Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization.
Endocrinology 2005;
146:2295-305. [PMID:
15677761 DOI:
10.1210/en.2004-1354]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pM to 100 nM) stimulated NO release from the cells, with a maximal response observed with 1 nM at 30 min. This response was blocked by 1 nM ADM(22-52), an ADM receptor antagonist or 2 microM vinyl-L-NIO, a neuronal NO synthase inhibitor. In addition, 5 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when L-type calcium channels were inhibited with 5 microM nifedipine or 10 microM nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 microM cyclopiazonic acid or 150 nM thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 microM ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mM dibutyryl cAMP, a cAMP analog, and were abrogated by 5 microM H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nM) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 microM) or H-89 (5 microM) and was reduced by ryanodine (10 microM). These results suggest that ADM stimulates calcium influx through L-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+)]i cause activation of neuronal NO synthase and NO release.
Collapse