1
|
Insights into Regulators of p53 Acetylation. Cells 2022; 11:cells11233825. [PMID: 36497084 PMCID: PMC9737083 DOI: 10.3390/cells11233825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
Collapse
|
2
|
Khalid M, Paracha RZ, Nisar M, Malik S, Tariq S, Arshad I, Siddiqa A, Hussain Z, Ahmad J, Ali A. Long non-coding RNAs and their targets as potential biomarkers in breast cancer. IET Syst Biol 2021; 15:137-147. [PMID: 33991433 PMCID: PMC8675856 DOI: 10.1049/syb2.12020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is among the lethal types of cancer with a high mortality rate, globally. Its high prevalence can be controlled through improved analysis and identification of disease-specific biomarkers. Recently, long non-coding RNAs (lncRNAs) have been reported as key contributors of carcinogenesis and regulate various cellular pathways through post-transcriptional regulatory mechanisms. The specific aim of this study was to identify the novel interactions of aberrantly expressed genetic components in breast cancer by applying integrative analysis of publicly available expression profiles of both lncRNAs and mRNAs. Differential expression patterns were identified by comparing the breast cancer expression profiles of samples with controls. Significant co-expression networks were identified through WGCNA analysis. WGCNA is a systems biology approach used to elucidate the pattern of correlation between genes across microarray samples. It is also used to identify the highly correlated modules. The results obtained from this study revealed significantly differentially expressed and co-expressed lncRNAs and their cis- and trans-regulating mRNA targets which include RP11-108F13.2 targeting TAF5L, RPL23AP2 targeting CYP4F3, CYP4F8 and AL022324.2 targeting LRP5L, AL022324.3, and Z99916.3, respectively. Moreover, pathway analysis revealed the involvement of identified mRNAs and lncRNAs in major cell signalling pathways, and target mRNAs expression is also validated through cohort data. Thus, the identified lncRNAs and their target mRNAs represent novel biomarkers that could serve as potential therapeutics for breast cancer and their roles could also be further validated through wet labs to employ them as potential therapeutic targets in future.
Collapse
Affiliation(s)
- Maryam Khalid
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maryum Nisar
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sumaira Malik
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Salma Tariq
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iqra Arshad
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amnah Siddiqa
- The Jackson Laboratory for Genomic Medicine, Connecticut, USA
| | - Zamir Hussain
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jamil Ahmad
- Department of Computer Science and Information Technology, University of Malakand, Chakdara, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences - ASAB, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
3
|
Alsamri H, Hasasna HE, Baby B, Alneyadi A, Dhaheri YA, Ayoub MA, Eid AH, Vijayan R, Iratni R. Carnosol Is a Novel Inhibitor of p300 Acetyltransferase in Breast Cancer. Front Oncol 2021; 11:664403. [PMID: 34055630 PMCID: PMC8155611 DOI: 10.3389/fonc.2021.664403] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Carnosol, a natural polyphenol abundant in edible plants such as sage, rosemary, and oregano, has shown promising anticancer activity against various types of cancers. Nonetheless, very little is known about its molecular mechanism of action or its downstream target(s). We have previously shown that carnosol inhibits cellular proliferation, migration, invasion, and metastasis as well as triggers autophagy and apoptosis in the highly invasive MDA-MB-231 breast cancer cells. Here, we report that carnosol induces histone hypoacetylation in MDA-MB-231 and Hs578T breast cancer cells. We show that, while carnosol does not affect HDACs, it promotes a ROS-dependent proteasome degradation of p300 and PCAF histone acetyl transferases (HATs) without affecting other HATs such as GCN5 and hMOF. Carnosol-induced histone hypoacetylation remains persistent even when p300 and PCAF protein levels were rescued from degradation by (i) the inhibition of the proteasome activity by the proteasome inhibitors MG-132 and bortezomib, and (ii) the inhibition of ROS accumulation by the ROS scavenger, N-acetylcysteine. In addition, we report that, in a cell-free system, carnosol efficiently inhibits histone acetyltransferase activity of recombinant p300 but not that of PCAF or GCN5. Molecular docking studies reveal that carnosol inhibits p300 HAT activity by blocking the entry of the acetyl-CoA binding pocket of the catalytic domain. The superimposition of the docked conformation of the p300 HAT domain in complex with carnosol shows a similar orientation as the p300 structure with acetyl-CoA. Carnosol occupies the region where the pantetheine arm of the acetyl-CoA is bound. This study further confirms carnosol as a promising anti-breast cancer therapeutic compound and identifies it as a novel natural p300 inhibitor that could be added to the existing panel of inhibitors.
Collapse
Affiliation(s)
- Halima Alsamri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussain El Hasasna
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha Alneyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Hwang JS, Kim E, Hur J, Yoon TJ, Seo HG. Ring finger protein 219 regulates inflammatory responses by stabilizing sirtuin 1. Br J Pharmacol 2020; 177:4601-4614. [PMID: 32220064 DOI: 10.1111/bph.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Ring finger protein 219 (RNF219), a protein containing the C3 HC4 -type RING-HC motif, has been identified as a binding partner of the histone deacetylase sirtuin 1 (SIRT1). To explore the functions of RNF219, we examined its possible roles in the cellular responses to inflammation. EXPERIMENTAL APPROACH Effects of RNF219 on SIRT1 were studied in vitro using RAW264.7 cells and in male BALB/c mice, treated with LPS or IFN-γ. Western blots, RT-PCR, co-immunoprecipitation and ubiquitination assays were used, along with LC-MS/MS analysis. In vivo, survival and serum cytokines and tissue levels of RNF219 and SIRT1 were measured. KEY RESULTS Binding of RNF219 to SIRT1 inhibited degradation of SIRT1 by preventing its ubiquitination, thereby prolonging SIRT1-mediated anti-inflammatory signalling. LPS caused RNF219 deacetylation, leading to instability of RNF219 and preventing its association with SIRT1. Accordingly, the acetylation status of RNF219 is a critical determinant in its interaction with SIRT1, affecting the response to inflammatory stimuli. The deacetylase inhibitor trichostatin A, increased acetylation and stability of RNF219 and survival of mice injected with LPS, through the interaction of RNF219 with SIRT1. CONCLUSION AND IMPLICATIONS RNF219 is involved in a novel mechanism to stabilize SIRT1 protein by protein-protein interaction, leading to the resolution of cellular inflammation. These observations provide new insights into the function of RNF219 in modulation of cellular inflammation, and may aid and encourage the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taek Joon Yoon
- Department of Food Science and Nutrition, Yuhan University, Bucheon-si, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wang LT, Liu KY, Jeng WY, Chiang CM, Chai CY, Chiou SS, Huang MS, Yokoyama KK, Wang SN, Huang SK, Hsu SH. PCAF-mediated acetylation of ISX recruits BRD4 to promote epithelial-mesenchymal transition. EMBO Rep 2020; 21:e48795. [PMID: 31908141 PMCID: PMC7001155 DOI: 10.15252/embr.201948795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Epigenetic regulation is important for cancer progression; however, the underlying mechanisms, particularly those involving protein acetylation, remain to be fully understood. Here, we show that p300/CBP‐associated factor (PCAF)‐dependent acetylation of the transcription factor intestine‐specific homeobox (ISX) regulates epithelial–mesenchymal transition (EMT) and promotes cancer metastasis. Mechanistically, PCAF acetylation of ISX at lysine 69 promotes the interaction with acetylated bromodomain‐containing protein 4 (BRD4) at lysine 332 in tumor cells, and the translocation of the resulting complex into the nucleus. There, it binds to promoters of EMT genes, where acetylation of histone 3 at lysines 9, 14, and 18 initiates chromatin remodeling and subsequent transcriptional activation. Ectopic ISX expression enhances EMT marker expression, including TWIST1, Snail1, and VEGF, induces cancer metastasis, but suppresses E‐cadherin expression. In lung cancer, ectopic expression of PCAF–ISX–BRD4 axis components correlates with clinical metastatic features and poor prognosis. These results suggest that the PCAF–ISX–BRD4 axis mediates EMT signaling and regulates tumor initiation and metastasis.
Collapse
Affiliation(s)
- Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwei-Yan Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ming Chiang
- Department of Biochemistry, and Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyang Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Stem Cell Research, Kaohsing Medical University, Kaohsing, Taiwan.,Graduate Institute, The University of Tokyo, Tokyo, Japan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. Cells 2018; 7:cells7090118. [PMID: 30150556 PMCID: PMC6162602 DOI: 10.3390/cells7090118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Histone post-translational modifications influence many fundamental cellular events by regulating chromatin structure and gene transcriptional activity. These modifications are highly dynamic and tightly controlled, with many enzymes devoted to the addition and removal of these modifications. Interestingly, these modifying enzymes are themselves fine-tuned and precisely regulated at the level of protein turnover by ubiquitin-proteasomal processing. Here, we focus on recent progress centered on the mechanisms regulating ubiquitination of histone modifying enzymes, including ubiquitin proteasomal degradation and the reverse process of deubiquitination. We will also discuss the potential pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Zhaoping Qiu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
7
|
Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther 2018; 3:19. [PMID: 30013796 PMCID: PMC6043541 DOI: 10.1038/s41392-018-0017-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferases have been shown to methylate histone and non-histone proteins, leading to regulation of several biological processes that control cell homeostasis. Over the past few years, the histone-lysine N-methyltransferase SETD7 (SETD7; also known as SET7/9, KIAA1717, KMT7, SET7, SET9) has emerged as an important regulator of at least 30 non-histone proteins and a potential target for the treatment of several human diseases. This review discusses current knowledge of the structure and subcellular localization of SETD7, as well as its function as a histone and non-histone methyltransferase. This work also underlines the putative contribution of SETD7 to the regulation of gene expression, control of cell proliferation, differentiation and endoplasmic reticulum stress, which indicate that SETD7 is a candidate for novel targeted therapies with the aim of either stimulating or inhibiting its activity, depending on the cell signaling context.
Collapse
|
8
|
Brasacchio D, Busuttil RA, Noori T, Johnstone RW, Boussioutas A, Trapani JA. Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death Dis 2018; 9:442. [PMID: 29670108 PMCID: PMC5906598 DOI: 10.1038/s41419-018-0470-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
The loss of p300/CBP-associated protein (PCAF) expression is associated with poor clinical outcome in gastric cancer, and a potential bio-marker for invasive and aggressive tumors. However, the mechanism linking loss of PCAF to the onset of gastric cancer has not been identified. Given that PCAF and its binding partner transcriptional adaptor protein 3 (ADA3) were recently shown to regulate the intrinsic (mitochondrial) pathway to apoptosis via epigenetic regulation of phosphofurin acidic cluster sorting proteins 1 and 2 (PACS1, PACS2), we analyzed PCAF, ADA3, and PACS1/2 expression in 99 patient-matched surgical samples ranging from normal gastric mucosa, through pre-malignant chronic gastritis and intestinal metaplasia to stage I–III invasive cancers. PCAF mRNA levels were not reduced in either pre-malignant state but were significantly down-regulated in all stages of gastric cancer, commencing at AJCC stage I (p < 0.05), thus linking reduced PCAF expression with early malignant change. Furthermore, patients with combined reduction of PCAF and PACS1 had significantly poorer overall survival (p = 0.0257), confirmed in an independent dataset of 359 patients (p = 5.8 × 10e-6). At the protein level, PCAF, ADA3, and PACS1 expression were all significantly down-regulated in intestinal-type gastric cancer, and correlated with reduced progression free survival. We conclude that a pro-apoptotic mechanism centered on the intrinsic (mitochondrial) pathway and regulated by PCAF/ADA3 can influence the progression from premalignant to malignant change, and thus act as a tumor suppression mechanism in gastric cancer.
Collapse
Affiliation(s)
- Daniella Brasacchio
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rita A Busuttil
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N, Takenaka S, Saitoh A, Arakaki Y, Masuda A, Komatsu T, Nagano R, Nakano M, Noda T, Kawaoka Y, Kuzuhara T. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J Biol Chem 2018; 293:7126-7138. [PMID: 29555684 PMCID: PMC5950015 DOI: 10.1074/jbc.ra117.001683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation plays crucial roles in transcriptional regulation and chromatin organization. Viral RNA of the influenza virus interacts with its nucleoprotein (NP), whose function corresponds to that of eukaryotic histones. NP regulates viral replication and has been shown to undergo acetylation by the cAMP-response element (CRE)–binding protein (CBP) from the host. However, whether NP is the target of other host acetyltransferases is unknown. Here, we show that influenza virus NP undergoes acetylation by the two host acetyltransferases GCN5 and P300/CBP-associated factor (PCAF) and that this modification affects viral polymerase activities. Western blot analysis with anti–acetyl-lysine antibody on cultured A549 human lung adenocarcinoma epithelial cells infected with different influenza virus strains indicated acetylation of the viral NP. A series of biochemical analyses disclosed that the host lysine acetyltransferases GCN5 and PCAF acetylate NP in vitro. MS experiments identified three lysine residues as acetylation targets in the host cells and suggested that Lys-31 and Lys-90 are acetylated by PCAF and GCN5, respectively. RNAi-mediated silencing of GCN5 and PCAF did not change acetylation levels of NP. However, interestingly, viral polymerase activities were increased by the PCAF silencing and were decreased by the GCN5 silencing, suggesting that acetylation of the Lys-31 and Lys-90 residues has opposing effects on viral replication. Our findings suggest that epigenetic control of NP via acetylation by host acetyltransferases contributes to regulation of polymerase activity in the influenza A virus.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Rina Yoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Naho Ohmi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shiori Takenaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Ayaka Saitoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yumie Arakaki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Aki Masuda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Tsugunori Komatsu
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Rina Nagano
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| |
Collapse
|
10
|
Lin SJ, Zhang Y, Liu NC, Yang DR, Li G, Chang C. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. Mol Endocrinol 2014; 28:805-21. [PMID: 24702179 DOI: 10.1210/me.2013-1422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Laboratory for Cancer Research (S.-J.L., Y.Z., N.-C.L., C.C.), Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14646; Department of Urology (D.-R.Y.), the Second Affiliated Hospital of Suzhou University, Suzhou, 215004 China; Chawnshang Chang Liver Cancer Center and Department of Urology (G.L.), Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China; and Sex Hormone Research Center (C.C.), China Medical University/Hospital, Taichung, 404 Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC, Pontes TB, Rasmussen LT, Payão SLM, Assumpção PP, Lourenço LG, Demachki S, Artigiani R, Burbano RR, Smith MC. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol 2014; 35:6373-81. [PMID: 24668547 DOI: 10.1007/s13277-014-1841-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell line.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A functional genomics screen identifies PCAF and ADA3 as regulators of human granzyme B-mediated apoptosis and Bid cleavage. Cell Death Differ 2014; 21:748-60. [PMID: 24464226 DOI: 10.1038/cdd.2013.203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022] Open
Abstract
The human lymphocyte toxins granzyme B (hGrzB) and perforin cooperatively induce apoptosis of virus-infected or transformed cells: perforin pores enable entry of the serine protease hGrzB into the cytosol, where it processes Bid to selectively activate the intrinsic apoptosis pathway. Truncated Bid (tBid) induces Bax/Bak-dependent mitochondrial outer membrane permeability and the release of cytochrome c and Smac/Diablo. To identify cellular proteins that regulate perforin/hGrzB-mediated Bid cleavage and subsequent apoptosis, we performed a gene-knockdown (KD) screen using a lentiviral pool of short hairpin RNAs embedded within a miR30 backbone (shRNAmiR). We transduced HeLa cells with a lentiviral pool expressing shRNAmiRs that target 1213 genes known to be involved in cell death signaling and selected cells with acquired resistance to perforin/hGrzB-mediated apoptosis. Twenty-two shRNAmiRs were identified in the positive-selection screen including two, PCAF and ADA3, whose gene products are known to reside in the same epigenetic regulatory complexes. Small interfering (si)RNA-mediated gene-KD of PCAF or ADA3 also conferred resistance to perforin/hGrzB-mediated apoptosis providing independent validation of the screen results. Mechanistically, PCAF and ADA3 exerted their pro-apoptotic effect upstream of mitochondrial membrane permeabilization, as indicated by reduced cytochrome c release in PCAF-KD cells exposed to perforin/hGrzB. While overall levels of Bid were unaltered, perforin/hGrzB-mediated cleavage of Bid was reduced in PCAF-KD or ADA3-KD cells. We discovered that PCAF-KD or ADA3-KD resulted in reduced expression of PACS2, a protein implicated in Bid trafficking to mitochondria and importantly, targeted PACS2-KD phenocopied the effect of PCAF-KD or ADA3-KD. We conclude that PCAF and ADA3 regulate Bid processing via PACS2, to modulate the mitochondrial cell death pathway in response to hGrzB.
Collapse
|
13
|
Histone acetyltransferase PCAF up-regulated cell apoptosis in hepatocellular carcinoma via acetylating histone H4 and inactivating AKT signaling. Mol Cancer 2013; 12:96. [PMID: 23981651 PMCID: PMC3847488 DOI: 10.1186/1476-4598-12-96] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PCAF is an important intrinsic histone acetyltransferases. This study tried to establish the effect of PCAF on HCC cell apoptosis. METHOD Both in vitro and in vivo experiments including IHC, DAPI staining, caspase 3/7 activity assay, BrdU assay, MTT assay, western immunoblotting and co-immunoprecipitation were used here. RESULTS PCAF was found to be expressed at the low level in most of HCC cell lines. PCAF overexpression induced cell apoptosis and growth arrest with increased Histone H4 acetylation and inactivation of AKT signaling in Huh7 and HepG2 cells. The opposite results were obtained by silencing PCAF in Hep3B cells. The co-immunoprecipitation assay confirmed that PCAF protein was bound with histone H4 protein in the nucleus of Hep3B cells. Finally, the in vivo experiment confirmed the findings mentioned-above. CONCLUSION These data identified PCAF promotes cell apoptosis and functions as a HCC repressor through acetylating histone H4 and inactivating AKT signaling.
Collapse
|
14
|
Shubbar E, Helou K, Kovács A, Nemes S, Hajizadeh S, Enerbäck C, Einbeigi Z. High levels of γ-glutamyl hydrolase (GGH) are associated with poor prognosis and unfavorable clinical outcomes in invasive breast cancer. BMC Cancer 2013; 13:47. [PMID: 23374458 PMCID: PMC3576262 DOI: 10.1186/1471-2407-13-47] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previously, we performed analysis of gene expression in 46 axillary lymph node negative tumors and identified molecular gene signatures that resulted in different clinical outcomes. The aim of this study was to determine the correlation of γ-glutamyl hydrolase (GGH), fatty acid amide hydrolase (FAAH), Pirin (PIR) and TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65 kDa (TAF5L), selected from identified gene signatures, with clinical outcomes as well as classical clinicopathological characteristics in primary invasive breast cancer patients. Methods The protein levels of GGH, FAAH, PIR and TAF5L were assessed by immunohistochemistry (IHC) on a panel of 80 primary invasive breast tumors. Quantitative real-time PCR (qRT-PCR) and western blot analysis were performed to verify the expression levels of the candidate biomarkers. Patient disease-specific survival (DSS) and recurrence-free survival (RFS) were evaluated using the Kaplan-Meier method. The prognostic biomarkers were identified by univariate analysis with a log-rank test and by multivariate analysis with Cox proportional hazards regression models. Results The GGH and FAAH protein levels were significantly up-regulated in invasive breast cancer tumors compared with adjacent non-cancerous tissues. Furthermore, the protein levels of GGH and FAAH were significantly correlated in tumor tissues. Tumoral GGH protein expression was significantly correlated with shorter DSS and RFS. Furthermore, the protein expression of GGH was positively correlated with undifferentiated tumors (BRE grade III) and ER/PR expressing tumors. Multivariate regression analysis showed that only GGH protein expression independently predicts DSS. No such correlations were found for FAAH, PIR and TAF5L protein expression. However, elevated protein levels of FAAH were positively associated with high number of lymph node involvement and upregulated levels of PIR were positively related with lymph node metastasis. The TAF5L was pronouncedly down-regulated in primary invasive breast cancer tissues compared to matched adjacent non-cancerous tissues. Conclusion These data show for the first time that cytoplasmic GGH might play a relevant role in the development and progression of invasive breast cancer, warranting further investigations. Our findings suggest that GGH serve as a potential biomarker of unfavorable clinical outcomes over short-term follow-up in breast cancer. The GGH may be a very attractive targeted therapy for selected patients.
Collapse
Affiliation(s)
- Emman Shubbar
- Sahlgrenska Cancer Center, Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Comment on: Love IM, et al. Cell Cycle 2012; 11:2458-66.
Collapse
|
16
|
Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ. The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle 2012; 11:2458-66. [PMID: 22713239 DOI: 10.4161/cc.20864] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The activity of p53 as a tumor suppressor primarily depends on its ability to transactivate specific target genes in response to genotoxic and other potentially mutagenic stresses. Several histone acetyl transferases (HATs), including p300, CBP, PCAF and GCN5 have been implicated in the activation of p53-dependent transcription of the cyclin-dependent kinase (cdk) inhibitor p21 as well as other target genes. Here we show that PCAF, but not CBP or p300, is a critical regulator of p53-dependent p21 expression in response to multiple p53-activating stresses. PCAF was required for the transcriptional activation of p21 in response to exogenous p53 in p53-null cells, nutlin-3, DNA damaging agents and p14(ARF) expression, suggesting a broad requirement for PCAF in p53 signaling to p21 after stress. Importantly, cells lacking PCAF failed to undergo cell cycle arrest in response to nutlin-3 treatment or p14(ARF) expression, consistent with a physiologically important role for PCAF in this p53 function. Surprisingly, the role for PCAF in induction of p21 was independent of p53 lysine 320 acetylation, a previously suggested target of PCAF-mediated acetylation. Though p21 promoter occupancy by p53 was not altered by PCAF knockdown, activation of p21 transcription required an intact PCAF HAT domain, and induction of chromatin marks acetyl-H3K9 and acetyl-H3K14 at the p21 promoter by p53 was dependent upon physiologic levels of PCAF. Together, our experiments indicate that PCAF is required for stress-responsive histone 3 acetylation at the p21 promoter, p53-directed transcription of p21 and the resultant growth arrest.
Collapse
Affiliation(s)
- Ian M Love
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, USA
| | | | | | | | | |
Collapse
|
17
|
Pichiorri F, De Luca L, Aqeilan RI. MicroRNAs: New Players in Multiple Myeloma. Front Genet 2011; 2:22. [PMID: 22303318 PMCID: PMC3268577 DOI: 10.3389/fgene.2011.00022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/06/2011] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play critical roles in numerous cellular processes through post-transcriptional regulating functions. The aberrant role of miRNAs has been reported in a number of hematopoietic malignancies including multiple myeloma (MM). In this review we summarize the current knowledge on roles of miRNAs in the pathogenesis of MM.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH, USA
- Comprehensive Cancer Center, Ohio State UniversityColumbus, OH, USA
| | - Luciana De Luca
- Molecular Oncology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico, Referral Cancer Center of Basilicata–CrobRionero in Vulture, Italy
| | - Rami I. Aqeilan
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH, USA
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel–Canada, Hebrew University–Hadassah Medical SchoolJerusalem, Israel
| |
Collapse
|
18
|
Mateo F, Vidal-Laliena M, Canela N, Zecchin A, Martínez-Balbás M, Agell N, Giacca M, Pujol MJ, Bachs O. The transcriptional co-activator PCAF regulates cdk2 activity. Nucleic Acids Res 2010; 37:7072-84. [PMID: 19773423 PMCID: PMC2790897 DOI: 10.1093/nar/gkp777] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.
Collapse
Affiliation(s)
- Francesca Mateo
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mateo F, Vidal-Laliena M, Canela N, Busino L, Martinez-Balbas MA, Pagano M, Agell N, Bachs O. Degradation of cyclin A is regulated by acetylation. Oncogene 2009; 28:2654-66. [PMID: 19483727 DOI: 10.1038/onc.2009.127] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin A accumulates at the onset of S phase, remains high during G(2) and early mitosis and is degraded at prometaphase. Here, we report that the acetyltransferase P/CAF directly interacts with cyclin A that as a consequence becomes acetylated at lysines 54, 68, 95 and 112. Maximal acetylation occurs simultaneously to ubiquitylation at mitosis, indicating importance of acetylation on cyclin A stability. This was further confirmed by the observation that the pseudoacetylated cyclin A mutant can be ubiquitylated whereas the nonacetylatable mutant cannot. The nonacetylatable mutant is more stable than cyclin A WT (cycA WT) and arrests cell cycle at mitosis. Moreover, in cells treated with histone deacetylase inhibitors cyclin A acetylation increases and its stability decreases, thus supporting the function of acetylation on cyclin A degradation. Although the nonacetylatable mutant cannot be ubiquitylated, it interacts with the proteins needed for its degradation (cdks, Cks, Cdc20, Cdh1 and APC/C). In fact, its association with cdks is increased and its complexes with these kinases display higher activity than control cycA WT-cdk complexes. All these results indicate that cyclin A acetylation at specific lysines is crucial for cyclin A stability and also has a function in the regulation of cycA-cdk activity.
Collapse
Affiliation(s)
- F Mateo
- Faculty of Medicine, Department of Cell Biology and Pathology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Keppler BR, Archer TK. Chromatin-modifying enzymes as therapeutic targets--Part 2. Expert Opin Ther Targets 2009; 12:1457-67. [PMID: 18851700 DOI: 10.1517/14728222.12.11.1457] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Part 1 of this review described the importance of histone acetylases, deacetylases, methylases and demethylases in transcriptional control and their potential as therapeutic targets. However, precise gene regulation requires the involvement of more than just the addition or removal of acetyl and methyl groups on histones. Histone phosphorylation, ubiquitylation, SUMOylation and poly-ADP-ribosylation, as well as ATP-dependent nucleosome remodeling complexes, play equally pivotal roles in the maintenance of transcriptional fidelity. Accordingly, the enzymes responsible for these modifications are also misregulated in various disease states. OBJECTIVE To review the complex roles of chromatin-modifying enzymes in gene regulation and to highlight their potential as therapeutic targets. METHODS This review is based on recent published literature and online resources. RESULTS/CONCLUSION In this second and final part of the review, we discuss the importance of these other histone and nucleosome modifying enzymes in gene transcription as well as their therapeutic potential.
Collapse
Affiliation(s)
- Brian R Keppler
- National Institutes of Health, National Institute of Environmental Health Sciences, North Carolina 27709, USA.
| | | |
Collapse
|
21
|
Ge X, Jin Q, Zhang F, Yan T, Zhai Q. PCAF acetylates {beta}-catenin and improves its stability. Mol Biol Cell 2008; 20:419-27. [PMID: 18987336 DOI: 10.1091/mbc.e08-08-0792] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
beta-Catenin plays an important role in development and tumorigenesis. However, the effect of a key acetyltransferase p300/CBP-associated factor (PCAF) on beta-catenin signaling is largely unknown. In this study, we found PCAF could increase the beta-catenin transcriptional activity, induce its nuclear translocation, and up-regulate its protein level by inhibiting its ubiquitination and improving its stability. Further studies showed that PCAF directly binds to and acetylates beta-catenin. The key ubiquitination sites Lys-19 and Lys-49 of beta-catenin were shown as the critical residues for PCAF-induced acetylation and stabilization. Knockdown of PCAF in colon cancer cells markedly reduced the protein level, transcriptional activity, and acetylation level of beta-catenin; promoted cell differentiation; inhibited cell migration; and repressed xenografted tumorigenesis and tumor growth in nude mice. All these data demonstrate that PCAF acetylates beta-catenin and regulates its stability, and they raise the prospect that therapies targeting PCAF may be of clinical use in beta-catenin-driven diseases, such as colon cancer.
Collapse
Affiliation(s)
- Xinjian Ge
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
22
|
MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 2008; 105:12885-90. [PMID: 18728182 DOI: 10.1073/pnas.0806202105] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Collapse
|
23
|
Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa JI, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 2007; 402:559-66. [PMID: 17083329 PMCID: PMC1863558 DOI: 10.1042/bj20061194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HATs (histone acetyltransferases) contribute to the regulation of gene expression, and loss or dysregulation of these activities may link to tumorigenesis. Here, we demonstrate that expression levels of HATs, p300 and CBP [CREB (cAMP-response-element-binding protein)-binding protein] were decreased during chemical hepatocarcinogenesis, whereas expression of MOZ (monocytic leukaemia zinc-finger protein; MYST3)--a member of the MYST [MOZ, Ybf2/Sas3, Sas2 and TIP60 (Tat-interacting protein, 60 kDa)] acetyltransferase family--was induced. Although the MOZ gene frequently is rearranged in leukaemia, we were unable to detect MOZ rearrangement in livers with hyperplastic nodules. We examined the effect of MOZ on hepatocarcinogenic-specific gene expression. GSTP (glutathione S-transferase placental form) is a Phase II detoxification enzyme and a well-known tumour marker that is specifically elevated during hepatocarcinogenesis. GSTP gene activation is regulated mainly by the GPE1 (GSTP enhancer 1) enhancer element, which is recognized by the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2)-MafK heterodimer. We found that MOZ enhances GSTP promoter activity through GPE1 and acts as a co-activator of the Nrf2-MafK heterodimer. Further, exogenous MOZ induced GSTP expression in rat hepatoma H4IIE cells. These results suggest that during early hepatocarcinogenesis, aberrantly expressed MOZ may induce GSTP expression through the Nrf2-mediated pathway.
Collapse
Affiliation(s)
- Kumiko Ohta
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Megumi Ohigashi
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ayako Naganawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Hiromi Ikeda
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Masaharu Sakai
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-ichi Nishikawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Masayoshi Imagawa
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Shigehiro Osada
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- To whom correspondence should be addressed (email )
| | - Tsutomu Nishihara
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Carré C, Szymczak D, Pidoux J, Antoniewski C. The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis. Mol Cell Biol 2005; 25:8228-38. [PMID: 16135811 PMCID: PMC1234334 DOI: 10.1128/mcb.25.18.8228-8238.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although it has been well established that histone acetyltransferases (HATs) are involved in the modulation of chromatin structure and gene transcription, there is only little information on their developmental role in higher organisms. Gcn5 was the first transcription factor with HAT activity identified in eukaryotes. Here we report the isolation and characterization of Drosophila melanogaster dGcn5 mutants. Null dGcn5 alleles block the onset of both oogenesis and metamorphosis, while hypomorphic dGcn5 alleles impair the formation of adult appendages and cuticle. Strikingly, the dramatic loss of acetylation of the K9 and K14 lysine residues of histone H3 in dGcn5 mutants has no noticeable effect on larval tissues. In contrast, strong cell proliferation defects in imaginal tissues are observed. In vivo complementation experiments revealed that dGcn5 integrates specific functions in addition to chromosome binding and acetylation. Surprisingly, a dGcn5 variant protein with a deletion of the bromodomain, which has been shown to recognize acetylated histones, appears to be fully functional. Our results establish dGcn5 as a major histone H3 acetylase in Drosophila which plays a key role in the control of specific morphogenetic cascades during developmental transitions.
Collapse
Affiliation(s)
- Clément Carré
- Laboratory of Drosophila Genetics and Epigenetics, Department of Developmental Biology, CNRS URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
25
|
Dar A, Munir S, Vishwanathan S, Manuja A, Griebel P, Tikoo S, Townsend H, Potter A, Kapur V, Babiuk LA. Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 2005; 110:41-55. [PMID: 15845254 PMCID: PMC7114260 DOI: 10.1016/j.virusres.2005.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 12/21/2022]
Abstract
Avian infectious bronchitis virus (IBV) infection is one of the major viral respiratory diseases of chickens. Better understanding of the molecular basis of viral pathogenesis should contribute significantly towards the development of improved prophylactic, therapeutic and diagnostic reagents to control infections. In the present investigation, transcriptional profiles were analyzed by using RNA recovered from the lung tissue of IBV infected 18-day-old chicken embryos at 6, 24, 48 and 72 h post IBV infection. This microarray analysis was completed using avian cDNA arrays comprised of fragments of 1191 unique chicken and turkey gene transcripts. These arrays were generated from normalized cDNA subtraction libraries that were derived from avian pneumovirus (APV) infected chicken embryo fibroblast (CEF) cultures and tissues obtained from APV infected turkeys subtracted with their respective uninfected cultures and tissues. Of the 1191 unique genes represented on the array, the expression of a total of 327 genes (27% of total) were altered by two-fold or more from 6 through 72 h post-infection. A comparative analysis of IBV regulated genes with genes previously reported to change in expression following infection with other avian respiratory viruses revealed both conserved and unique changes. Real-time qRT-PCR was used to confirm the regulated expression of genes related to several functional classes including kinases, interferon induced genes, chemokines and adhesion molecules, vesicular trafficking and fusion protein genes, extracellular matrix protein genes, cell cycle, metabolism, cell physiology and development, translation, RNA binding, lysosomal, protein degradation and ubiquitination related genes. Microarray analysis served as an efficient tool in facilitating a comparative analysis of avian respiratory viral infections and provided insight into host transcriptional changes that were conserved as well as those which were unique to individual pathogens.
Collapse
Affiliation(s)
- Arshud Dar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Das C, Kundu TK. Transcriptional regulation by the acetylation of nonhistone proteins in humans -- a new target for therapeutics. IUBMB Life 2005; 57:137-49. [PMID: 16036576 DOI: 10.1080/15216540500090629] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gene expression from the dynamic chromatin template is regulated by certain key cellular players that cause post-translational modifications of both histones and nonhistone proteins. The acetyltransferases and deacetylases are two such key groups of enzymes that play crucial roles in maintaining the reversible acetylation status of histones and nonhistone proteins. Emerging evidence suggests that acetylation of nonhistone protein is equally important in the transcription regulation as the histone acetylation. Since dysfunction of HATs and HDACs leads to several diseases, aberrant acetylation of nonhistone protein is also associated with diseases. Small molecule modulators of these enzymes, which may help in maintaining the normal cellular acetylation status of these proteins, have important therapeutic implications.
Collapse
Affiliation(s)
- Chandrima Das
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | |
Collapse
|
27
|
Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G, Mantovani R. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 2005; 25:3737-51. [PMID: 15831478 PMCID: PMC1084283 DOI: 10.1128/mcb.25.9.3737-3751.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/14/2004] [Accepted: 01/20/2005] [Indexed: 01/17/2023] Open
Abstract
In response to DNA damage, p53 activates G(1)/S blocking and apoptotic genes through sequence-specific binding. p53 also represses genes with no target site, such as those for Cdc2 and cyclin B, key regulators of the G(2)/M transition. Like most G(2)/M promoters, they rely on multiple CCAAT boxes activated by NF-Y, whose binding to DNA is temporally regulated during the cell cycle. NF-Y associates with p53 in vitro and in vivo through the alphaC helix of NF-YC (a subunit of NF-Y) and a region close to the tetramerization domain of p53. Chromatin immunoprecipitation experiments indicated that p53 is associated with cyclin B2, CDC25C, and Cdc2 promoters in vivo before and after DNA damage, requiring DNA-bound NF-Y. Following DNA damage, p53 is rapidly acetylated at K320 and K373 to K382, histones are deacetylated, and the release of PCAF and p300 correlates with the recruitment of histone deacetylases (HDACs)-HDAC1 before HDAC4 and HDAC5-and promoter repression. HDAC recruitment requires intact NF-Y binding sites. In transfection assays, PCAF represses cyclin B2, and a nonacetylated p53 mutant shows a complete loss of repression potential, despite its abilities to bind NF-Y and to be recruited on G(2)/M promoters. These data (i) detail a strategy of direct p53 repression through associations with multiple NF-Y trimers that is independent of sequence-specific binding of p53 and that requires C-terminal acetylation, (ii) suggest that p53 is a DNA damage sentinel of the G(2)/M transition, and (iii) delineate a new role for PCAF in cell cycle control.
Collapse
Affiliation(s)
- Carol Imbriano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nemethova M, Smutny M, Wintersberger E. Transactivation of E2F-regulated genes by polyomavirus large T antigen: evidence for a two-step mechanism. Mol Cell Biol 2004; 24:10986-94. [PMID: 15572699 PMCID: PMC533978 DOI: 10.1128/mcb.24.24.10986-10994.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus large T antigen transactivates a variety of genes whose products are involved in S phase induction. These genes are regulated by the E2F family of transcription factors, which are under the control of the pocket protein retinoblastoma protein and its relatives p130 and p107. The viral protein causes a dissociation of E2F-pocket protein complexes that results in transactivation of the genes. This reaction requires the N-terminal binding site for pocket proteins and the J domain that binds chaperones. We found earlier that a mutation of the zinc finger located within the C-terminal domain, a region assumed to function mainly in the replication of viral DNA, also interferes with transactivation. Here we show that binding of the histone acetyltransferase coactivator complex CBP/p300-PCAF to the C terminus correlates with the ability of large T antigen to transactivate genes. This interaction results in promoter-specific acetylation of histones. Inactive mutant proteins with changes within the C-terminal domain were nevertheless able to dissociate the E2F pocket protein complexes, indicating that this dissociation is a necessary but insufficient step in the T antigen-induced transactivation of genes. It has to be accompanied by a second step involving the T antigen-mediated recruitment of a histone acetyltransferase complex.
Collapse
Affiliation(s)
- Maria Nemethova
- Medical University of Vienna, Department of Medical Biochemistry, Division of Molecular Biology, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
29
|
Bannert H, Muranyi W, Ogryzko VV, Nakatani Y, Flügel RM. Coactivators p300 and PCAF physically and functionally interact with the foamy viral trans-activator. BMC Mol Biol 2004; 5:16. [PMID: 15350211 PMCID: PMC517496 DOI: 10.1186/1471-2199-5-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 09/06/2004] [Indexed: 11/22/2022] Open
Abstract
Background Foamy virus Bel1/Tas trans-activators act as key regulators of gene expression and directly bind to Bel1 response elements (BRE) in both the internal and the 5'LTR promoters leading to strong transcriptional trans-activation. Cellular coactivators interacting with Bel1/Tas are unknown to date. Results Transient expression assays, co-immunoprecipitation experiments, pull-down assays, and Western blot analysis were used to demonstrate that the coactivator p300 and histone acetyltransferase PCAF specifically interact with the retroviral trans-activator Bel1/Tas in vivo. Here we show that the Bel1/Tas-mediated trans-activation was enhanced by the coactivator p300, histone acetyltransferases PCAF and SRC-1 based on the crucial internal promoter BRE. The Bel1/Tas-interacting region was mapped to the C/H1 domain of p300 by co-immunoprecipitation and pull-down assays. In contrast, coactivator SRC-1 previously reported to bind to the C-terminal domain of p300 did not directly interact with the Bel1 protein but nevertheless enhanced Bel1/Tas-mediated trans-activation. Cotransfection of Bel1/Tas and p300C with an expression plasmid containing the C/H1domain partially inhibited the p300C-driven trans-activation. Conclusions Our data identify p300 and PCAF as functional partner molecules that directly interact with Bel1/Tas. Since the acetylation activities of the three coactivators reside in or bind to the C-terminal regions of p300, a C/H1 expression plasmid was used as inhibitor. This is the first report of a C/H1 domain-interacting retroviral trans-activator capable of partially blocking the strong Bel1/Tas-mediated activation of the C-terminal region of coactivator p300. The potential mechanisms and functional roles of the three histone and factor acetyltransferases p300, PCAF, and SRC-1 in Bel1/Tas-mediated trans-activation are discussed.
Collapse
Affiliation(s)
- Helmut Bannert
- Department of Retroviral Gene Expression, German Cancer Research Center, Applied Tumor Virology, Heidelberg, Germany
| | - Walter Muranyi
- Abteilung Virologie, Hygiene-Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Vasily V Ogryzko
- André Lwoff Institut, CNRS UR079, 7 Rue Guy Moquet, Villejuif 94801, France
| | - Yoshihiro Nakatani
- Dana-Farber Cancer Institute, 44 Binney Street, Harvard Medical School, Boston, MA 02115, USA
| | - Rolf M Flügel
- Department of Retroviral Gene Expression, German Cancer Research Center, Applied Tumor Virology, Heidelberg, Germany
| |
Collapse
|
30
|
Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004; 279:33716-26. [PMID: 15155757 DOI: 10.1074/jbc.m402839200] [Citation(s) in RCA: 399] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation is a diagnostic feature of transcriptionally active genes. The proper recruitment and function of histone acetyltransferases (HATs) and deacetylases (HDACs) are key regulatory steps for gene expression and cell cycle. Functional defects of either of these enzymes may lead to several diseases, including cancer. HATs and HDACs thus are potential therapeutic targets. Here we report that garcinol, a polyisoprenylated benzophenone derivative from Garcinia indica fruit rind, is a potent inhibitor of histone acetyltransferases p300 (IC50 approximately 7 microm) and PCAF (IC50 approximately 5 microm) both in vitro and in vivo. The kinetic analysis shows that it is a mixed type of inhibitor with an increased affinity for PCAF compared with p300. HAT activity-dependent chromatin transcription was strongly inhibited by garcinol, whereas transcription from DNA template was not affected. Furthermore, it was found to be a potent inducer of apoptosis, and it alters (predominantly down-regulates) the global gene expression in HeLa cells.
Collapse
Affiliation(s)
- Karanam Balasubramanyam
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 2004; 23:1609-18. [PMID: 15044952 PMCID: PMC391080 DOI: 10.1038/sj.emboj.7600176] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 02/25/2004] [Indexed: 11/08/2022] Open
Abstract
The retinoblastoma tumor-suppressor protein (pRb) is known to induce growth arrest and cellular differentiation. The molecular determinants of pRb function include protein-protein interactions and post-translational modifications such as phosphorylation. Recently, the co-activator p300 was found to acetylate pRb. The biological significance of pRb acetylation, however, remains unclear. In the present study, we provide evidence that pRb undergoes acetylation upon cellular differentiation, including skeletal myogenesis. In addition to p300, the p300-Associated Factor (P/CAF) can mediate pRb acetylation as pRb interacts directly with the acetyltransferase domain of P/CAF in vitro and can associate with P/CAF in differentiated cells. Significantly, by using a C terminal acetylation-impaired mutant of pRb, we reveal that acetylation does not affect pRb-dependent growth arrest or the repression of E2F transcriptional activity. Instead, acetylation is required for pRb-mediated terminal cell cycle exit and the induction of late myogenic gene expression. Based on these results, we propose that acetylation regulates the differentiation-specific function(s) of pRb.
Collapse
Affiliation(s)
- Don X Nguyen
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Laurel A Baglia
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Shih-Min Huang
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Christina M Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Dennis J McCance
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
- The Cancer Center, University of Rochester, Rochester, NY, USA
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA. Tel.: +1 585 275 0101; Fax: +1 585 473 9573; E-mail: ,
| |
Collapse
|
32
|
Abstract
The tumor suppressor p53-related p73 shares significant amino-acid sequence identity with p53. Like p53, p73 recognizes canonical p53 DNA-binding sites and activates p53-responsive target genes and induces apoptosis. Moreover, transcription coactivator p300/CBP binds to and coactivates with both p53 and p73 in stimulating the expression of their target genes. Here, we report that coactivator PCAF binds to p73. The N-terminal transactivation domain (TAD) and the conserved oligomerization domain (OD) of p73 are both required for its interaction with PCAF. Conversely, PCAF's HAT-domain is required for and both the N-terminal region and Bromo domain enhance binding of PCAF to p73. Significantly, PCAF stimulates p73-mediated transactivation, and binding of PCAF to p73 is necessary for p73's transactivation activity. PCAF-specific siRNA dramatically reduces p73-mediated transactivation. Stimulation of p73-mediated transactivation by PCAF requires the HAT domain of PCAF and the p53-binding site within the p21 promoter. In vivo, coexpression of wild-type, but not HAT-deficient PCAF with p73beta markedly increases p21 expression. Furthermore, cotransfection of PCAF and p73 leads to increased apoptosis and reduced colony formation. Collectively, these data suggest that p73 recruit PCAF to specific promoters to activate the transcription of p73 target genes.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | |
Collapse
|
33
|
Avvakumov N, Torchia J, Mymryk JS. Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 2003; 22:3833-41. [PMID: 12813456 DOI: 10.1038/sj.onc.1206562] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cervical carcinomas express the E6 and E7 proteins of a high-risk human papillomavirus (HPV). These proteins affect growth control by interfering with the functions of cell regulatory proteins, promoting oncogenic transformation. A key target of E7 is the tumor suppressor protein pRb, which directly interacts with E7. However, binding to additional cellular regulatory proteins is clearly required for oncogenesis, as mutants of E7 have been identified that bind to pRb, yet fail to transform efficiently. Here we demonstrate the interaction of the HPV 6, 16 and 18 E7 proteins with the pCAF acetyltransferase, which has been reported to function as a coactivator for a variety of transcription factors including p53. Mutation of a highly conserved leucine residue within the zinc finger region of HPV 16 E7 disrupts binding to pCAF and also impairs transformation and transcriptional activation. HPV 16 E7 interacts with the acetyltransferase domain of pCAF, and reduces its acetyltransferase activity in vitro. Our analysis of the interaction between the pCAF acetyltransferase and E7 provides new insight into the mechanisms by which the E7 oncoproteins can alter cellular gene expression and growth.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Department of Microbiology and Immunology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
34
|
Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino LM, Gao Q, Dimri G, Weber GF, Wazer DE, Band H, Band V. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 2002; 22:5801-12. [PMID: 12138191 PMCID: PMC133989 DOI: 10.1128/mcb.22.16.5801-5812.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 01/23/2002] [Accepted: 05/13/2002] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. The HPV oncoprotein E6 is essential for oncogenic transformation. We identify here hADA3, human homologue of the yeast transcriptional coactivator yADA3, as a novel E6-interacting protein and a target of E6-induced degradation. hADA3 binds selectively to the high-risk HPV E6 proteins and only to immortalization-competent E6 mutants. hADA3 functions as a coactivator for p53-mediated transactivation by stabilizing p53 protein. Notably, three immortalizing E6 mutants that do not induce direct p53 degradation but do interact with hADA3 induced the abrogation of p53-mediated transactivation and G(1) cell cycle arrest after DNA damage, comparable to wild-type E6. These findings reveal a novel strategy of HPV E6-induced loss of p53 function that is independent of direct p53 degradation. Given the likely role of the evolutionarily conserved hADA3 in multiple coactivator complexes, inactivation of its function may allow E6 to perturb numerous cellular pathways during HPV oncogenesis.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ard PG, Chatterjee C, Kunjibettu S, Adside LR, Gralinski LE, McMahon SB. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol Cell Biol 2002; 22:5650-61. [PMID: 12138177 PMCID: PMC133988 DOI: 10.1128/mcb.22.16.5650-5661.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The p53 tumor suppressor regulates the cellular response to genetic damage through its function as a sequence-specific transcription factor. Among the most well-characterized transcriptional targets of p53 is the mdm2 oncogene. Activation of mdm2 is critical in the p53 pathway because the mdm2 protein marks p53 for proteosome-mediated degradation, thereby providing a negative-feedback loop. Here we show that the ATM-related TRRAP protein functionally cooperates with p53 to activate mdm2 transcription. TRRAP is a component of several multiprotein acetyltransferase complexes implicated in both transcriptional regulation and DNA repair. In support of a role for these complexes in mdm2 expression, we show that transactivation of the mdm2 gene is augmented by pharmacological inhibition of cellular deacetylases. In vitro analysis demonstrates that p53 directly binds to a TRRAP domain previously shown to be an activator docking site. Furthermore, transfection of cells with antisense TRRAP blocks p53-dependent transcription of mdm2. Finally, using chromatin immunoprecipitation, we demonstrate direct p53-dependent recruitment of TRRAP to the mdm2 promoter, followed by increased histone acetylation. These findings suggest a model in which p53 directly recruits a TRRAP/acetyltransferase complex to the mdm2 gene to activate transcription. In addition, this study defines a novel biochemical mechanism utilized by the p53 tumor suppressor to regulate gene expression.
Collapse
Affiliation(s)
- Penny G Ard
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
36
|
Fang JY, Lu YY. Effects of histone acetylation and DNA methylation on p21( WAF1) regulation. World J Gastroenterol 2002; 8:400-5. [PMID: 12046058 PMCID: PMC4656409 DOI: 10.3748/wjg.v8.i3.400] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 12/22/2001] [Accepted: 02/07/2002] [Indexed: 02/06/2023] Open
Abstract
Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.
Collapse
Affiliation(s)
- Jing-Yuan Fang
- Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Second Medical School, Shanghai 200001, China.
| | | |
Collapse
|
37
|
Abstract
Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by nucleosomal barriers imposed by histone proteins. Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation. Recent biochemical and genetic studies have identified several large, multisubunit enzyme complexes responsible for bringing about the targeted acetylation of histones and other factors. This review discusses our current understanding of histone acetyltransferases (HATs) or acetyltransferases (ATs): their discovery, substrate specificity, catalytic mechanism, regulation, and functional links to transcription, as well as to other chromatin-modifying activities. Recent studies underscore unexpected connections to both cellular regulatory processes underlying normal development and differentiation, as well as abnormal processes that lead to oncogenesis. Although the functions of HATs and the mechanisms by which they are regulated are only beginning to be understood, these fundamental processes are likely to have far-reaching implications for human biology and disease.
Collapse
Affiliation(s)
- S Y Roth
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
38
|
Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G. Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2. J Biol Chem 2002; 277:7029-36. [PMID: 11748222 PMCID: PMC2808425 DOI: 10.1074/jbc.m108826200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sp1/KLF family of factors regulates diverse cellular processes, including growth and development. Fetal Krüppel-like factor (FKLF2) is a new member of this family. In this study, we characterized the coactivators involved in FKLF2 transcriptional activation. Our results show that both CBP/p300 and p300/CBP-associated factor (PCAF) enhance FKLF2 transcriptional activity. We demonstrate that the acetyltransferase activity of PCAF but not that of CBP/p300 is required for stimulating FKLF2 transcription activity. We further show that p300 and PCAF act cooperatively in stimulating FKLF2 transcriptional activation. FKLF2 interacts with both CBP and PCAF through specific domains, and CBP and PCAF acetylate FKLF2. Both CBP/p300 and PCAF stimulate FKLF2 DNA binding activity. The integrity of the acetyltransferase domain of PCAF but not that of CBP/p300 is required for stimulating FKLF2 DNA binding activity. These results demonstrate that CBP/p300 and PCAF stimulate FKLF2 transcriptional activity at least by enhancing its DNA binding. The acetyltransferase activities of CBP/p300 and PCAF play a distinct role in stimulating FKLF2 transcription and DNA binding.
Collapse
Affiliation(s)
- Chao-Zhong Song
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
39
|
Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard L, Cole P, Harel-Bellan A. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 2001; 20:6816-25. [PMID: 11726517 PMCID: PMC125755 DOI: 10.1093/emboj/20.23.6816] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Terminal differentiation of muscle cells follows a precisely orchestrated program of transcriptional regulatory events at the promoters of both muscle-specific and ubiquitous genes. Two distinct families of transcriptional co-activators, GCN5/PCAF and CREB-binding protein (CBP)/p300, are crucial to this process. While both possess histone acetyl-transferase (HAT) activity, previous studies have failed to identify a requirement for CBP/p300 HAT function in myogenic differentiation. We have addressed this issue directly using a chemical inhibitor of CBP/p300 in addition to a negative transdominant mutant. Our results clearly demonstrate that CBP/p300 HAT activity is critical for myogenic terminal differentiation. Furthermore, this requirement is restricted to a subset of events in the differentiation program: cell fusion and specific gene expression. These data help to define the requirements for enzymatic function of distinct coactivators at different stages of the muscle cell differentiation program.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A. Vervisch
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| | | | - P. Cole
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| | - A. Harel-Bellan
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| |
Collapse
|
40
|
Wang T, Kobayashi T, Takimoto R, Denes AE, Snyder EL, el-Deiry WS, Brachmann RK. hADA3 is required for p53 activity. EMBO J 2001; 20:6404-13. [PMID: 11707411 PMCID: PMC125723 DOI: 10.1093/emboj/20.22.6404] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor protein p53 is a transcription factor that is frequently mutated in human cancers. In response to DNA damage, p53 protein is stabilized and activated by post-translational modifications that enable it to induce either apoptosis or cell cycle arrest. Using a novel yeast p53 dissociator assay, we identify hADA3, a part of histone acetyltransferase complexes, as an important cofactor for p53 activity. p53 and hADA3 physically interact in human cells. This interaction is enhanced dramatically after DNA damage due to phosphorylation event(s) in the p53 N-terminus. Proper hADA3 function is essential for full transcriptional activity of p53 and p53-mediated apoptosis.
Collapse
MESH Headings
- Acetyltransferases/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line
- Cells, Cultured
- DNA/metabolism
- DNA Damage
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Flow Cytometry
- Gene Library
- Genes, Reporter
- Genes, p53/genetics
- HeLa Cells
- Histone Acetyltransferases
- Humans
- Models, Biological
- Mutation
- Oligonucleotides, Antisense/pharmacology
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Processing, Post-Translational
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
| | | | - Rishu Takimoto
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110 and
Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine, Genetics and Pharmacology, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | | | | | - Wafik S. el-Deiry
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110 and
Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine, Genetics and Pharmacology, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Rainer K. Brachmann
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110 and
Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine, Genetics and Pharmacology, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Corresponding author e-mail:
| |
Collapse
|
41
|
Huang S, Qiu Y, Shi Y, Xu Z, Brandt SJ. P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. EMBO J 2000; 19:6792-803. [PMID: 11118214 PMCID: PMC305888 DOI: 10.1093/emboj/19.24.6792] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The basic helix-loop-helix transcription factor TAL1 (or SCL) is a critical regulator of hematopoietic and vascular development and is misexpressed in the majority of patients with T-cell acute lymphoblastic leukemia. We found previously that TAL1 could interact with transcriptional co-activator and co-repressor complexes possessing histone acetyltransferase and deacetylase activities, respectively. Here, we report that TAL1 is subject to acetylation in vivo and can be acetylated by p300 and the p300/CBP-associated factor P/CAF in vitro. P/CAF-mediated acetylation, which mapped to a lysine-rich motif in the loop region, increased TAL1 binding to DNA while selectively inhibiting its interaction with the transcriptional co-repressor mSin3A. Furthermore, P/CAF protein, TAL1-P/CAF interaction and TAL1 acetylation increased significantly in murine erythroleukemia cells induced to differentiate in culture, while enforced expression of an acetylation-defective P/CAF mutant inhibited endogenous TAL1 acetylation, TAL1 DNA-binding activity, TAL1-directed transcription and terminal differentiation of these cells. These results reveal a novel mechanism by which TAL1 activity is regulated and implicate acetylation of this transcription factor in promotion of erythroid differentiation.
Collapse
Affiliation(s)
- S Huang
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
42
|
Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res 2000; 28:4291-8. [PMID: 11058129 PMCID: PMC113149 DOI: 10.1093/nar/28.21.4291] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Smads perform pivotal functions in the intracellular signaling of transforming growth factor-beta (TGF-beta). TGF-beta-mediated activation of TGF-beta type I receptor stimulates the phosphorylation of Smad2 and Smad3 and subsequent heteromeric complex formation with Smad4. The heteromeric Smad complexes translocate into the nucleus where they, in co-operation with co-activators and co-repressors, regulate transcriptional responses. Here we investigated the possible co-activator function of P/CAF in TGF-beta/Smad signaling. P/CAF was found to interact directly with Smad3 in vitro. Moreover, Smad2 and Smad3 interacted with P/CAF upon TGF-beta type I receptor activation in cultured mammalian cells. The interaction involves the MH2 domain of Smad3 and the N-terminal region of P/CAF. P/CAF potentiated the transcriptional activity of heterologous Gal4-Smad2 and Gal4-Smad3 fusion proteins. In addition, P/CAF potentiated the TGF-beta/Smad3-induced transcriptional responses, which could be further enhanced by co-activators p300 and Smad4. P/CAF may, therefore, activate Smad-mediated transcriptional responses independently or in co-operation with p300/CBP. Our results indicate a direct physical and functional interplay between two negative regulators of cell proliferation, Smad3 and P/CAF.
Collapse
Affiliation(s)
- S Itoh
- The Netherlands Cancer Institute, Division of Cellular Biochemistry, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N, Westphal H, Ozato K, Nakatani Y. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci U S A 2000; 97:11303-6. [PMID: 11027331 PMCID: PMC17195 DOI: 10.1073/pnas.97.21.11303] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PCAF plays a role in transcriptional activation, cell-cycle arrest, and cell differentiation in cultured cells. PCAF contributes to transcriptional activation by acetylating chromatin and transcription factors through its intrinsic histone acetylase activity. In this report, we present evidence for the in vivo function of PCAF and the closely related PCAF-B/GCN5. Mice lacking PCAF are developmentally normal without a distinct phenotype. In PCAF null-zygous mice, protein levels of PCAF-B/GCN5 are drastically elevated in lung and liver, where PCAF is abundantly expressed in wild-type mice, suggesting that PCAF-B/GCN5 functionally compensates for PCAF. In contrast, animals lacking PCAF-B/GCN5 die between days 9.5 and 11.5 of gestation. Normally, PCAF-B/GCN5 mRNA is expressed at high levels already by day 8, whereas PCAF mRNA is first detected on day 12.5, which may explain, in part, the distinct knockout phenotypes. These results provide evidence that PCAF and PCAF-B/GCN5 play distinct but functionally overlapping roles in embryogenesis.
Collapse
Affiliation(s)
- T Yamauchi
- Laboratories of Molecular Growth Regulation and Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|