1
|
Preetham E, Lakshmi S, Wongpanya R, Vaseeharan B, Arockiaraj J, Olsen RE. Antibiofilm and immunological properties of lectin purified from shrimp Penaeus semisulcatus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:776-782. [PMID: 32745619 DOI: 10.1016/j.fsi.2020.07.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Penaeid prawns are considered as most demanding fishery resources. The current study aims to purify and characterize lectin from the haemolymph of Penaeus semisulcatus. The semisulcatus-lectin was purified by affinity chromatography using mannose coupled Sepharose CL-4B column and purified lectin exhibited a single band of 66 kDa in SDS-PAGE. The purity and crystalline structure of purified lectin was confirmed by HPLC and X-ray diffraction analysis. Semisulcatus-lectin exhibited yeast agglutination activity against Saccharomyces cerevisiae and agglutinated human erythrocytes. Semisulcatus-lectin was evaluated for phenol oxidase activation and phagocytic activities. It was observed that semisulcatus-lectin had antibacterial activity against Gram-negative Vibrio parahaemolyticus and Aeromonas hydrophila, suggesting a potential therapeutic strategy in aquaculture industry for disease management.
Collapse
Affiliation(s)
- Elumalai Preetham
- Department of Fish Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India; School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India.
| | - Sreeja Lakshmi
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630 004, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rolf Erik Olsen
- Norwegian University of Science and Technology, Department of Biology, 7491, Trondheim, Norway
| |
Collapse
|
2
|
Victorio-De Los Santos M, Vibanco-Pérez N, Soto-Rodriguez S, Pereyra A, Zenteno E, Cano-Sánchez P. The B Subunit of PirAB vp Toxin Secreted from Vibrio parahaemolyticus Causing AHPND Is an Amino Sugar Specific Lectin. Pathogens 2020; 9:E182. [PMID: 32138213 PMCID: PMC7157558 DOI: 10.3390/pathogens9030182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/26/2022] Open
Abstract
Vibrio parahaemolyticus (Vp) is the etiological agent of the acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei shrimp. Vp possesses a 63-70 kb conjugative plasmid that encodes the binary toxin PirAvp/PirBvp. The 250 kDa PirABvp complex was purified by affinity chromatography with galactose-sepharose 4B and on a stroma from glutaraldehyde-fixed rat erythrocytes column, as a heterotetramer of PirAvp and PirBvp subunits. In addition, recombinant pirB (rPirBvp) and pirA (rPirAvp) were obtained. The homogeneity of the purified protein was determined by SDS-PAGE analysis, and the yield of protein was 488 ng/100 μg of total protein of extracellular products. The PirABvp complex and the rPirBvp showed hemagglutinating activity toward rat erythrocytes. The rPirAvp showed no hemagglutinating capacity toward the animal red cells tested. Among different mono and disaccharides tested, only GalNH2 and GlcNH2 were able to inhibit hemagglutination of the PirABvp complex and the rPirBvp. Glycoproteins showed inhibitory specificity, and fetuin was the glycoprotein that showed the highest inhibition. Other glycoproteins, such as mucin, and glycosaminoglycans, such as heparin, also inhibited the activity. Desialylation of erythrocytes enhanced the hemagglutinating activity. This confirms that Gal or Gal (β1,4) GlcNAc are the main ligands for PirABvp. The agglutinating activity of the PirABvp complex and the rPirBvp is not dependent on cations, because addition of Mg2+ or Ca2+ showed no effect on the protein capacity. Our results strongly suggest that the PirBvp subunit is a lectin, which is part of the PirA/PirBvp complex, and it seems to participate in bacterial pathogenicity.
Collapse
Affiliation(s)
- Marcelo Victorio-De Los Santos
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Norberto Vibanco-Pérez
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Sonia Soto-Rodriguez
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
| | - Ali Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Patricia Cano-Sánchez
- Laboratorio de Biología Molecular, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico;
| |
Collapse
|
3
|
Preetham E, Rubeena AS, Vaseeharan B, Chaurasia MK, Arockiaraj J, Olsen RE. Anti-biofilm properties and immunological response of an immune molecule lectin isolated from shrimp Metapenaeus monoceros. FISH & SHELLFISH IMMUNOLOGY 2019; 94:896-906. [PMID: 31533083 DOI: 10.1016/j.fsi.2019.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The study is carried out to understand the antimicrobial and immunological response of a potential immune molecule lectin, MmLec isolated from haemolymph of Speckled shrimp, Metapenaeus monoceros. MmLec was purified using mannose coupled Sepharose CL-4B affinity chromatography, which was further subjected on SDS-PAGE to ascertain the distribution of their molecular weight. Sugar binding specificity assay was conducted at various pH and temperatures to investigate the binding affinity of MmLec towards the specific carbohydrate molecule. Functional analysis of immune molecule MmLec included haemagglutination assays performed using human erythrocytes and yeast agglutination activity against Saccharomyces cerevisiae which, were analyzed using light microscopy. In order to study the antimicrobial activity, two Gram-negative (Vibrio parahaemolyticus and Aeromonas hydrophila) and two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria were treated with purified MmLec. Moreover, these bacterial species were also treated at different concentration of the MmLec to speculate the antibiofilm properties of MmLec which was analyzed under Light Microscopy and Confocal Laser Scanning Microscopy. In addition, other functional characterization of MmLec showed the uniqueness of MmLec in agglutination of human erythrocyte as well as the cells of yeast Saccharomyces cerevisiae. Also, the phenoloxidase activity and encapsulation assay was evaluated. MTT assay displayed that MmLec are potent in anticancer activity. The study will help to understand the immunological interference and antimicrobial nature of MmLec which would be supportive in establishing a potential therapeutic tool and to develop better and novel disease control strategies in shrimp and farmed aquaculture industries as well as in health management.
Collapse
Affiliation(s)
- Elumalai Preetham
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India; School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India.
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630 004, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rolf Erik Olsen
- Norwegian University of Science and Technology, Department of Biology, 7491, Trondheim, Norway
| |
Collapse
|
4
|
Jayanthi S, Ishwarya R, Anjugam M, Iswarya A, Karthikeyan S, Vaseeharan B. Purification, characterization and functional analysis of the immune molecule lectin from the haemolymph of blue swimmer crab Portunus pelagicus and their antibiofilm properties. FISH & SHELLFISH IMMUNOLOGY 2017; 62:227-237. [PMID: 28110033 DOI: 10.1016/j.fsi.2017.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
The present study reveals purification and characterization of immune molecule lectin from the haemolymph of blue swimmer crab Portunus pelagicus (Pp-Lec). The Pp-Lec was purified by affinity chromatography with mannose coupled sepharose CL-4B column and it exhibits single band with a molecular weight of 155 kDa in SDS-PAGE. The surface morphology of purified Pp-Lec displays the homogeneous nature of protein. A distinct peak with a retention time of 3.3 min was appeared in high performance liquid chromatography (HPLC) and X-ray diffraction (XRD) analysis expresses a single peak at 31.5° which shows the purity and crystalline nature of the protein respectively. Functional analysis of purified Pp-Lec exhibits encapsulation activity against sepharose beads and yeast agglutination activity against Saccharomyces cerevisiae. Moreover, the purified Pp-Lec has the ability to agglutinates with the human erythrocytes among tested and which was observed by light microscopy. In addition, purified Pp-Lec showed the broad spectrum of antibacterial activity against Gram-positive Bacillus pumulis, Bacillus thuringiensis, Enterococcus faecalis and Gram negative Citrobacter amalonaticus, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Proteus vulgaris, Citrobacter murliniae, Citrobacter freundii, Morganella morganii. Antibiofilm potential of purified Pp-Lec against selective Gram-negative bacteria showed the disruption of biofilm architecture at the concentration of 50 μg ml-1.
Collapse
Affiliation(s)
- Sangily Jayanthi
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Ramachandran Ishwarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | | | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
5
|
Sialic acid-specific lectin participates in an immune response and ovarian development of the banana shrimp Fenneropenaeus merguiensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:132-140. [DOI: 10.1016/j.cbpb.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
|
6
|
Sivakamavalli J, Vaseeharan B. Purification, characterization and functional role of lectin from green tiger shrimp Penaeus semisulcatus. Int J Biol Macromol 2014; 67:64-70. [DOI: 10.1016/j.ijbiomac.2014.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
7
|
The effects of L-arginine on liver damage in experimental acute cholestasis an immunohistochemical study. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2011; 2011:306069. [PMID: 21760660 PMCID: PMC3132489 DOI: 10.1155/2011/306069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 04/03/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022]
Abstract
Obstructive jaundice damages critical functions in the liver. Nitric oxide modulation would influence liver damage induced by biliary obstruction, and little is known about it Acute cholestasis was induced by bile duct ligation (BDL) in two groups of male Sprague-Dawley rats. L-Arginine or serum physiologic was administered to treatment and control group. Histopathological and immunohistochemical iNOS expression was investigated in hepatic tissue. Plasma enzyme activities were increased in acute cholestasis, and that L-arginine treatment partially but significantly prevented the elevation of these markers of liver damage (P < .05). Also histopathology scoring showed that the liver injury was prevented and immunohistochemical iNOS activity was increased significantly in L-arginine group (P < .05). This study shows that, after 7 days of biliary obstruction, liver damage is well established and exogenous L-arginine treatment partially but significantly prevented the liver injury in acute cholestasis.
Collapse
|
8
|
Abstract
Chronic liver inflammation after murine bile duct ligation could evolve according to three interrelated phenotypes, which would have different metabolic, functional and histologic characteristics. Liver injury secondary to extrahepatic cholestasis would induce an early ischemic-reperfusion phenotype with cholangiocyte depolarization, abnormal ion transport, hypometabolism with anaerobic glycolysis and hepatocytic apoptosis. This phenotype, in turn, could trigger the switch to a leukocytic phenotype by the cholangiocytes, with an intense anaplerotic activity, hypermetabolism, extracellular matrix degradation and moderated proliferation to create a pseudotissue with metabolic autonomy and paracrine functions. In the long-term cholestasis-drive tumorigenesis, the tumorous tissue would principally consist of cholangiocyte parenchyma, with an impressive biosynthetic activity through the tricarboxylic cell cycle. In terms of the tumorous stroma, made up by fibroplasia and angiogenesis, it would favor the tumor trophism. In conclusion, the great intensity and persistence in the expression of these phenotypes by the cholestatic cholangiocyte would favor chronic inflammatory tumorigenesis.
Collapse
|
9
|
Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E. Review: Immunity mechanisms in crustaceans. Innate Immun 2009; 15:179-88. [DOI: 10.1177/1753425909102876] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Crustacean aquaculture represents a major industry in tropical developing countries. As a result of high culture densities and increasing extension of aquaculture farms, the presence of diseases has also increased, inducing economic losses. Invertebrates, which lack adaptive immune systems, have developed defense systems that respond against antigens on the surface of potential pathogens. The defense mechanisms of crustaceans depend completely on the innate immune system that is activated when pathogen-associated molecular patterns are recognized by soluble or by cell surface host proteins, such as lectins, antimicrobial, clotting, and pattern recognition proteins, which, in turn, activate cellular or humoral effector mechanisms to destroy invading pathogens. This work is aimed at presenting the main characteristics of the crustacean proteins that participate in immune defense by specific recognition of carbohydrate containing molecules, i.e. glycans, glycolipids, glycoproteins, peptidoglycans, or lipopolysaccharides from Gram-negative and Gram-positive bacteria, viruses, or fungi. We review some basic aspects of crustacean effector defense processes, like agglutination, encapsulation, phagocytosis, clottable proteins, and bactericidal activity, induced by these carbohydrate-driven recognition patterns.
Collapse
Affiliation(s)
- Lorena Vazquez
- Laboratorio de Lectinas, CIQ, Universidad Autonoma del Estado de Morelos, Cuernavaca Morelos, Mexico,
| | - Juan Alpuche
- Laboratorio de Inmunologia, Departamento de Bioquimica, Facultad de Medicina, UNAM, Mexico
| | - Guadalupe Maldonado
- Laboratorio de Inmunologia, Departamento de Bioquimica, Facultad de Medicina, UNAM, Mexico
| | - Concepción Agundis
- Laboratorio de Inmunologia, Departamento de Bioquimica, Facultad de Medicina, UNAM, Mexico
| | - Ali Pereyra-Morales
- Laboratorio de Inmunologia, Departamento de Bioquimica, Facultad de Medicina, UNAM, Mexico
| | - Edgar Zenteno
- Laboratorio de Inmunologia, Departamento de Bioquimica, Facultad de Medicina, UNAM, Mexico, Facultad de Medicina Humana, Universidad Ricardo Palma, Santiago de Surco, Peru
| |
Collapse
|
10
|
A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 2008; 83:347-56. [PMID: 18945787 DOI: 10.1128/jvi.00707-08] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-type lectins play key roles in pathogen recognition, innate immunity, and cell-cell interactions. Here, we report a new C-type lectin (C-type lectin 1) from the shrimp Litopenaeus vannamei (LvCTL1), which has activity against the white spot syndrome virus (WSSV). LvCTL1 is a 156-residue polypeptide containing a C-type carbohydrate recognition domain with an EPN (Glu(99)-Pro(100)-Asn(101)) motif that has a predicted ligand binding specificity for mannose. Reverse transcription-PCR analysis revealed that LvCTL1 mRNA was specifically expressed in the hepatopancreas of L. vannamei. Recombinant LvCTL1 (rLvCTL1) had hemagglutinating activity and ligand binding specificity for mannose and glucose. rLvCTL1 also had a strong affinity for WSSV and interacted with several envelope proteins of WSSV. Furthermore, we showed that the binding of rLvCTL1 to WSSV could protect shrimps from viral infection and prolong the survival of shrimps against WSSV infection. Our results suggest that LvCTL1 is a mannose-binding C-type lectin that binds to envelope proteins of WSSV to exert its antiviral activity. To our knowledge, this is the first report of a shrimp C-type lectin that has direct anti-WSSV activity.
Collapse
|
11
|
Coteur G, Mellroth P, De Lefortery C, Gillan D, Dubois P, Communi D, Steiner H. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:790-804. [PMID: 17240448 DOI: 10.1016/j.dci.2006.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/10/2006] [Accepted: 11/12/2006] [Indexed: 05/13/2023]
Abstract
Despite the ecological and evolutionary importance of echinoderms, very little is known about the immune mechanisms in this group especially regarding humoral immunity. In this paper, we screened for proteins putatively involved in immunity in the common European seastar Asterias rubens using a mass spectrometry-based proteomic approach. Two proteins showed striking sequence similarities with peptidoglycan recognition proteins (PGRPs). The two seastar proteins were identified as a single protein, termed PGRP-S1a, occurring in two forms in the coelomic plasma, one of 20kDa and another of 22kDa. We also cloned and sequenced a second member of the PGRP family, termed PGRP-S2a. It has a calculated molecular mass of 21.3kDa and is expressed in circulating phagocytes. Both the S1a-cDNA from coelomic epithelium RNA and the S2a-cDNA from phagocytes code for the amino acid residues necessary for peptidoglycan degradation. PGRP-S1a did not affect the phagocytic activity of seastar immune cells towards Micrococcus luteus but inhibited their production of reactive oxygen species (ROS). A recombinant, His-tagged, PGRP-S2a degrades peptidoglycan and increases the phagocytosis of M. luteus cells by seastar phagocytes.
Collapse
Affiliation(s)
- Geoffroy Coteur
- Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, 50 Av. F. D. Roosevelt, B-1050 Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Rittidach W, Paijit N, Utarabhand P. Purification and characterization of a lectin from the banana shrimp Fenneropenaeus merguiensis hemolymph. Biochim Biophys Acta Gen Subj 2007; 1770:106-14. [PMID: 16934939 DOI: 10.1016/j.bbagen.2006.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/19/2006] [Accepted: 06/26/2006] [Indexed: 12/16/2022]
Abstract
A lectin from the hemolymph of the banana shrimp Fenneropenaeus merguiensis was purified by affinity chromatography on a fetuin-agarose column following by gel filtration on a Superose-12 column. The native molecular mass of purified F. merguiensis lectin (FmL) determined by gel filtration was 316.2 kDa and its carbohydrate content was estimated to be 4.4%. By SDS-PAGE analysis, purified FmL consisted of 32.3 kDa and 30.9 kDa subunits. These data suggest that this lectin is an oligomer. Two-dimensional electrophoresis showed that it had a pI value of 6.0 and was mainly composed of glycine, serine, histidine, glutamic acids and glutamine, with relatively lower amounts of methionine and tyrosine. Purified FmL expressed higher agglutination activity against rabbit and rat erythrocytes than with those from human, and its activity was Ca(2+)-dependent. The hemagglutinating activity of FmL was stable up to 55 degrees C and at pH 7.5-8. N-acetylated sugars, such as ManNAc, GlcNAc, GalNAc, and NeuNAc were strong inhibitors of the FmL induced hemagglutinating activity with NeuNAc being most effective. Porcine stomach mucin and fetuin were the most potent inhibitors of FmL. Purified FmL caused selective agglutination of Vibrio harveyi, and Vibrio parahemolyticus both pathogens of this Penaeus species and to a lesser extent Vibrio vulnificus but had no effect on the non-pathogenic strains; Vibrio cholerae, Salmonella typhi and Escherichia coli. Its bacterial agglutination was also completely inhibited by NeuNAc, mucin, fetuin and also anti-FmL antibody. This observation indicates that FmL may contribute to the defense response of this species of penaeid shrimps to potentially pathogenic bacteria.
Collapse
Affiliation(s)
- Wanida Rittidach
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | | | | |
Collapse
|
13
|
Pereyra A, Zenteno R, Vázquez L, Martínez-Cairo S, Rodríguez A, Mendoza-Hernández G, Zenteno E, Agundis C. Characterization of lectin aggregates in the hemolymph of freshwater prawn Macrobrachium rosenbergii. Biochim Biophys Acta Gen Subj 2004; 1673:122-30. [PMID: 15279883 DOI: 10.1016/j.bbagen.2004.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/08/2004] [Accepted: 04/08/2004] [Indexed: 12/12/2022]
Abstract
In invertebrates, lectins play relevant roles in innate immunity; however, their regulatory mechanisms have not been identified yet. In this work, we purified, by gel filtration and affinity chromatography, lectin aggregates circulating in the hemolymph of the freshwater prawn Macrobrachium rosenbergii and compared their physicochemical properties with a previously described lectin (MrL). High-molecular weight MrL aggregates (MrL-I) lack hemagglutinating activity and showed bands of 62.1, 67.1 and 81.4 kDa, whereas MrL-III, which corresponds to MrL, showed hemagglutinating activity and is constituted by a single 9.6-kDa band as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. MrL-I and MrL-III showed similar amino acid composition but different carbohydrates concentration. Edman degradation indicated NH2-terminal sequence of five amino acids for the 9.6-kDa MrL-III (DVPLL/A) and eleven for the main 81.4-kDa band identified in MrL-I (DVPLL/AXKQQQD); analysis by MALDI-TOF indicated a different tryptic pattern for MrL-I and MrL-III. MrL-I was recognized by monoclonal antibodies against MrL-III. Circular dichroism indicated that the secondary structure in both proteins is similar and contains 23% of beta-sheet and 24% of alpha-helix. Our results suggest that differential posttranslational processes that favor aggregation are involved in regulating the activity of the lectin.
Collapse
Affiliation(s)
- Ali Pereyra
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, 10245, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chan TWD, Tang KY. Analysis of a bioactive beta-(1 --> 3) polysaccharide (Curdlan) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:887-896. [PMID: 12717760 DOI: 10.1002/rcm.991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper focuses on the development of MALDI sample preparation protocols for the analysis of a bioactive beta-(1 --> 3) polysaccharide, i.e. Curdlan. The crude Curdlan sample was first separated into a low molecular weight water-soluble portion and a high molecular weight water-insoluble portion. The water-soluble portion was analyzed using a standard MALDI sample preparation method developed for dextran analysis. Two low-mass (<4000 Da) polysaccharide distributions differing by 16 Da were observed. For the analysis of the water-insoluble portion, several sample preparation protocols were evaluated using GPC-fractionated samples. A sample preparation method based on the deposition of the analyte solution with a mixture of 2,5-dihydroxybenzoic acid (DHB) and 3-aminoquinoline (3AQ) matrices in dimethyl sulfoxide (DMSO) at elevated temperature of 70 degrees C was found to reliably produce good MALDI spectra. MALDI analysis of the water-insoluble Curdlan portion gave number-average (Mn) and weight-average (Mw) molecular weights and polydispersity of 8000 Da, 8700 Da, and 1.10, respectively.
Collapse
Affiliation(s)
- T-W D Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | | |
Collapse
|
15
|
Gerlach D, Wagner M, Schlott B, Zähringer U, Schmidt KH. Chemical and physicochemical characterization of the sialic acid-specific lectin from Cepaea hortensis. FEMS Microbiol Lett 2002; 214:61-8. [PMID: 12204373 DOI: 10.1111/j.1574-6968.2002.tb11325.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A sialic acid-specific lectin was isolated from the albumin glands of the garden snail Cepaea hortensis by affinity chromatography on fetuin-Sepharose following gel filtration on Superdex 200. The purified native lectin showed a molecular mass of about 95 kDa by gel filtration and 100 kDa by SDS electrophoresis. It was cleaved by boiling in buffer containing SDS in three serological identical bands corresponding to molecular masses of about 24, 20 and 16 kDa, respectively. From these three fragments, only the 24- and the 20-kDa bands were found to be glycosylated. Only the three sugars mannose, galactose and N-acetylglucosamine could be detected in a molar ratio of 3:8.6:2. The oligosaccharide moieties seem to be N- and partially O-glycosidic bound. Isoelectric focusing (IEF) of the purified lectin revealed a heterogeneous pattern with bands in the pH range of 4.3-5.0. Isolated bands of different isoelectric points showed in SDS electrophoresis the same three fragments with molecular masses of 24, 20 or 16 kDa. The heterogeneity of the lectin was revealed either by IEF or amino acid sequencing of internal tryptic peptides.
Collapse
Affiliation(s)
- Dieter Gerlach
- Friedrich-Schiller-University of Jena, Institute of Medical Microbiology, Semmelweisstr. 4, Germany.
| | | | | | | | | |
Collapse
|
16
|
Arreguín-Espinosa R, Fenton B, Vázquez-Contreras E, Arreguín B, García-Hernández E. PFA, a novel mollusk agglutinin, is structurally related to the ribosome-inactivating protein superfamily. Arch Biochem Biophys 2001; 394:151-5. [PMID: 11594727 DOI: 10.1006/abbi.2001.2521] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural organization of PFA, a novel beta-galactose-specific agglutinin from the snail Pomacea flagellata, was partially characterized. Using mass spectrometry, the molecular weight of this glycoprotein was determined as 32,444 Da (7.4% carbohydrate). The agglutinin was found to form very large aggregates in solution, which were dissociated to monodisperse native-like dimers upon addition of polyethyleneglycol. The identity of the first 38 and the last 11 residues of the polypeptide chain was determined. It was found that PFA and the N-glycosidase subunit of ricin, a heterodimeric cytotoxin isolated from castor bean seeds, are homologous to each other in the N-terminal region. Furthermore, the far-UV circular dichroism spectra of these proteins were found to be nearly superimposable, evidencing that they share common general features in their secondary and tertiary structures. On the basis of these similarities, it can be concluded that PFA is structurally related to the ribosome-inactivating protein superfamily.
Collapse
Affiliation(s)
- R Arreguín-Espinosa
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, México
| | | | | | | | | |
Collapse
|
17
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:107-118. [PMID: 11180652 DOI: 10.1002/1096-9888(200101)36:1<107::aid-jms88>3.0.co;2-q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|