. Moreover, besides the routinely used CgA test assays, other assays have been developed to measure concentrations of tissue and/or circulating granins or their derived peptides in order to detect the occurrence of pheochromocytomas. In most cases, elevated levels of these entities were found, in correlation with tumor occurrence, while rarely discriminating between benign and malignant neoplasms. Nevertheless, measurement of the levels of granins and derived peptides improves the diagnostic sensitivity and may therefore provide a complementary tool for the management of pheochromocytomas. However, the existing data need to be substantiated in larger groups of patients, particularly in the case of malignant disease.
Collapse
Affiliation(s)
- Marlène Guérin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Weinstein LS, Xie T, Qasem A, Wang J, Chen M. The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 2009; 34:6-17. [PMID: 19844212 DOI: 10.1038/ijo.2009.222] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon affecting a small number of genes, which leads to differential expression from the two parental alleles. Imprinted genes are known to regulate fetal growth and a 'kinship' or 'parental conflict' model predicts that paternally and maternally expressed imprinted genes promote and inhibit fetal growth, respectively. In this review we examine the role of imprinted genes in postnatal growth and metabolism, with an emphasis on the GNAS/Gnas locus. GNAS is a complex imprinted locus with multiple oppositely imprinted gene products, including the G-protein alpha-subunit G(s)alpha that is expressed primarily from the maternal allele in some tissues and the G(s)alpha isoform XLalphas that is expressed only from the paternal allele. Maternal, but not paternal, G(s)alpha mutations lead to obesity in Albright hereditary osteodystrophy. Mouse studies show that this phenomenon is due to G(s)alpha imprinting in the central nervous system leading to a specific defect in the ability of central melanocortins to stimulate sympathetic nervous system activity and energy expenditure. In contrast mutation of paternally expressed XLalphas leads to opposite metabolic effects in mice. Although these findings conform to the 'kinship' model, the effects of other imprinted genes on body weight regulation do not conform to this model.
Collapse
Affiliation(s)
- L S Weinstein
- Signal Transduction Section, National Institute of Diabetes, Digestive, and Kidney Disease, National Institutes of Health, Building 10 Rm 8C101, Bethesda, MD 20892-1752, USA.
| | | | | | | | | |
Collapse
|
7
|
Li Y, Dahlström A. Peripheral projections of NESP55 containing neurons in the rat sympathetic ganglia. Auton Neurosci 2008; 141:1-9. [PMID: 18539096 DOI: 10.1016/j.autneu.2008.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 12/26/2022]
Abstract
The peripheral projections of neurons expressing neuroendocrine secretory protein 55 (NESP55), a novel member of the chromogranin family, were studied by retrograde tracing technique. It was found that NESP55 positive neurons in the rat superior cervical ganglion projected to a number of targets including the submandibular gland, the cervical lymph nodes, the forehead skin, the iris, but not to the thyroid. Among these NESP55 positive target-projecting neurons, a subpopulation contained neuropeptide Y (NPY), a vasoconstrictor. Forepaw pad projecting neurons were found exclusively in the stellate ganglion, almost all of which (approximately 90%) were immunoreactive to NESP55. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP), a peptide involved in sudomotor effects, was observed in a subpopulation of these paw pad projecting neurons, as was colocalization of NESP55 and NPY. The data suggest that NESP55 may have a functional role in some populations of sympathetic neurons.
Collapse
Affiliation(s)
- Yongling Li
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden.
| | - Annica Dahlström
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden
| |
Collapse
|
8
|
Peters J, Williamson CM. Control of imprinting at the Gnas cluster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:16-26. [PMID: 18372788 DOI: 10.1007/978-0-387-77576-0_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genomic imprinting is a form of epigenetic regulation in mammals whereby a small subset of genes is silenced according to parental origin. Early work had indicated regions of the genome that were likely to contain imprinted genes. Distal mouse chromosome 2 is one such region and is associated with devastating but ostensibly opposite phenotypes when exclusively maternally or paternally derived. Misexpression of proteins encoded at the Gnas complex, which is located within the region, can largely account for the imprinting phenotypes. Gnas is a complex locus with extraordinary transcriptional and regulatory complexity. It gives rise to alternatively spliced isoforms that show maternal-, paternal- and biallelic expression as well as a noncoding antisense transcript. The objective of our work at Harwell is to unravel mechanisms controlling the expression of these transcripts. We have performed targeted deletion analysis to test candidate regulatory regions within the Gnas complex and, unlike other imprinted domains, two major control regions have been identified. One controls the imprinted expression of a single transcript and is subsidiary to and must interact with, a principal control region that affects the expression of all transcripts. This principal region contains the promoter for the antisense transcript, expression of which may have a major role in controlling imprinting at the Gnas cluster.
Collapse
Affiliation(s)
- Jo Peters
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | |
Collapse
|
9
|
Weinstein LS, Xie T, Zhang QH, Chen M. Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol Ther 2007; 115:271-91. [PMID: 17588669 PMCID: PMC2031856 DOI: 10.1016/j.pharmthera.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 01/14/2023]
Abstract
The heterotrimeric G protein alpha-subunit G(s)alpha is ubiquitously expressed and mediates receptor-stimulated intracellular cAMP generation. Its gene Gnas is a complex imprinted gene which uses alternative promoters and first exons to generate other gene products, including the G(s)alpha isoform XL alpha s and the chromogranin-like protein NESP55, which are specifically expressed from the paternal and maternal alleles, respectively. G(s)alpha itself is imprinted in a tissue-specific manner, being biallelically expressed in most tissues but paternally silenced in a few tissues. Gene targeting of specific Gnas transcripts demonstrates that heterozygous mutation of G(s)alpha on the maternal (but not the paternal) allele leads to early lethality, perinatal subcutaneous edema, severe obesity, and multihormone resistance, while the paternal mutation leads to only mild obesity and insulin resistance. These parent-of-origin differences are the consequence of tissue-specific G(s)alpha imprinting. XL alpha s deficiency leads to a perinatal suckling defect and a lean phenotype with increased insulin sensitivity. The opposite metabolic effects of G(s)alpha and XL alpha s deficiency are associated with decreased and increased sympathetic nervous system activity, respectively. NESP55 deficiency has no metabolic consequences. Other gene targeting experiments have shown Gnas to have 2 independent imprinting domains controlled by 2 different imprinting control regions. Tissue-specific G(s)alpha knockout models have identified important roles for G(s)alpha signaling pathways in skeletal development, renal function, and glucose and lipid metabolism. Our present knowledge gleaned from various Gnas gene targeting models are discussed in relation to the pathogenesis of human disorders with mutation or abnormal imprinting of the human orthologue GNAS.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20854, USA.
| | | | | | | |
Collapse
|
10
|
Li Y, Wang Z, Dahlström A. Neuroendocrine secretory protein 55 (NESP55) immunoreactivity in male and female rat superior cervical ganglion and other sympathetic ganglia. Auton Neurosci 2007; 132:52-62. [PMID: 17185044 DOI: 10.1016/j.autneu.2006.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 10/19/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
Neuroendocrine secretory protein 55 (NESP55) is a soluble, acidic and heat-stable protein, belonging to the class of chromogranins. It is expressed specifically in endocrine cells and the nervous system, and is probably involved in both constitutive and regulated secretion. In the present study, we investigated the distribution of NESP55 in various rat sympathetic ganglia by immunohistochemistry. The expression of NESP55-IR was detected in a subpopulation of principal neurons in the rat SCG, which was also TH positive, and, thus, adrenergic. In the rat stellate ganglion, more than two thirds of NESP55 positive neurons were adrenergic. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP) in cholinergic neurons was also observed. In the rat thoracic chain, however, the majority of NESP55 positive neurons appeared to lack TH. No detectable NESP55-IR was found in the mouse SCG. Furthermore, in the sexually dimorphic SCG, it was demonstrated that, 80% of the NESP55 positive principal neurons were also NPY positive in the male rat, while a slightly higher, but statistically significant proportion, 87%, was found in the female. Whether or not this small difference is physiologically significant is unknown. The present data provide basic knowledge about the expression of NESP55 in the sympathetic autonomic nervous system of rat, which may further our understanding of the functional significance of NESP55.
Collapse
Affiliation(s)
- Yongling Li
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Göteborg, Box 420, SE-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
11
|
Li Y, Fischer-Colbrie R, Dahlström A. Neuroendocrine secretory protein 55 (NESP55) in the spinal cord of rat: An immunocytochemical study. J Comp Neurol 2007; 506:733-44. [DOI: 10.1002/cne.21562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Plagge A, Kelsey G. Imprinting the Gnas locus. Cytogenet Genome Res 2006; 113:178-87. [PMID: 16575178 DOI: 10.1159/000090830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022] Open
Abstract
Gnas is an enigmatic and rather complex imprinted gene locus. A single transcription unit encodes three, and possibly more, distinct proteins. These are determined by overlapping transcripts from alternative promoters with different patterns of imprinting. The canonical Gnas transcript codes for Gsalpha, a highly conserved signalling protein and an essential intermediate in growth, differentiation and homeostatic pathways. Monoallelic expression of Gnas is highly tissue-restricted. The alternative transcripts encode XLalphas, an unusual variant of Gsalpha, and the chromogranin-like protein Nesp55. These transcripts are expressed specifically from the paternal and maternal chromosomes, respectively. Their existence in the Gnas locus might imply functional connections amongst them or with Gsalpha. In this review, we consider how imprinting of Gnas was discovered, the phenotypic consequences of mutations in each of the gene products, both in the mouse and human, and provide some conjectures to explain why this elaborate imprinted locus has evolved in this manner in mammals.
Collapse
Affiliation(s)
- A Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | | |
Collapse
|
13
|
Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 2005; 25:3019-26. [PMID: 15798190 PMCID: PMC1069615 DOI: 10.1128/mcb.25.8.3019-3026.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/07/2004] [Accepted: 01/18/2005] [Indexed: 12/20/2022] Open
Abstract
Genomic imprinting results in parent-of-origin-dependent monoallelic expression of selected genes. Although their importance in development and physiology is recognized, few imprinted genes have been investigated for their effects on brain function. Gnas is a complex imprinted locus whose gene products are involved in early postnatal adaptations and neuroendocrine functions. Gnas encodes the stimulatory G-protein subunit Gsalpha and two other imprinted protein-coding transcripts. Of these, the Nesp transcript, expressed exclusively from the maternal allele, codes for neuroendocrine secretory protein 55 (Nesp55), a chromogranin-like polypeptide associated with the constitutive secretory pathway but with an unknown function. Nesp is expressed in restricted brain nuclei, suggesting an involvement in specific behaviors. We have generated a knockout of Nesp55 in mice. Nesp55-deficient mice develop normally, excluding a role of this protein in the severe postnatal effects associated with imprinting of the Gnas cluster. Behavioral analysis of adult Nesp55 mutants revealed, in three separate tasks, abnormal reactivity to novel environments independent of general locomotor activity and anxiety. This phenotype may be related to prominent Nesp55 expression in the noradrenergic locus coeruleus. These results indicate a role of maternally expressed Nesp55 in controlling exploratory behavior and are the first demonstration that imprinted genes affect such a fundamental behavior.
Collapse
Affiliation(s)
- Antonius Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present in various endocrine tumors and fibrous dysplasia of bone, and in a more widespread distribution in patients with McCune- Albright syndrome. Heterozygous inactivating G(s)alpha mutations lead to Albright hereditary osteodystrophy. G(s)alpha is imprinted in a tissue-specific manner, being primarily expressed from the maternal allele in renal proximal tubules, thyroid, pituitary, and ovary. Maternally inherited mutations lead to Albright hereditary osteodystrophy (AHO) plus PTH, TSH, and gonadotropin resistance (pseudohypoparathyroidism type 1A), whereas paternally inherited mutations lead to AHO alone. Pseudohypoparathyroidism type 1B, in which patients develop PTH resistance without AHO, is almost always associated with a GNAS imprinting defect in which both alleles have a paternal-specific imprinting pattern on both parental alleles. Familial forms of the disease are associated with a mutation within a closely linked gene that deletes a region that is presumably required for establishing the maternal imprint, and therefore maternal inheritance of the mutation results in the GNAS imprinting defect. Imprinting of one differentially methylated region within GNAS is virtually always lost in pseudohypoparathyroidism type 1B, and this region is probably responsible for tissue-specific G(s)alpha imprinting. Mouse knockout models show that G(s)alpha and the alternative G(s)alpha isoform XLalphas that is expressed from the paternal GNAS allele may have opposite effects on energy metabolism in mice.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
15
|
Srivastava A, Padilla O, Fischer-Colbrie R, Tischler AS, Dayal Y. Neuroendocrine secretory protein-55 (NESP-55) expression discriminates pancreatic endocrine tumors and pheochromocytomas from gastrointestinal and pulmonary carcinoids. Am J Surg Pathol 2004; 28:1371-8. [PMID: 15371954 DOI: 10.1097/01.pas.0000135527.96318.20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroendocrine secretory protein-55 (NESP-55), the latest addition to the chromogranin family, is a product of a genomically imprinted gene transcribed exclusively from the maternal allele. Initial studies have shown it to have a less widespread distribution than that of chromogranin A in normal tissues. It has also been suggested that NESP-55 may be a marker of neuroendocrine tumors differentiating toward the adrenal chromaffin and pancreatic islet cells. Metastatic gastrointestinal and pulmonary carcinoids may occasionally be difficult to distinguish from pancreatic endocrine tumors (PETs) and pheochromocytomas on morphologic grounds alone. We studied neuroendocrine tumors from these sites to see if NESP-55 expression could reliably discriminate pulmonary and gastrointestinal carcinoids from neuroendocrine tumors arising in the pancreas or the adrenal medulla. Sixty-three neuroendocrine tumors positive for one or more immunohistochemical marker of neuroendocrine differentiation (chromogranin A, chromogranin B, synaptophysin, secretogranin II, neuron-specific enolase) were selected for the study and consisted of 34 typical carcinoids (15 pulmonary, 11 ileal, 4 gastric, and 4 rectal), 19 PETs, and 10 pheochromocytomas (4 sporadic, 3 MEN-2, 2 neurofibromatosis type 1, and 1 VHL). All cases were stained for NESP-55 after microwave antigen retrieval using a rabbit polyclonal antibody at a dilution of 1:1000. Sections of normal adrenal medulla were used as positive controls for NESP-55 staining. Negative controls consisted of omission of primary antibody and replacement with normal rabbit serum at an equivalent concentration. NESP-55 immunoreactivity was seen as brown finely granular cytoplasmic staining with prominent perinuclear accentuation. All gastric and ileal carcinoids studied were completely negative for NESP-55. One of four rectal and 1 of 15 pulmonary carcinoids showed focal positivity for it in less than 5% of tumor cells. In contrast, all 10 pheochromocytomas and 14 of 19 PETs showed strong immunohistochemical staining in a variable proportion of tumor cells. Diffuse positivity (>75% of tumor cells) was seen in 6 of 14 PETs and 8 of 10 pheochromocytomas. Our results indicate that, in contrast to the other granins, NESP-55 reactivity is restricted to endocrine tumors of the pancreas and the adrenal medulla. Immunohistochemical expression of NESP-55 may thus be useful in assigning a pancreatic or adrenal origin to metastatic endocrine tumors of unknown origin.
Collapse
Affiliation(s)
- Amitabh Srivastava
- Tufts-New England Medical Center, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
16
|
Fischer-Colbrie R, Eder S, Lovisetti-Scamihorn P, Becker A, Laslop A. Neuroendocrine secretory protein 55: a novel marker for the constitutive secretory pathway. Ann N Y Acad Sci 2002; 971:317-22. [PMID: 12438142 DOI: 10.1111/j.1749-6632.2002.tb04486.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chromogranins constitute a class of acidic proteins comprising the structurally related chromogranins A and B and secretogranin II. These proteins are widely distributed in endocrine and nervous tissues; they are localized to the large dense core vesicles and released from them after stimulation of cells. In all the tissues examined chromogranins are proteolytically processed into small peptides, some of which have defined physiological activities. Chromogranin A plays a key role in large dense core vesicle biogenesis and can induce the formation of the regulated pathway. We have recently cloned neuroendocrine secretory protein 55 (NESP55), a protein that shares several features with the class of chromogranins. NESP55 is a soluble, acidic, heat-stable secretory protein that is expressed exclusively in endocrine and nervous tissues, although less widely than chromogranins. NESP55 is genomically imprinted and transcribed only from the maternal allele. It is proteolytically processed in some tissues into the small octapeptide GAIPIRRH located at the C terminus of NESP55. In the brain NESP55 is found in cell bodies and axons but not in terminals. At the subcellular level NESP55 is localized to a large vesicle, which is anterogradely transported by the fast axonal flow in neurons. From this vesicle NESP55 is constitutively released. However, in some tissues like the adrenal, medulla, and bovine splenic nerve, NESP55 is also found in the large dense transmitter storage organelles. Thus, NESP55 represents a novel peptidergic marker for a large constitutively secreting vesicle pool found in the central and peripheral nervous system.
Collapse
|
17
|
Li JY, Lovisetti-Scamihorn P, Fischer-Colbrie R, Winkler H, Dahlström A. Distribution and intraneuronal trafficking of a novel member of the chromogranin family, NESP55, in the rat peripheral nervous system. Neuroscience 2002; 110:731-45. [PMID: 11934480 DOI: 10.1016/s0306-4522(01)00465-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NESP55 (neuroendocrine secretory protein of M(r) 55000) is a novel member of the chromogranin family. In the present study, we have investigated the distribution, axonal transport and proteolytic processing of NESP55 in the peripheral nervous system. The amount of NESP55 immunoreactivity in adrenal gland was more than 240 times higher than that in the vas deferens. Double or triple immunostaining demonstrated that NESP55 immunoreactivity was highly co-localized with tyrosine hydroxylase immunoreactivity in bundles of thin axons and postganglionic sympathetic neurons; that NESP55 immunoreactivity also co-existed with vesicular acetylcholine transporter immunoreactivity in large-sized axons in sciatic nerves, and that NESP55 immunoreactivity overlapped with calcitonin gene-related peptide immunoreactivity in some large-sized axons, but NESP55 immunoreactivity was not detected in sensory neurons. Strong NESP55 immunoreactivity was found in cell bodies and axons, but it was not detectable in any terminal region by immunohistochemistry. In crush-operated sciatic nerves, NESP55 immunoreactivity could be found as early as 1 h after operation, and accumulated amounts increased substantially with time. However, NESP55 immunoreactivity was only observed in axons proximal to the crush, but none or very little distal to the crush, which was consistent with the data from radioimmunoassay. Finally, extracts of the normal and crushed sciatic nerve and vas deferens were subjected to high-performance liquid chromatography followed by radioimmunoassay. The results indicate that NESP55 is processed slowly to small peptides (GAIPIRRH) during axonal transport. NESP55 immunoreactivity was only detected in axons proximal to the crush. The data in the present study indicate that NESP55 immunoreactivity is widely distributed in adrenergic, cholinergic, and peptidergic neurons, but not in sensory neurons, and that this peptide is anterogradely, but not retrogradely, transported with fast axonal transport and slowly processed to smaller peptides during axonal transport in the peripheral nervous system.
Collapse
|
18
|
Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22:675-705. [PMID: 11588148 DOI: 10.1210/edrv.22.5.0439] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The heterotrimeric G protein G(s) couples hormone receptors (as well as other receptors) to the effector enzyme adenylyl cyclase and is therefore required for hormone-stimulated intracellular cAMP generation. Receptors activate G(s) by promoting exchange of GTP for GDP on the G(s) alpha-subunit (G(s)alpha) while an intrinsic GTPase activity of G(s)alpha that hydrolyzes bound GTP to GDP leads to deactivation. Mutations of specific G(s)alpha residues (Arg(201) or Gln(227)) that are critical for the GTPase reaction lead to constitutive activation of G(s)-coupled signaling pathways, and such somatic mutations are found in endocrine tumors, fibrous dysplasia of bone, and the McCune-Albright syndrome. Conversely, heterozygous loss-of-function mutations may lead to Albright hereditary osteodystrophy (AHO), a disease characterized by short stature, obesity, brachydactyly, sc ossifications, and mental deficits. Similar mutations are also associated with progressive osseous heteroplasia. Interestingly, paternal transmission of GNAS1 mutations leads to the AHO phenotype alone (pseudopseudohypoparathyroidism), while maternal transmission leads to AHO plus resistance to several hormones (e.g., PTH, TSH) that activate G(s) in their target tissues (pseudohypoparathyroidism type IA). Studies in G(s)alpha knockout mice demonstrate that G(s)alpha is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in some tissues (e.g., renal proximal tubule, the major site of renal PTH action), while being biallelically expressed in most other tissues. Disrupting mutations in the maternal allele lead to loss of G(s)alpha expression in proximal tubules and therefore loss of PTH action in the kidney, while mutations in the paternal allele have little effect on G(s)alpha expression or PTH action. G(s)alpha has recently been shown to be also imprinted in human pituitary glands. The G(s)alpha gene GNAS1 (as well as its murine ortholog Gnas) has at least four alternative promoters and first exons, leading to the production of alternative gene products including G(s)alpha, XLalphas (a novel G(s)alpha isoform that is expressed only from the paternal allele), and NESP55 (a chromogranin-like protein that is expressed only from the maternal allele). A fourth alternative promoter and first exon (exon 1A) located approximately 2.5 kb upstream of the G(s)alpha promoter is normally methylated on the maternal allele and transcriptionally active on the paternal allele. In patients with isolated renal resistance to PTH (pseudohypoparathyroidism type IB), the exon 1A promoter region has a paternal-specific imprinting pattern on both alleles (unmethylated, transcriptionally active), suggesting that this region is critical for the tissue-specific imprinting of G(s)alpha. The GNAS1 imprinting defect in pseudohypoparathyroidism type IB is predicted to decrease G(s)alpha expression in renal proximal tubules. Studies in G(s)alpha knockout mice also demonstrate that this gene is critical in the regulation of lipid and glucose metabolism.
Collapse
Affiliation(s)
- L S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
19
|
Yu S, Castle A, Chen M, Lee R, Takeda K, Weinstein LS. Increased insulin sensitivity in Gsalpha knockout mice. J Biol Chem 2001; 276:19994-8. [PMID: 11274197 DOI: 10.1074/jbc.m010313200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The stimulatory guanine nucleotide-binding protein (G(s)) is required for hormone-stimulated cAMP generation. Gnas, the gene encoding the G(s) alpha-subunit, is imprinted, and targeted disruption of this gene in mice leads to distinct phenotypes in heterozygotes depending on whether the maternal (m-/+) or paternal (+/p-) allele is mutated. Notably, m-/+ mice become obese, whereas +/p- mice are thinner than normal. In this study we show that despite these opposite changes in energy metabolism, both m-/+ and +/p- mice have greater sensitivity to insulin, with low to normal fasting glucose levels, low fasting insulin levels, improved glucose tolerance, and exaggerated hypoglycemic response to administered insulin. The combination of increased insulin sensitivity with obesity in m-/+ mice is unusual, because obesity is typically associated with insulin resistance. In skeletal muscles isolated from both m-/+ and +/p- mice, the basal rate of 2-deoxyglucose uptake was normal, whereas the rate of 2-deoxyglucose uptake in response to maximal insulin stimulation was significantly increased. The similar changes in muscle sensitivity to insulin in m-/+ and +/p- mice may reflect the fact that muscle G(s)alpha expression is reduced by approximately 50% in both groups of mice. GLUT4 expression is unaffected in muscles from +/p- mice. Increased responsiveness to insulin is therefore the result of altered insulin signaling and/or GLUT4 translocation. This is the first direct demonstration in a genetically altered in vivo model that G(s)-coupled pathways negatively regulate insulin signaling.
Collapse
Affiliation(s)
- S Yu
- Metabolic Diseases Branch and Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
20
|
Laslop A, Doblinger A, Weiss U. Proteolytic processing of chromogranins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:155-66. [PMID: 11192577 DOI: 10.1007/0-306-46837-9_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A Laslop
- Dept. of Pharmacology, Univ. of Innsbruc, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH. Deletion polymorphism in the coding region of the human NESP55 alternative transcript of GNAS1. Mol Cell Probes 2000; 14:191-4. [PMID: 10860717 DOI: 10.1006/mcpr.2000.0300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NESP55, a novel member of the chromogranins, was originally implicated as a precursor of a peptide LSAL with 5-HT1B receptor antagonist activity. In humans, NESP55 (MIM 139320) is encoded by an alternative transcript of GNAS1, the gene encoding the guanine nucleotide-binding alpha subunit of G(S). As a result of the potential relevance of NESP55 to serotoninergic neurotransmission, we screened its sequence using genomic DNA pools from autistic disorder, obsessive-compulsive disorder (OCD) probands and control subjects. Six single nucleotide polymorphisms (SNPs) were identified and the allele frequencies of those SNPs were determined. In addition, a 24-bp in-frame deletion in the coding region was found in one of the OCD probands. To further investigate its pattern of inheritance and the relevance to studied phenotypes, we genotyped 123 total subjects from autism, OCD and attention deficit hyperactivity disorder (ADHD) families. The deletion was detected only in one OCD family and followed Mendelian inheritance. All subjects with the deletion were heterozygous. However, there are no specific behavioural or physical alterations in the subjects with this deletion variant. The physiological role of NESP55 in serotoninergic neurotransmission as well as the effect of the deletion on its function should be evaluated in future studies.
Collapse
Affiliation(s)
- S J Kim
- Laboratory of Developmental Neuroscience, Child and Adolescent Psychiatry, Department of Psychiatry MC3077, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
22
|
Yu S, Gavrilova O, Chen H, Lee R, Liu J, Pacak K, Parlow AF, Quon MJ, Reitman ML, Weinstein LS. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J Clin Invest 2000; 105:615-23. [PMID: 10712433 PMCID: PMC289181 DOI: 10.1172/jci8437] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heterozygous disruption of Gnas, the gene encoding the stimulatory G-protein alpha subunit (G(s)alpha), leads to distinct phenotypes depending on whether the maternal (m-/+) or paternal (+/p-) allele is disrupted. G(s)alpha is imprinted, with the maternal allele preferentially expressed in adipose tissue. Hence, expression is decreased in m-/+ mice but normal in +/p- mice. M-/+ mice become obese, with increased lipid per cell in white and brown adipose tissue, whereas +/p- mice are thin, with decreased lipid in adipose tissue. These effects are not due to abnormalities in thyroid hormone status, food intake, or leptin secretion. +/p- mice are hypermetabolic at both ambient temperature (21 degrees C) and thermoneutrality (30 degrees C). In contrast, m-/+ mice are hypometabolic at ambient temperature and eumetabolic at thermoneutrality M-/+ and wild-type mice have similar dose-response curves for metabolic response to a beta(3)-adrenergic agonist, CL316243, indicating normal sensitivity of adipose tissue to sympathetic stimulation. Measurement of urinary catecholamines suggests that +/p- and m-/+ mice have increased and decreased activation of the sympathetic nervous system, respectively. This is to our knowledge the first animal model in which a single genetic defect leads to opposite effects on energy metabolism depending on parental inheritance. This probably results from deficiency of maternal- and paternal-specific Gnas gene products, respectively.
Collapse
Affiliation(s)
- S Yu
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|