1
|
Sawada H, Mase K, Koyama R, Suenaga A. Inhibitory Effect on RT-PCR and Restriction Enzyme Activity by Ommochrome and Its Mechanism. Zoolog Sci 2023; 40:431-436. [PMID: 38064369 DOI: 10.2108/zs230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 12/18/2023]
Abstract
To explore the physiological role and/or pharmacological effects of ommochrome, which is a natural organic pigment widely distributed in Protostomia, we attempted to investigate the influence of ommochrome on RT-PCR and activities of restriction enzymes. It was found that ommin, an ommochrome purified from the diapause eggs of Bombyx mori, inhibited the RT-PCR and restriction enzyme activities. The mechanism of these inhibitory reactions is assumed to be the direct binding of ommochrome to DNA rather than acting against the enzymes because, similarly to actinomycin D, there is a phenoxazine ring in the structure of ommin that is known to be intercalated to DNA. To reveal the ommin/DNA interaction, it was investigated by computational approaches such as molecular docking, molecular dynamics simulation, and free energy calculation. From the computational analyses, it was expected that ommin would bind to DNA with almost the same strength as actinomycin D and intercalate into DNA. This is the first report on the pharmacological effect of ommochrome and its inhibitory mechanism obtained from biochemical and computational analyses.
Collapse
Affiliation(s)
- Hiroshi Sawada
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan,
| | - Keisuke Mase
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Rimi Koyama
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Atsushi Suenaga
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
2
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
ESPARZA-ESPINOZA DM, SANTACRUZ-ORTEGA HDC, CHAN-HIGUERA JE, CÁRDENAS-LÓPEZ JL, BURGOS-HERNÁNDEZ A, CARBONELL-BARRACHINA ÁA, EZQUERRA-BRAUER JM. Chemical structure and antioxidant activity of cephalopod skin ommochrome pigment extracts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Bonnard M, Boury B, Parrot I. Xanthurenic Acid in the Shell Purple Patterns of Crassostrea gigas: First Evidence of an Ommochrome Metabolite in a Mollusk Shell. Molecules 2021; 26:7263. [PMID: 34885845 PMCID: PMC8658808 DOI: 10.3390/molecules26237263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are one of the least studied groups of natural pigments, frequently confused with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been identified with physicochemical and structural characteristics similar to those of ommochromes. In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of melanins was excluded by the absence of characteristic by-products among the oxidation residues of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a complex association of porphyrins and ommochromes of potentially ommatin or ommin type.
Collapse
Affiliation(s)
- Michel Bonnard
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
- TARBOURIECH-MEDITHAU, 34340 Marseillan, France
| | - Bruno Boury
- ICGM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Isabelle Parrot
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
5
|
Luo JW, An EX, Lu YR, Yang L, Gai TT, He SZ, Wu SY, Hu H, Li CL, Lu C, Tong XL, Dai FY. Molecular basis of the silkworm mutant re l causing red egg color and embryonic death. INSECT SCIENCE 2021; 28:1290-1299. [PMID: 32918398 DOI: 10.1111/1744-7917.12871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The coloration and hatchability of insect eggs can affect individual and population survival. However, few genetic loci have been documented to affect both traits, and the genes involved in regulating these two traits are unclear. The silkworm recessive mutant rel shows both red egg color and embryo mortality. We studied the molecular basis of the rel phenotype formation. Through genetic analysis, gene screening and sequencing, we found that two closely linked genes, BGIBMGA003497 (Bm-re) and BGIBMGA003697 (BmSema1a), control egg color and embryo mortality, respectively. Six base pairs of the Bm-re gene are deleted in its open reading frame, and BmSema1a is expressed at abnormally low levels in mutant rel . BmSema1a gene function verification was performed using RNA interference and clustered randomly interspersed palindromic repeats (CRISPR)/CRISPR-associate protein 9. Deficiency of the BmSema1a gene can cause the death of silkworm embryos. This study revealed the molecular basis of silkworm rel mutant formation and indicated that the Sema1a gene is essential for insect embryo development.
Collapse
Affiliation(s)
- Jiang-Wen Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Er-Xia An
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ya-Ru Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ling Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Song-Yuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chun-Lin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Tomihara K, Satta K, Matsuzaki S, Yoshitake K, Yamamoto K, Uchiyama H, Yajima S, Futahashi R, Katsuma S, Osanai-Futahashi M, Kiuchi T. Mutations in a β-group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103624. [PMID: 34333110 DOI: 10.1016/j.ibmb.2021.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the β-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.
Collapse
Affiliation(s)
- Kenta Tomihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuya Satta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Matsuzaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiko Yamamoto
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mizuko Osanai-Futahashi
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan.
| | - Takashi Kiuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
7
|
Wu M, Wang P, Gao M, Shen D, Zhao Q. Transcriptome analysis of the eggs of the silkworm pale red egg (rep-1) mutant at 36 hours after oviposition. PLoS One 2020; 15:e0237242. [PMID: 32764803 PMCID: PMC7413551 DOI: 10.1371/journal.pone.0237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
The egg stage is one of the most critical periods in the life history of silkworms, during which physiological processes such as sex determination, tissue organ formation and differentiation, diapause and pigmentation occur. In addition, egg color gradually emerges around 36h after oviposition. The red egg mutant rep-1, which was recently discovered in the C1(H) wild-type, C1(H) exhibits a brown egg color. In this study, the transcriptome of the eggs was analyzed 36h after oviposition. Between the rep-1 mutant and the C1(H) wild-type, 800 differentially expressed genes (DEGs) were identified, including 325 up-regulated genes and 475 down-regulated genes. These DEGs were mainly involved in biological processes (metabolic process, cellular process, biological regulation and regulation of biological process and localization), cellular components (membrane, membrane part, cell, cell part and organelle) and molecular functions (binding, catalytic activity, transporter activity, structural molecule activity and molecular transducer activity). The pathway enrichment of these DEGs was performed based on the KEGG database, and the results indicated that these DEGs were mainly involved in pathways in the following categories: metabolic pathways, longevity-regulating pathway-multiple species, protein processing in endoplasmic reticulum, peroxisome, carbon metabolism and purine metabolism. Further analysis showed that a large number of silkworm growth- and development-related genes and ommochrome synthesis- and metabolism-related genes were differentially expressed, most of which were up-regulated in the mutant. Our research findings provide new experimental evidence for research on ommochrome pigmentation and lay the foundation for further research on the mechanism of the rep-1 mutant.
Collapse
Affiliation(s)
- Meina Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
8
|
Francikowski J, Krzyżowski M, Kochańska B, Potrzebska M, Baran B, Chajec Ł, Urbisz A, Małota K, Łozowski B, Kloc M, Kubiak J. Characterisation of white and yellow eye colour mutant strains of house cricket, Acheta domesticus. PLoS One 2019; 14:e0216281. [PMID: 31059541 PMCID: PMC6502451 DOI: 10.1371/journal.pone.0216281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Two eye-colour mutant strains, white (W) and yellow (Y) of house cricket Acheta domesticus were established in our laboratory. We phenotyped and genotyped the mutants, performed genetic crossings and studied the eye structure and pigment composition using light and electron microscopy and biochemical analysis. We show that W and Y phenotypes are controlled by a single autosomal recessive allele, as both traits are metabolically independent. The analysis of the mutants`eye structure showed a reduced number of dark pigment granules while simultaneously, and an increased amount of light vacuoles in white eye mutants was observed. Significant differences in eye pigment composition between strains were also found. The Y mutant had a lower number of ommochromes, while the W mutant had a lower number of ommochromes and pteridines. This indicates that mutated genes are involved in two different, independent metabolic pathways regulating tryptophan metabolism enzymes, pigment transporter granules or pigment granule formation.
Collapse
Affiliation(s)
- Jacek Francikowski
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- * E-mail:
| | - Michał Krzyżowski
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Barbara Kochańska
- The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marta Potrzebska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Baran
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Department of Embryology and Histology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Urbisz
- Department of Embryology and Histology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Department of Embryology and Histology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Łozowski
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston,Texas, United States of America
- The Houston Methodist Hospital, Department of Surgery, Houston, Texas, United States of America
- The University of Texas, M.D. Anderson Cancer Center, Department of Genetics, Houston Texas, United States of America
| | - Jacek Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
- UnivRennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Cell Cycle Group, Faculty of Medicine, Rennes, France
| |
Collapse
|
9
|
Ostrovsky MA, Zak PP, Dontsov AE. Vertebrate Eye Melanosomes and Invertebrate Eye Ommochromes as Screening Cell Organelles. BIOL BULL+ 2019. [DOI: 10.1134/s1062359018060109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
11
|
Zhang H, Lin Y, Shen G, Tan X, Lei C, Long W, Liu H, Zhang Y, Xu Y, Wu J, Gu J, Xia Q, Zhao P. Pigmentary analysis of eggs of the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:142-150. [PMID: 28750999 DOI: 10.1016/j.jinsphys.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/21/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Ommochromes are major pigments involved in coloration of eggs, eyes, wings, and epidermis of insects. Bombyx mori (silkworm) eggs contain a mixture of ommochrome pigments and their precursors. Here, we analyzed the pigment composition of every egg color strain using egg color mutants (w-2, pe, and re) and wild-type strains (dazao and C108) by using full wavelength scanning and high-performance liquid chromatography. We identified ommochrome pigments and their precursors in pigment extracts from non-diapause eggs and diapause eggs, and found that the quantities of ommochrome precursor 3-hydroxy-kynurenine were much higher in the diapause eggs. Ommochrome pigments were absent in the non-diapause eggs. We analyzed the pigment composition of every egg color strain and found an accumulation of 3-hydroxy-kynurenine and absence of ommochromes in the yellow eggs (w-2 and pe), suggesting that the essential factors for ommochrome biosynthesis are high levels of 3-hydroxy-kynurenine, enzymes for ommochrome synthesis and transferase, and spermatiation. Moreover, we confirmed that both decarboxylated xanthommatin and xanthommatin are major ommochrome pigments, and the quantity of decarboxylated xanthommatin is much higher than that of xanthommatin in silkworm eggs. Since ommochrome pigments can change color under oxidative/reductive conditions and the egg color mutant re turns crimson when preserved at a low temperature for a few weeks, we used an oxidation-reduction reaction in vitro to explore mechanisms behind the pigment-based color change. Specifically, during diapause, the contents of decarboxylated xanthommatin and xanthommatin are increased, and the ommochrome pigments convert into their reduced forms.
Collapse
Affiliation(s)
- Haiyan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Xue Tan
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Chao Lei
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yandi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yinying Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jinxin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jianjian Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
12
|
Positional cloning of a Bombyx pink-eyed white egg locus reveals the major role of cardinal in ommochrome synthesis. Heredity (Edinb) 2015; 116:135-45. [PMID: 26328757 DOI: 10.1038/hdy.2015.74] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/09/2023] Open
Abstract
Ommochromes are major insect pigments involved in coloration of compound eyes, eggs, epidermis and wings. In the silkworm Bombyx mori, adult compound eyes and eggs contain a mixture of the ommochrome pigments such as ommin and xanthommatin. Here, we identified the gene involved in ommochrome biosynthesis by positional cloning of B. mori egg and eye color mutant pink-eyed white egg (pe). The recessive homozygote of pe has bright red eyes and white or pale pink eggs instead of a normal dark coloration due to the decrease of dark ommochrome pigments. By genetic linkage analysis, we narrowed down the pe-linked region to ~258 kb, containing 17 predicted genes. RNA sequencing analyses showed that the expression of one candidate gene, the ortholog of Drosophila haem peroxidase cardinal, coincided with egg pigmentation timing, similar to other ommochrome-related genes such as Bm-scarlet and Bm-re. In two pe strains, a common missense mutation was found within a conserved motif of B. mori cardinal homolog (Bm-cardinal). RNA interference-mediated knockdown and transcription activator-like effector nuclease (TALEN)-mediated knockout of the Bm-cardinal gene produced the same phenotype as pe in terms of egg, adult eye and larval epidermis coloration. A complementation test of the pe mutant with the TALEN-mediated Bm-cardinal-deficient strain showed that the mutant phenotype could not be rescued, indicating that Bm-cardinal is responsible for pe. Moreover, knockdown of the cardinal homolog in Tribolium castaneum also induced red compound eyes. Our results indicate that cardinal plays a major role in ommochrome synthesis of holometabolous insects.
Collapse
|
13
|
Abstract
Body color change associated with sexual maturation--so-called nuptial coloration--is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait.
Collapse
|
14
|
Osanai-Futahashi M, Tatematsu KI, Yamamoto K, Narukawa J, Uchino K, Kayukawa T, Shinoda T, Banno Y, Tamura T, Sezutsu H. Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. J Biol Chem 2012; 287:17706-17714. [PMID: 22474291 PMCID: PMC3366856 DOI: 10.1074/jbc.m111.321331] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ommochromes are one of the major pigments involved in coloration of eggs, eyes, and body surface of insects. However, the molecular mechanisms of the final steps of ommochrome pigment synthesis have been largely unknown. The eggs of the silkworm Bombyx mori contain a mixture of ommochrome pigments, and exhibit a brownish lilac color. The recessive homozygous of egg and eye color mutant, red egg (re), whose eggs display a pale orange color instead of normal dark coloration, has been long suggested to have a defect in the biosynthesis of the final ommochrome pigments. Here, we identify the gene responsible for the re locus by positional cloning, mutant analysis, and RNAi experiments. In the re mutants, we found that a 541-bp transposable element is inserted into the ORF of BGIBMGA003497-1 (Bm-re) encoding a novel member of a major facilitator superfamily transporter, causing disruption of the splicing of exon 9, resulting in two aberrant transcripts with frameshifts yielding nonfunctional proteins lacking the C-terminal transmembrane domains. Bm-re function in pigmentation was confirmed by embryonic RNAi experiments. Homologs of the Bm-re gene were found in all insect genomes sequenced at present, except for 12 sequenced Drosophila genomes, which seemed to correlate with the previous studies that have demonstrated that eye ommochrome composition is different from other insects in several Dipterans. Knockdown of the Bm-re homolog by RNAi in the red flour beetle Tribolium castaneum caused adult compound eye coloration defects, indicating a conserved role in ommochrome pigment biosynthesis at least among holometabolous insects.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Kimiko Yamamoto
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Junko Narukawa
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Takumi Kayukawa
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuro Shinoda
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Yutaka Banno
- Laboratory of Insect Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Toshiki Tamura
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
15
|
Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP. A comparative study of fat body morphology in five mosquito species. Mem Inst Oswaldo Cruz 2011; 106:742-7. [DOI: 10.1590/s0074-02762011000600015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/17/2011] [Indexed: 11/22/2022] Open
|
16
|
Insausti TC, Casas J. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells. Tissue Cell 2009; 41:421-9. [PMID: 19631357 DOI: 10.1016/j.tice.2009.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 12/19/2022]
Abstract
Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.
Collapse
Affiliation(s)
- T C Insausti
- Université de Tours, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Tours, France.
| | | |
Collapse
|
17
|
Wittkopp PJ, Beldade P. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 2008; 20:65-71. [PMID: 18977308 DOI: 10.1016/j.semcdb.2008.10.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/03/2008] [Indexed: 12/27/2022]
Abstract
Insect pigmentation is a premier model system in evolutionary and developmental biology. It has been at the heart of classical studies as well as recent breakthroughs. In insects, pigments are produced by epidermal cells through a developmental process that includes pigment patterning and synthesis. Many aspects of this process also impact other phenotypes, including behavior and immunity. This review discusses recent work on the development and evolution of insect pigmentation, with a focus on pleiotropy and its effects on color pattern diversification.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- 830 North University Avenue, Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | |
Collapse
|
18
|
Yan L, Zhi-Qi M, Bao-Long N, Li-Hua H, Hong-Biao W, Wei-Feng S. Molecular cloning and analysis of the tryptophan oxygenase gene in the silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2008; 8:1-7. [PMID: 20331401 PMCID: PMC3062493 DOI: 10.1673/031.008.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/11/2007] [Indexed: 05/29/2023]
Abstract
A Bombyx mori L. (Lepidoptera: Bombycidae) gene encoding tryptophan oxygenase has been molecularly cloned and analyzed. The tryptophan oxygenase cDNA had 1374 nucleotides that encoded a 401 amino acid protein with an estimated molecular mass of 46.47 kDa and a PI of 5.88. RT-PCR analysis showed that the B. mori tryptophan oxygenase gene was transcribed in all examined stages. Tryptophan oxygenase proteins are relatively well conserved among different orders of arthropods.
Collapse
Affiliation(s)
- Liu Yan
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Meng Zhi-Qi
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Niu Bao-Long
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - He Li-Hua
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weng Hong-Biao
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shen Wei-Feng
- Sericulture Research institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
19
|
Forgacs E, Cserhati T. THIN-LAYER CHROMATOGRAPHY OF NATURAL PIGMENTS: NEW ADVANCES. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120005702] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- E. Forgacs
- a Chemical Research Center , Institute of Chemistry , Hungarian Academy of Sciences , P.O. Box 17, Budapest , 1525 , Hungary
| | - T. Cserhati
- b Chemical Research Center, Hungarian Academy of Sciences, P. O. Box 17 , Institute of Chemistry , Budapest , 1525 , Hungary
| |
Collapse
|
20
|
Sawada H, Yamahama Y, Mase K, Hirakawa H, Iino T. Molecular properties and tissue distribution of 30K proteins as ommin-binding proteins from diapause eggs of the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:172-9. [PMID: 17134929 DOI: 10.1016/j.cbpb.2006.10.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/07/2006] [Accepted: 10/15/2006] [Indexed: 10/24/2022]
Abstract
We previously reported the purification of an ommin-binding protein (OMBP) from an acid-methanol extract of diapause eggs of the silkworm and that OMBP reacted with the anti-30K proteins antiserum. In order to clarify the relationship between OMBP and the 30K proteins, we attempted to determine the sequence of the N-terminal amino acid of OMBP, which was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). We observed ten protein spots of various isoelectric points; the spots corresponded with 30 kDa. Based on the sequence of the N-terminal amino acid (20 residues), the spots belonged to two kinds of 30K proteins (6G1 and 19G1), which are known as the major plasma proteins in the larval hemolymph of the silkworm. The proteins are expected to attach to polysaccharide because they reacted with concanavalin A and elderberry bark lectin. Immunohistochemical observations clarified that the proteins were localized in yolk granules and serosa in the diapause egg. These results suggest that OMBP is composed of 30K proteins which were modified with polysaccharides. In addition, the expression of 30K proteins mRNA was observed at early embryonic stage in diapause eggs by RT-PCR analysis. The 30K proteins as OMBP may play an important role in the transport and accumulation of tryptophan metabolites and ommochrome during the formation of serosa.
Collapse
Affiliation(s)
- Hiroshi Sawada
- Laboratory of Biology, Department of General Studies, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
21
|
Reed RD, Nagy LM. Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev 2005; 7:301-11. [PMID: 15982367 DOI: 10.1111/j.1525-142x.2005.05036.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ommochromes are common among insects as visual pigments; however, in some insect lineages ommochromes have evolved novel functions such as integument coloration and tryptophan secretion. One role of ommochromes, as butterfly wing pigments, can apparently be traced to a single origin in the family Nymphalidae. The synthesis and storage of ommochrome pigments is a complex process that requires the concerted activity of multiple enzyme and transporter molecules. To help understand how this subcellular process appeared in a novel context during evolution, we explored aspects of ommochrome pigment development in the wings of the nymphalid butterfly Vanessa cardui. Using chromatography and radiolabeled precursor incorporation studies we identified the ommochrome xanthommatin as a V. cardui wing pigment. We cloned fragments of two ommochrome enzyme genes, vermilion and cinnabar, and an ommochrome precursor transporter gene, white, and found that these genes were transcribed in wing tissue at relatively high levels during wing scale development. Unexpectedly, however, the spatial patterns of transcription were not associated in a simple way with adult pigment patterns. Although our results suggest that the evolution of ommochrome synthesis in butterfly wings likely arose in part through novel regulation of vermilion, cinnabar, and white transcription, they also point to a complex relationship between transcriptional prepatterns and pigment synthesis in V. cardui.
Collapse
Affiliation(s)
- Robert D Reed
- Department of Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
22
|
Sawada H, Nakagoshi M, Reinhardt RK, Ziegler I, Koch PB. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:609-615. [PMID: 12020835 DOI: 10.1016/s0965-1748(01)00139-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.
Collapse
Affiliation(s)
- H Sawada
- Biological Laboratory, Center for Natural Science, Kitasato University, 1-15-1, Sagamihara City, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|