1
|
Kevlishvili I, St Michel RG, Garrison AG, Toney JW, Adamji H, Jia H, Román-Leshkov Y, Kulik HJ. Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes. Faraday Discuss 2025; 256:275-303. [PMID: 39301698 DOI: 10.1039/d4fd00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.
Collapse
Affiliation(s)
- Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Roland G St Michel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron G Garrison
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jacob W Toney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Haojun Jia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Hong G, Chang JE. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024; 16:1420. [PMID: 39598543 PMCID: PMC11597730 DOI: 10.3390/pharmaceutics16111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT's ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT's mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT's synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
3
|
Zheng Y, Tang M, Deng Z, Cai P. Genetic polymorphisms and platinum-induced hematological toxicity: a systematic review. Front Pharmacol 2024; 15:1445328. [PMID: 39234108 PMCID: PMC11371761 DOI: 10.3389/fphar.2024.1445328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background Platinum-based chemotherapy bring severe hematological toxicity that can lead to dose reduction or discontinuation of therapy. Genetic variations have been reported to influence the risk and extent of hematological toxicity; however, the results are controversial and a comprehensive overview is lacking. This systematic review aimed to identify genetic biomarkers of platinum-induced hematological toxicity. Method Pubmed, Embase and Web of science database were systematically reviewed for studies that evaluated the association of genetic variants and platinum-related hematological toxicity in tumor patients with no prior history of chemotherapy or radiation, published from inception to the 28th of January 2022. The studies should have specific toxicity scoring system as well as defined toxicity end-point. The quality of reporting was assessed using the Strengthening the Reporting of Genetic Association Studies (STREGA) checklist. Results were summarized using narrative synthesis. Results 83 studies were eligible with over 682 single-nucleotide polymorphisms across 110 genes. The results are inconsistent and diverse with methodological issues including insufficient sample size, population stratification, various treatment schedule and toxicity end-point, and inappropriate statistics. 11 SNPs from 10 genes (ABCB1 rs1128503, GSTP1 rs1695, GSTM1 gene deletion, ERCC1 rs11615, ERCC1 rs3212986, ERCC2 rs238406, XPC rs2228001, XPCC1 rs25487, MTHFR rs1801133, MDM2 rs2279744, TP53 rs1042522) had consistent results in more than two independent populations. Among them, GSTP1 rs1695, ERCC1 rs11615, ERCC1 rs3212986, and XRCC1 rs25487 present the most promising results. Conclusion Even though the results are inconsistent and several methodological concerns exist, this systematic review identified several genetic variations that deserve validation in well-defined studies with larger sample size and robust methodology. Systematic Review Registration https://www.crd.york.ac.uk/, identifier CRD42021234164.
Collapse
Affiliation(s)
- Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Deng
- Hunan Institute for Tuberculosis Control and Hunan Chest Hospital, Changsha, China
- Hunan Chest Hospital, Changsha, China
| | - Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
4
|
Lin Y, Liang R, Xie K, Ma T, Zhang J, Xu T, Wang A, Liu S. Puerarin inhibits cisplatin-induced ototoxicity in mice through regulation of TRPV1-dependent calcium overload. Biochem Pharmacol 2024; 220:115962. [PMID: 38043717 DOI: 10.1016/j.bcp.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Puerarin (PUE), a flavonoid derivative with vasodilatory effects found in the traditional Chinese medicine kudzu, has anti-sensorineural hearing loss properties. However, the mechanism of its protective effect against ototoxicity is not well understood. In this study, we used in vitro and in vivo methods to investigate the protective mechanism of puerarin against cisplatin (CDDP)-induced ototoxicity. We established an ototoxicity model of CDDP in BALB/c mice and assessed the degree of hearing loss and cochlear cell damage. We used bioinformatics analysis, molecular docking, histological analysis, and biochemical and molecular biology to detect the expression of relevant factors. Our results show that puerarin improved CDDP-induced hearing loss and reduced hair cell loss. It also blocked CDDP-induced activation of TRPV1 and inhibited activation of IP3R1 to prevent intracellular calcium overload. Additionally, puerarin blocked CDDP-stimulated p65 activation, reduced excessive ROS production, and alleviated cochlear cell apoptosis. Our study provides new evidence and potential targets for the protective effect of puerarin against drug-induced hearing loss. Puerarin ameliorates cisplatin-induced ototoxicity and blocks cellular apoptosis by inhibiting CDDP activated TRPV1/IP3R1/p65 pathway, blocking induction of calcium overload and excessive ROS expression.
Collapse
Affiliation(s)
- Yuhan Lin
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Rui Liang
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Kairong Xie
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Tingting Ma
- Life Science Institute, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Jigui Zhang
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou 121000 PR China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China.
| | - Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou 121000 PR China.
| |
Collapse
|
5
|
Kim H, Park KT, Jo H, Shin Y, Chung G, Ko SG, Jin YH, Kim W. The effect of ginger extract on cisplatin-induced acute anorexia in rats. Front Pharmacol 2023; 14:1267254. [PMID: 38026983 PMCID: PMC10665510 DOI: 10.3389/fphar.2023.1267254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic agent widely used to treat various cancers. However, several side effects have been reported in treated patients. Among these, acute anorexia is one of the most severe secondary effects. In this study, a single oral administration of 100 or 500 mg/kg ginger extract (GE) significantly alleviated the cisplatin-induced decrease in food intake in rats. However, these body weight and water intake decreases were reversed in the 100 mg/kg group rats. To elucidate the underlying mechanism of action, serotonin (5-HT) and 5-HT2C, 3A, and 4 receptors in the nodose ganglion of the vagus nerve were investigated. The results showed that cisplatin-induced increases in serotonin levels in both the blood and nodose ganglion tissues were significantly decreased by100 and 500 mg/kg of GE administration. On 5-HT receptors, 5-HT3A and 4, but not 2C receptors, were affected by cisplatin, and GE 100 and 500 mg/kg succeeded in downregulating the evoked upregulated gene of these receptors. Protein expression of 5-HT3A and 4 receptors were also reduced in the 100 mg/kg group. Furthermore, the injection of 5-HT3A, and 4 receptors antagonists (palonostron, 0.1 mg/kg, i.p.; piboserod, 1 mg/kg, i.p., respectively) in cisplatin treated rats prevented the decrease in food intake. Using high-performance liquid chromatography (HPLC) analysis, [6]-gingerol and [6]-shogaol were identified and quantified as the major components of GE, comprising 4.12% and 2.15% of the GE, respectively. Although [6]-gingerol or [6]-shogaol alone failed to alleviate the evoked anorexia, when treated together, the effect was significant on the cisplatin-induced decrease in food intake. These results show that GE can be considered a treatment option to alleviate cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Hyeonah Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yuchan Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Szénási A, Sivasudhan E, Du H, Zhang P, Huang J, Zhang Z, Rocha S, Wang M. Targeting SOD1 via RNAi with PEGylated graphene oxide nanoparticles in platinum-resistant ovarian cancer. Cancer Gene Ther 2023; 30:1554-1568. [PMID: 37582934 PMCID: PMC10645591 DOI: 10.1038/s41417-023-00659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Acquired platinum resistance poses a significant therapeutic impediment to ovarian cancer patient care, accounting for more than 200,000 deaths annually worldwide. We previously identified that overexpression of the antioxidant superoxide dismutase 1 (SOD1) in ovarian cancer is associated with a platinum-resistant phenotype via conferring oxidative stress resistance against platinum compounds. We further demonstrated that enzymatic inhibition using small-molecule inhibitors or silencing of SOD1 via RNA interference (RNAi) increased cisplatin sensitivity and potency in vitro. We launched this study to explore the potential therapeutic applications of SOD1 silencing in vivo in order to reverse cisplatin resistance using a graphene-based siRNA delivery platform. PEGylated graphene oxide (GO) polyethyleneimine (GOPEI-mPEG) nanoparticle was complexed with SOD1 siRNA. GOPEI-mPEG-siSOD1 exhibited high biocompatibility, siRNA loading capacity, and serum stability, and showed potent downregulation of SOD1 mRNA and protein levels. We further observed that cisplatin and PEI elicited mitochondrial dysfunction and transcriptionally activated the mitochondrial unfolded protein response (UPRmt) used as a reporter for their respective cytotoxicities. SOD1 silencing was found to augment cisplatin-induced cytotoxicity resulting in considerable tumour growth inhibition in cisplatin-sensitive A2780 and cisplatin-resistant A2780DDP subcutaneous mouse xenografts. Our study highlights the potential therapeutic applicability of RNAi-mediated targeting of SOD1 as a chemosensitizer for platinum-resistant ovarian cancers.
Collapse
Affiliation(s)
- Attila Szénási
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Enakshi Sivasudhan
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Hong Du
- Suzhou GenePharma, Suzhou, Jiangsu, 215123, China
| | | | - Jie Huang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Zhijun Zhang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mu Wang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
7
|
Arojojoye AS, Walker B, Dewahare JC, Afrifa MAO, Parkin S, Awuah SG. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43607-43620. [PMID: 37698293 PMCID: PMC11264193 DOI: 10.1021/acsami.3c10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
Collapse
Affiliation(s)
| | - Breyanna Walker
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - James C. Dewahare
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
8
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Pinto MT, Eiras Martins G, Vieira AGS, Galvão JMS, de Pádua Souza C, Macedo CRPD, Lopes LF. Molecular Biology of Pediatric and Adult Ovarian Germ Cell Tumors: A Review. Cancers (Basel) 2023; 15:cancers15112990. [PMID: 37296950 DOI: 10.3390/cancers15112990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian germ cell tumors (OGCTs) are rare in adults; indeed, they occur predominantly in children, adolescents, and young adults, and they account for approximately 11% of cancer diagnoses in these groups. Because OGCTs are rare tumors, our current understanding of them is sparse; this is because few studies have investigated the molecular basis of pediatric and adult cancers. Here, we review the etiopathogenesis of OGCTs in children and adults, and we address the molecular landscape of these tumors, including integrated genomic analysis, microRNAs, DNA methylation, the molecular implications of treatment resistance, and the development of in vitro and in vivo models. An elucidation of potential molecular alterations may provide a novel field for understanding the pathogenesis, tumorigenesis, diagnostic markers, and genetic peculiarity of the rarity and complexity of OGCTs.
Collapse
Affiliation(s)
| | - Gisele Eiras Martins
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil
- Children's Cancer Hospital from Hospital de Amor, Barretos 14784400, Brazil
| | - Ana Glenda Santarosa Vieira
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil
- Children's Cancer Hospital from Hospital de Amor, Barretos 14784400, Brazil
| | | | | | - Carla Renata Pacheco Donato Macedo
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil
- Pediatric Oncology Department, IOP/GRAACC/Federal University of Sao Paulo, Sao Paulo 04038001, Brazil
| | - Luiz Fernando Lopes
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil
- Children's Cancer Hospital from Hospital de Amor, Barretos 14784400, Brazil
| |
Collapse
|
10
|
Pandey P, Suyal G, Pasbola K, Sharma R. NGS-based profiling identifies miRNAs and pathways dysregulated in cisplatin-resistant esophageal cancer cells. Funct Integr Genomics 2023; 23:111. [PMID: 36995552 DOI: 10.1007/s10142-023-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Esophageal cancer (EC) incidence remains to be on a global rise supported by an unchanged recurrence and 5-year survival rate owing to the development of chemoresistance. Resistance to cisplatin, one of the majorly used chemotherapeutic drugs in EC, is a major nuisance. This study sheds light on miRNA dysregulation and its inverse relation with dysregulated mRNAs to guide pathways into the manifestation of cisplatin resistance in EC. A cisplatin-resistant version of an EC cell line was established and comparative profiling by NGS with the parental cell line was employed to identify dysregulation in miRNA and mRNA levels. Protein-protein interaction network analysis was done using Cytoscape, followed by Funrich pathway analysis. Furthermore, selective significant miRNAs were validated using qRT-PCR. miRNA-mRNA integrated analysis was carried out using the Ingenuity Pathway Analysis (IPA) tool. Expression of various established resistance markers supported the successful establishment of cisplatin-resistant cell line. Whole-cell small RNA sequencing and transcriptome sequencing identified 261 miRNAs and 1892 genes to be significantly differentially expressed (DE), respectively. Pathway analysis indicated enrichment of EMT signaling, supported by NOTCH, mTOR, TNF receptor, and PI3K-mediated AKT signaling pathways, in chemoresistant cells. Validation by qRT-PCR confirmed upregulation of miR-10a-5p, miR-618, miR-99a-5p, and miR-935 and downregulation of miR-335-3p, miR-205-5p, miR-944, miR-130a-3p, and miR-429 in resistant cells. Pathway analysis that followed IPA analysis indicated that the dysregulation of these miRNAs and their target genes may be instrumental in the development and regulation of chemoresistance via p53 signaling, xenobiotic metabolism, and NRF2-mediated oxidative stress. This study concludes the interplay between miRNA and mRNA as an important aspect and occurrence in guiding the regulation, acquisition, and maintenance of chemoresistance in esophageal cancer in vitro.
Collapse
Affiliation(s)
- Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
- Zonal Technology Management & Business Planning and Development Unit (ZTM & BPD Unit), Indian Council of Agricultural Research- Indian Agricultural Research Institute (ICAR-IARI), Pusa, New Delhi, India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India.
| |
Collapse
|
11
|
Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S, Kakhlon O. Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol 2022; 10:1014798. [PMID: 36544904 PMCID: PMC9760697 DOI: 10.3389/fcell.2022.1014798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.
Collapse
Affiliation(s)
- Avital Granit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kumudesh Mishra
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dinorah Barasch
- Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz-Yablonsky
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Dame Susan Garth Chair of Cancer Research, The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
A theoretical characterization of mechanisms of action of osmium(III)-based drug Os-KP418: hydrolysis and its binding with guanine. Struct Chem 2022. [DOI: 10.1007/s11224-022-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Patra SA, Banerjee A, Sahu G, Mohanty M, Lima S, Mohapatra D, Görls H, Plass W, Dinda R. Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. J Inorg Biochem 2022; 233:111852. [DOI: 10.1016/j.jinorgbio.2022.111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
14
|
Sinha A, Chaudhary R, Reddy DS, Kongot M, Kurjogi MM, Kumar A. ON donor tethered copper (II) and vanadium (V) complexes as efficacious anti-TB and anti-fungal agents with spectroscopic approached HSA interactions. Heliyon 2022; 8:e10125. [PMID: 36033266 PMCID: PMC9403362 DOI: 10.1016/j.heliyon.2022.e10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial drug resistance poses a significant threat worldwide, hence triggering an urgent situation for developing feasible drugs. 3D-transition metal coordination complexes being multifaceted, offer tremendous potency as drug candidates. However, there are fewer reports on non-toxic and safe transition metal complexes; therefore, we hereby attempted to develop novel copper and vanadium-based therapeutic agents. We have synthesised six metal complexes viz., [VVO2(Quibal-INH)] (1), [CuII(Quibal-INH)2] (2), [VVO(Quibal-INH) (cat)] (3), [CuII(Quibal-INH) (cat)] (4), [VVO(Quibal-INH) (bha)] (5) and [CuII(Quibal-INH) (bha)] (6). Quibal-INH (L) is an ON bidentate donor ligand synthesized from Schiff base reaction between 4-(2-(7-chloroquinolin-3-yl)vinyl)benzaldehyde (Quibal) and Isoniazid (INH). The synthesized compounds were characterized using analytical techniques involving ATR-IR, UV-Vis, EPR, 1H NMR, 13C NMR, and 51V NMR. Ligand (L) and compound 3 exhibited moderate growth inhibitory activity towards Candida albicans and Cryptococcus neoformans fungal species. Compound 6 has been identified as active against the above fungal species with no toxicity and hemolysis activity on the healthy cells. Compound 5 exhibited significant activity against the Mycobacterium tuberculosis H 37 R v strain. Further, compounds 4, 5 and 6 exhibited excellent free radical scavenging activity. All the developed compounds were found to exhibit stability over a wide range of pH conditions. The complexes were additionally studied for their interaction with human serum albumin (HSA) with the UV-vis spectroscopic technique.
Collapse
Affiliation(s)
- Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| |
Collapse
|
15
|
Tong T, Qin X, Jiang Y, Guo H, Wang X, Li Y, Xie F, Lu H, Zhai P, Ma H, Zhang J. A novel CREB5/TOP1MT axis confers cisplatin resistance through inhibiting mitochondrial apoptosis in head and neck squamous cell carcinoma. BMC Med 2022; 20:231. [PMID: 35773668 PMCID: PMC9248137 DOI: 10.1186/s12916-022-02409-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cisplatin resistance is one of the main causes of treatment failure and death in head and neck squamous cell carcinoma (HNSCC). A more comprehensive understanding of the cisplatin resistance mechanism and the development of effective treatment strategies are urgent. METHODS RNA sequencing, RT-PCR, and immunoblotting were used to identify differentially expressed genes associated with cisplatin resistance. Gain- and loss-of-function experiments were performed to detect the effect of CREB5 on cisplatin resistance and mitochondrial apoptosis in HNSCC. Chromatin immunoprecipitation (ChIP) assay, dual-luciferase reporter assay, and immunoblotting experiments were performed to explore the underlying mechanisms of CREB5. RESULTS CREB5 was significantly upregulated in cisplatin-resistant HNSCC (CR-HNSCC) patients, which was correlated with poor prognosis. CREB5 overexpression strikingly facilitated the cisplatin resistance of HNSCC cells in vitro and in vivo, while CREB5 knockdown enhanced cisplatin sensitivity in CR-HNSCC cells. Interestingly, the activation of AKT signaling induced by cisplatin promoted nucleus translocation of CREB5 in CR-HNSCC cells. Furthermore, CREB5 transcriptionally activated TOP1MT expression depending on the canonical motif. Moreover, CREB5 silencing could trigger mitochondrial apoptosis and overcome cisplatin resistance in CR-HNSCC cells, which could be reversed by TOP1MT overexpression. Additionally, double-targeting of CREB5 and TOP1MT could combat cisplatin resistance of HNSCC in vivo. CONCLUSIONS Our findings reveal a novel CREB5/TOP1MT axis conferring cisplatin resistance in HNSCC, which provides a new basis to develop effective strategies for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Tong Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, People's Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Yingying Jiang
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261000, People's Republic of China
| | - Haiyan Guo
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaoning Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yan Li
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Hailong Ma
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
16
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
17
|
Liu T, Zhang Z, Wang C, Huang H, Li Y. BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem Cell Biol 2022; 100:179-187. [PMID: 35167374 DOI: 10.1139/bcb-2021-0552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platinum-based chemotherapy is a widely used strategy for bladder cancer (BCa) treatment. However, its clinical efficacy is affected by chemotherapy resistance via complex molecular mechanisms. Therefore, there is an urgent need to explore new targets for BCa therapy. Here, we showed that bromodomain-4 protein (BRD4) expression is upregulated in BCa tissues and cells. Inhibition of BRD4 attenuated the migration and invasion of BCa cells, which was rescued by the Sonic hedgehog (SHH) pathway activator recombinant human Sonic hedgehog peptide (rhSHH). We further found that cisplatin (DDP) suppressed the migration and invasion of BCa cells in vitro and inhibited tumor growth in vivo. However, overexpression of BRD4 weakened the pharmacological effects of DDP. In brief, our research revealed that BRD4 promotes migration and invasion by positively regulating the SHH pathway, drives DDP resistance in BCa, and is a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Ze Zhang
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China
| |
Collapse
|
18
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
19
|
Pietras P, Aulas A, Fay MM, Leśniczak-Staszak M, Sowiński M, Lyons SM, Szaflarski W, Ivanov P. Translation inhibition and suppression of stress granules formation by cisplatin. Biomed Pharmacother 2021; 145:112382. [PMID: 34864307 PMCID: PMC8782064 DOI: 10.1016/j.biopha.2021.112382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Platinum-based antineoplastic drugs, such as cisplatin, are commonly used to induce tumor cell death. Cisplatin is believed to induce apoptosis as a result of cisplatin-DNA adducts that inhibit DNA and RNA synthesis. Although idea that DNA damage underlines anti-proliferative effects of cisplatin is dominant in cancer research, there is a poor correlation between the degree of the cell sensitivity to cisplatin and the extent of DNA platination. Here, we examined possible effects of cisplatin on post-transcriptional gene regulation that may contribute to cisplatin-mediated cytotoxicity. We show that cisplatin suppresses formation of stress granules (SGs), pro-survival RNA granules with multiple roles in cellular metabolism. Mechanistically, cisplatin inhibits cellular translation to promote disassembly of polysomes and aggregation of ribosomal subunits. As SGs are in equilibrium with polysomes, cisplatin-induced shift towards ribosomal aggregation suppresses SG formation. Our data uncover previously unknown effects of cisplatin on RNA metabolism.
Collapse
Affiliation(s)
- Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Anaïs Aulas
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marta M Fay
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Shawn M Lyons
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Li J, Zhang Y, Sun J, Chen L, Gou W, Chen C, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021; 11:e627. [PMID: 34923765 PMCID: PMC8684776 DOI: 10.1002/ctm2.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic nucleoplasmic DNA-binding protein 1 (And-1), an important factor for deoxyribonucleic acid (DNA) replication and repair, is overexpressed in many types of cancer but not in normal tissues. Although multiple independent studies have elucidated And-1 as a promising target gene for cancer therapy, an And-1 inhibitor has yet to be identified. Using an And-1 luciferase reporter assay to screen the Library of Pharmacologically Active Compounds (LOPAC) in a high throughput screening (HTS) platform, and then further screen the compound analog collection, we identified two potent And-1 inhibitors, bazedoxifene acetate (BZA) and an uncharacterized compound [(E)-5-(3,4-dichlorostyryl)benzo[c][1,2]oxaborol-1(3H)-ol] (CH3), which specifically inhibit And-1 by promoting its degradation. Specifically, through direct interaction with And-1 WD40 domain, CH3 interrupts the polymerization of And-1. Depolymerization of And-1 promotes its interaction with E3 ligase Cullin 4B (CUL4B), resulting in its ubiquitination and subsequent degradation. Furthermore, CH3 suppresses the growth of a broad range of cancers. Moreover, And-1 inhibitors re-sensitize platinum-resistant ovarian cancer cells to platinum drugs in vitro and in vivo. Since BZA is an FDA approved drug, we expect a clinical trial of BZA-mediated cancer therapy in the near future. Taken together, our findings suggest that targeting And-1 by its inhibitors is a potential broad-spectrum anti-cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yi Zhang
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jing Sun
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Chi‐Wei Chen
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yuan Zhou
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Zhuqing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of MedicineThe University of Hong KongHong, China
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Wenge Zhu
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
21
|
Gao L, Zhang X. Propofol enhances the lethality of cisplatin on liver cancer cells by up-regulating miR-195-5p. Tissue Cell 2021; 74:101680. [PMID: 34808429 DOI: 10.1016/j.tice.2021.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Literatures have demonstrated that propofol can improve the efficacy of cisplatin, and miR-195 is implicated in the underlying mechanism concerning the anticancer effects of propofol. However, correlation between propofol and miR-195 has been little studied. This study clarified that propofol enhanced the inhibitory effect of cisplatin in liver cancer cells via miR-195-5p. 50 samples of liver cancer and para-cancer tissues in patients were collected and the difference in the expression of miR-195-5p was then analyzed. The liver cancer cells treated with gradient concentrations of cisplatin (3, 6.25, 12.5, 25, 50 μg/mL) and propofol (2, 5, 10 μg/mL) were tested for drug toxicity using CCK-8 assay. Next, following the transfection, the effects of propofol, cisplatin and miR-195-5p on the functions of liver cancer cells and the expressions of related proteins were analyzed by clone formation, flow cytometry and western blot. The downstream target genes of miR-195-5p were predicted by bio-informatics analysis and verified by dual-luciferase reporter assay, and their expressions in cancer cell was also calculated. The changes on the expressions of target genes were further detected by qRT-PCR and western blot. MiR-195-5p was lowly-expressed in liver cancer, and the up-regulation of miR-195-5p enhanced the sensitivity of liver cancer cells to cisplatin. Propofol inhibited the viability of liver cancer cells and stimulated the up-regulation of miR-195-5p. Propofol enhanced the lethality of cisplatin to liver cancer cells and reversed the repressive effects of miR-195-5p inhibitor on the efficacy of cisplatin. CCNE1 was the downstream target gene of miR-195-5p and its expression was up-regulated by miR-195-5p inhibitor in cisplatin-treated liver cancer cells. Collectively, propofol enhances the lethality of cisplatin to liver cancer cells by up-regulating miR-195-5p.
Collapse
Affiliation(s)
- Lan Gao
- Pharmacy Department, The People's Hospital of Xinchang, China
| | - Xiufeng Zhang
- Pharmacy Department, The People's Hospital of Xinchang, China.
| |
Collapse
|
22
|
Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:761379. [PMID: 34746001 PMCID: PMC8569522 DOI: 10.3389/fonc.2021.761379] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based chemotherapy or chemoradiotherapy has been considered as the first-line treatment. Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation, transport processes, programmed cell death and tumor microenvironment. In addition, this review summarizes the strategies applicable to overcome cisplatin resistance, which can provide new ideas to improve the clinical therapeutic outcome of OSCC.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Svoboda J, Zolal A, Králík F, Eigner V, Ruml T, Zelenka J, Syslová K. Trans-palladium complexes with 1-adamantanamine and various halide ions: Synthesis, characterization, DNA and protein binding and in vitro cytotoxicity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, Holmlund JT, Anderson CM, Zepeda-Orozco D, Buatti JM, Spitz DR, Allen BG. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10091329. [PMID: 34572961 PMCID: PMC8469643 DOI: 10.3390/antiox10091329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD. We review the mechanisms by which cisplatin may induce AKI and CKD and discuss the potential of mitochondrial superoxide dismutase mimetics to prevent platinum-associated nephrotoxicity.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Emily J. Steinbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Amira Zaher
- Biomedical Science Program, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Dennis P. Riley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Robert A. Beardsley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jeffery L. Keene
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jon T. Holmlund
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Carryn M. Anderson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Diana Zepeda-Orozco
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Nephrology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - John M. Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
- Correspondence: ; Tel.: +1-319-335-8019; Fax: +1-319-335-8039
| |
Collapse
|
25
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
26
|
Okamoto K, Kitaichi F, Saito Y, Ueda H, Narumi K, Furugen A, Kobayashi M. Antioxidant effect of ascorbic acid against cisplatin-induced nephrotoxicity and P-glycoprotein expression in rats. Eur J Pharmacol 2021; 909:174395. [PMID: 34332922 DOI: 10.1016/j.ejphar.2021.174395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cisplatin (CDDP) is a highly potent anticancer drug that is widely used in the treatment of several cancers. CDDP-induced nephrotoxicity (CIN) is one of the most significant adverse effects, and oxidative stress is thought to be one of the mechanisms underlying CIN. Although there are some studies available on the variability in transporter expression in the kidney after a single CDDP dose, none have reported the change in renal transporter expression after multiple CDDP dose administrations. P-glycoprotein (P-gp), a transporter, is reported to be induced by oxidative stress. Ascorbic acid is a vitamin with antioxidant potential and therefore, may regulate the expression of P-gp transporter and affect CIN. In the present study, our aim was to assess the variability in expression of several renal transporters after multiple CDDP dose administrations and the antioxidant effect of ascorbic acid against transporter expression and CIN. Multiple doses of CDDP affected markers of kidney injury and antioxidants in the kidneys. Also, the expression of P-gp, breast cancer resistance protein, and multidrug resistance-associated protein 4 was upregulated by CDDP. Using a normal kidney cell line, we demonstrated that ascorbic acid attenuated CDDP-induced cytotoxicity due to its high superoxide scavenging ability. CDDP and ascorbic acid were injected into rats once a week for three weeks, and it was observed that co-administration of ascorbic acid attenuated CIN and regulated antioxidant marker. In addition, ascorbic acid reduced P-gp expression, which was upregulated by CDDP. In conclusion, ascorbic acid may attenuate CIN and reverse P-gp-mediated changes in drug pharmacokinetics.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumi Kitaichi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
27
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
28
|
Combination of cisplatin treatment and photodynamic therapy attenuates cisplatin-induced cell toxicity in A2780 and A2780-CP cervical cancer cell lines. Lasers Med Sci 2021; 37:1175-1180. [PMID: 34255220 DOI: 10.1007/s10103-021-03369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Cervical cancer is recognized as a serious worldwide health problem. Despite various achievements for cervical cancer treatment, there are still shortcomings that lead to severe side effects. Combination therapy is fast becoming a key and promising treatment strategy, diminishing chemotherapy-mediated side effects. The objective of this study was to determine the effect of combined cisplatin treatment and photodynamic therapy (PDT) on the cervical cancer recovery. In this study, A2780 and A2780-CP cell lines were cultured in the Dulbecco's modified eagle medium (DMEM) enriched with 10% FBS and 1% antibiotic. Both cell lines were treated with cisplatin, photodynamic light (laser with methylene blue as a photosensitizer agent), and the combination of cisplatin treatment and PDT. Half maximum inhibitory concentration (IC50) was calculated for each treatment by the use of tetrazolium salt assay. Both cell lines were examined for cell membrane lipid peroxidation rate. Our findings showed that combination of cisplatin treatment and photodynamic therapy leads to two-fold decreased cisplatin IC50. Results showed that cisplatin and photodynamic light combination could effectively reduce A2780 and A2780-CP cell viability (p-value < 0.0001). Moreover, combined cisplatin and photodynamic therapy results revealed significantly increased cancer cell membrane destruction through increased lipid peroxidation, resulting in surged MDA content. Our conclusion is that combination of cisplatin and photodynamic therapy can be used as an effective and convenient treatment strategy without considerable side effects.
Collapse
|
29
|
A novel water-soluble platinum(II) complex with the amino acid deoxyalliin: synthesis, crystal structure, theoretical studies and investigations about its antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Wang L, Zhao X, Fu J, Xu W, Yuan J. The Role of Tumour Metabolism in Cisplatin Resistance. Front Mol Biosci 2021; 8:691795. [PMID: 34250022 PMCID: PMC8261055 DOI: 10.3389/fmolb.2021.691795] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is a chemotherapy drug commonly used in cancer treatment. Tumour cells are more sensitive to cisplatin than normal cells. Cisplatin exerts an antitumour effect by interfering with DNA replication and transcription processes. However, the drug-resistance properties of tumour cells often cause loss of cisplatin efficacy and failure of chemotherapy, leading to tumour progression. Owing to the large amounts of energy and compounds required by tumour cells, metabolic reprogramming plays an important part in the occurrence and development of tumours. The interplay between DNA damage repair and metabolism also has an effect on cisplatin resistance; the molecular changes to glucose metabolism, amino acid metabolism, lipid metabolism, and other metabolic pathways affect the cisplatin resistance of tumour cells. Here, we review the mechanism of action of cisplatin, the mechanism of resistance to cisplatin, the role of metabolic remodelling in tumorigenesis and development, and the effects of common metabolic pathways on cisplatin resistance.
Collapse
Affiliation(s)
- Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoya Zhao
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
31
|
Combination Chemotherapy with Cisplatin and Chloroquine: Effect of Encapsulation in Micelles Formed by Self-Assembling Hybrid Dendritic-Linear-Dendritic Block Copolymers. Int J Mol Sci 2021; 22:ijms22105223. [PMID: 34069278 PMCID: PMC8156097 DOI: 10.3390/ijms22105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical outcomes of conventional drug combinations are not ideal due to high toxicity to healthy tissues. Cisplatin (CDDP) is the standard component for many cancer treatments, yet its principal dose-limiting side effect is nephrotoxicity. Thus, CDDP is commonly used in combination with other drugs, such as the autophagy inhibitor chloroquine (CQ), to enhance tumor cell killing efficacy and prevent the development of chemoresistance. In addition, nanocarrier-based drug delivery systems can overcome chemotherapy limitations, decreasing side effects and increasing tumor accumulation. The aim of this study was to evaluate the toxicity of CQ and CDDP against tumor and non-tumor cells when used in a combined treatment. For this purpose, two types of micelles based on Pluronic® F127 hybrid dendritic–linear–dendritic block copolymers (HDLDBCs) modified with polyester or poly(esteramide) dendrons derived from 2,2′-bis(hydroxymethyl)propionic acid (HDLDBC-bMPA) or 2,2′-bis(glycyloxymethyl)propionic acid (HDLDBC-bGMPA) were explored as delivery nanocarriers. Our results indicated that the combined treatment with HDLDBC-bMPA(CQ) or HDLDBC-bGMPA(CQ) and CDDP increased cytotoxicity in tumor cells compared to the single treatment with CDDP. Encapsulations demonstrated less short-term cytotoxicity individually or when used in combination compared to the free drugs. However, and more importantly, a low degree of cytotoxicity against non-tumor cells was maintained, even when drugs were given simultaneously.
Collapse
|
32
|
Inamdar PR, Sheela A. Peculiar DNA partial threading intercalative ability of tetradentate copper complex based on ONO hydrazone backbone and an ancillary ligand. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:518-529. [PMID: 33719900 DOI: 10.1080/15257770.2021.1897839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Multidentate copper metal complexes have been in the limelight in the area of DNA interaction studies exhibiting intercalation, groove binding and cross linking modes. Design of metal complex based on the versatile ligands decides their mode of DNA binding behavior. Based on this, a tetradentate Copper (II) complex, [Cu(L)(4,4'-bpy)], is synthesized using ONO hydrazone ligand and ancillary ligand, 4,4'-bipyridine. It is characterized by physico-chemical and UV-Visible, FTIR, Mass and EPR spectroscopic techniques. The binding pattern of the characterized complex with DNA has been assessed by UV absorption and fluorescence spectral titrations as well as viscosity studies and it has exhibited peculiar threading intercalation. The binding constant, Kb value of the synthesized complex was found to be (4.38 ± 0.09) × 104 M-1, greater than that of the hydrazone ligand (Kb = 2.29 × 104 M-1) and lesser than the classical intercalator ethidium bromide - EtBr (Kb = 107). The fluorescence quenching assays in the presence of ethidium bromide and viscometric studies show threading intercalative mode of binding of the complex to the DNA base pairs. Molecular docking studies further supports such a binding pattern with the bipyridine ring of the complex intercalating with deoxycytosine nucleobase of DNA. ADME (Absorption, Distribution, Metabolism and Excretion) parameters of the complex and ligand were predicted to get an idea of drug likeliness and to correlate the structural properties with semi DNA intercalative pattern of the same.
Collapse
Affiliation(s)
- Poonam R Inamdar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, MH, India
| | - A Sheela
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, TN, India
| |
Collapse
|
33
|
An J, Yang J, Yao Y, Lu K, Zhao Z, Yu M, Zhu Y. Sirtuin 6 regulates the proliferation and survival of clear cell renal cell carcinoma cells via B-cell lymphoma 2. Oncol Lett 2021; 21:293. [PMID: 33732369 PMCID: PMC7905630 DOI: 10.3892/ol.2021.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the third family of longevity proteins (SIRTs) that is involved in the development of different types of cancer. However, the potential role of SIRT6 in clear cell renal cell carcinoma (ccRCC) and its molecular mechanism have not yet been fully elucidated. Therefore, the present study aimed to investigate the association between SIRT6 and ccRCC, and to further examine the underlying mechanism of its effect on ccRCC proliferation, using bioinformatics analysis, and in vitro and in vivo experiments. The results of the present study demonstrated that SIRT6 was upregulated in ccRCC tissues. In addition, bioinformatics analysis revealed that high SIRT6 expression was closely associated with poor prognosis of patients with ccRCC. In vitro experiments demonstrated that silencing SIRT6 expression in ccRCC-derived 769-P and 786-O cells significantly inhibited their proliferation, migration and invasion. Consistent with these results, in vivo assays demonstrated that SIRT6 knockdown markedly attenuated tumor growth arising from 769-P cells. Furthermore, depletion of SIRT6 enhanced the sensitivity of ccRCC cells to cisplatin. Notably, silencing SIRT6 expression decreased B-cell lymphoma 2 (Bcl-2) expression and increased Bax expression, respectively. Taken together, these results suggest that SIRT6 acts as a proto-oncogene in ccRCC through the augmentation of the Bcl-2-dependent pro-survival pathway, and may be used as a therapeutic target for patients with ccRCC.
Collapse
Affiliation(s)
- Jun An
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Yao
- Department of Physiology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Kaining Lu
- Department of Urology and Nephrology, Ningbo First Hospital, The Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Zhiqiang Zhao
- Department of Intensive Care Unit, Mudanjiang Forestry Center Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Meng Yu
- Key Laboratory of Transgenic Animal Research, Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Abdelhamid AM, Mahmoud SS, Abdelrahman AE, Said NM, Toam M, Samy W, Amer MAM. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2411-2425. [PMID: 32710137 DOI: 10.1007/s00210-020-01946-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Cisplatin and oxaliplatin are widely used anticancer drugs. Their use is restricted by their dose-limiting side effects: nephrotoxicity and neurotoxicity, respectively. Cerium oxide nanoparticles (CONPs) are promising antioxidant and anti-inflammatory agent. To test the possible ameliorative impact of CONPs on the toxic effect of cisplatin and oxaliplatin in male albino rats. Forty eight rats were divided into 6 groups: control group, CONPs group, cisplatin group, cisplatin and CONPs group, oxaliplatin group, and oxaliplatin and CONPs group. After 4 weeks, serum urea and creatinine, renal tissue level of interleukin 10 (IL10), and total antioxidant (TAO) were measured in control, CONPs, and cisplatin groups. The other kidney was used for histopathological and immunohistochemical studies. The right sciatic nerves and the lumbar spinal cord of rats from control, CONPs, and oxaliplatin groups were used for immunohistochemical evaluations of nitrotyrosine, myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP). Cisplatin significantly increased serum urea and creatinine levels, significantly decreased the kidney level of IL10 and TAO with marked tubular necrosis, hemorrhage and renal damage. Also, it decreased IL10 immunohistochemical expression. CONPs significantly decreased the serum urea and creatinine level and increased IL10 and TAO with lower renal damage and strong IL10 expression compared with cisplatin group. Oxaliplatin significantly decreased MBP immunoreactivity and increased nitrotyrosine immunoreactivity. In the lumbar spinal cord, GFAP immunoreactivity was significantly increased. CONPs significantly increased MBP and decreased nitrotyrosine immunoreactivity. GFAP immunoreactivity was significantly decreased. CONPs ameliorated cisplatin and oxaliplatin primary toxicities through anti-inflammatory and antioxidant characteristics.
Collapse
Affiliation(s)
- Amira Mohamed Abdelhamid
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt.
| | - Shireen Sami Mahmoud
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt
| | - Aziza E Abdelrahman
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Nelly Mohamed Said
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Toam
- Clinical Oncology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Biochemistry department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Marwa AbdEl-Moniem Amer
- Forensic Medicine and Clinical toxicology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Songyang Y, Song T, Shi Z, Li W, Yang S, Li D. Effect of vitamin D on malignant behavior of non-small cell lung cancer cells. Gene 2020; 768:145309. [PMID: 33197518 DOI: 10.1016/j.gene.2020.145309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the effects of vitamin D on the malignant behavior of A549 and NCI-H1975 tumor cells (proliferation, apoptosis, invasion, metastasis and drug resistance-related proteins) and the activation of the PI3K/AKT/mTOR signaling pathway, in order to evaluate the effect of vitamin D on the therapeutic action of cisplatin. METHOD In vitro cell experiments, CCK-8, flow cytometry, transwell, scratches, MTT and Western blot were used to reveal the effect of vitamin D on non-small cell lung cancer (NSCLC), and the expression of PI3K/AKT/mTOR signaling pathway was also detected. In vivo animal experiments, the nude mice were divided into four groups: control group, vitamin D treatment group, cisplatin treatment group and vitamin D + cisplatin combined treatment group. After tumor formation in vitro, tumor volume changes were calculated and tumor growth curves were drawn, collected tumor tissues for pathological sections. Western blot was used to detect the expression changes of drug-resistance related proteins in tumor tissues. Meanwhile, protein expression changes of PI3K/AKT/mTOR signaling pathway in tumor tissues were detected. RESULT In vitro experiments confirm Vitamin D can inhibit the proliferation, invasion and metastasis of non-small cell lung cancer cells A549 and NCI-H1975, promoting cell apoptosis, up-regulate the sensitivity of chemotherapy drugs. These effects of vitamin D may be correlated with the PI3K/AKT/mTOR signaling pathway. In vivo animal experiments, the changes in tumor volume, tumor inflammatory infiltration range, expression of drug-resistant related proteins and signaling pathway related proteins in mice were as follows: The vitamin D and cisplatin combined treatment group was significantly smaller than the control group. CONCLUSION Vitamin D can inhibit the proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC) cells A549 and NCI-H1975 and promote apoptosis, up-regulate the sensitivity of chemotherapy drugs. The effect of vitamin D on NSCLC cells A549 and NCI-H1975 was correlated with the PI3K/AKT/mTOR signaling pathway. Vitamin D also promotes the therapeutic effect of CDDP.
Collapse
Affiliation(s)
- Yiyan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianbao Song
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhan Shi
- Human Biology Program, University of Toronto, ON M5S 3J6, Canada
| | - Wen Li
- Renmin Hospital of Wuhan University, Department of Emergency, Wuhan, China
| | - Songyisha Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Sahin M, Neumann JM, Riefke B, Bednarz H, Gutberlet K, Giampà M, Niehaus K, Fatangare A. Spatial evaluation of long-term metabolic changes induced by cisplatin nephrotoxicity. Toxicol Lett 2020; 334:36-43. [PMID: 32941993 DOI: 10.1016/j.toxlet.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent. However, it is causing nephrotoxic side effects including a reduced glomerular filtration rate and acute kidney injury. Although kidneys can recover to an extent from the treatment, long-term damage is possible. While a lot of research is focusing on short-term effects, little is known about adverse metabolic effects in the process of recovery. In this study, male Han Wistar rats were dosed with a single intraperitoneal injection of 3 mg/kg cisplatin. Urine and kidney samples were harvested 3, 8 and 26 days after administration. Tubular injury was demonstrated through urinary biomarkers. Complementing this, mass spectrometry imaging gives insight on molecular alterations on a spatial level, thus making it well suited to analyze short- and long-term disturbances. Various metabolic pathways seem to be affected, as changes in a wide range of metabolites were observed between treated and control animals. Besides previously reported early changes in kidney metabolism, unprecedented long-term effects were detected including deviation in nucleotides, antioxidants, and phospholipids.
Collapse
Affiliation(s)
- Mikail Sahin
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Judith M Neumann
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Bjoern Riefke
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katrin Gutberlet
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Amol Fatangare
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany.
| |
Collapse
|
37
|
Back to the Future: Rethinking the Great Potential of lncRNA S for Optimizing Chemotherapeutic Response in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092406. [PMID: 32854207 PMCID: PMC7564391 DOI: 10.3390/cancers12092406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is one of the most fatal cancers in women worldwide. Currently, platinum- and taxane-based chemotherapy is the mainstay for the treatment of OC. Yet, the emergence of chemoresistance results in therapeutic failure and significant relapse despite a consistent rate of primary response. Emerging evidence substantiates the potential role of lncRNAs in determining the response to standard chemotherapy in OC. The objective of this narrative review is to provide an integrated, synthesized overview of the current state of knowledge regarding the role of lncRNAs in the emergence of resistance to platinum- and taxane-based chemotherapy in OC. In addition, we sought to develop conceptual frameworks for harnessing the therapeutic potential of lncRNAs in strategies aimed at enhancing the chemotherapy response of OC. Furthermore, we offered significant new perspectives and insights on the interplay between lncRNAs and the molecular circuitries implicated in chemoresistance to determine their impacts on therapeutic response. Although this review summarizes robust data concerning the involvement of lncRNAs in the emergence of acquired resistance to platinum- and taxane-based chemotherapy in OC, effective approaches for translating these lncRNAs into clinical practice warrant further investigation.
Collapse
|
38
|
Okamoto K, Saito Y, Narumi K, Furugen A, Iseki K, Kobayashi M. Comparison of the nephroprotective effects of non-steroidal anti-inflammatory drugs on cisplatin-induced nephrotoxicity in vitro and in vivo. Eur J Pharmacol 2020; 884:173339. [PMID: 32726655 DOI: 10.1016/j.ejphar.2020.173339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is an anticancer drug, often used in the treatment of several types of cancers. CDDP-induced nephrotoxicity (CIN) is one of the most severe adverse events associated with the use of CDDP. It has been suggested that the co-administration of non-steroidal anti-inflammatory drugs (NSAIDs) is a risk factor for CIN. However, the specific NSAIDs that affect CIN and the precise mechanisms underlying this interaction remain unclear. Hence, we aimed to evaluate the effect of NSAIDs on CDDP-induced cytotoxicity in vitro and confirmed the results in vivo. Using the epithelioid clone of the normal rat kidney cells (NRK-52E cells), we assessed the effects of 17 NSAIDs on CDDP-induced cytotoxicity all at once using the MTT assay. Furthermore, we evaluated two NSAIDs, which significantly attenuated or enhanced CDDP-induced cytotoxicity, in vivo. Wistar rats were treated with CDDP (5 mg/kg, i.p., day 1) and NSAIDs (p.o., day 1-4), and the kidneys were excised on day 5. Our results demonstrated that several NSAIDs attenuated, while others enhanced CDDP-induced cytotoxicity. Celecoxib significantly attenuated and flurbiprofen markedly enhanced cell dysfunction by CDDP. These results were reproduced in vivo as celecoxib decreased and flurbiprofen increased the expression of kidney injury molecule 1 (Kim-1) mRNA, a sensitive kidney injury marker, compared to the CDDP group. Moreover, celecoxib increased the antioxidant and autophagy markers quantified by qPCR in vitro and prevented a decrease in body weight induced by CDDP in vivo. In conclusion, we revealed that celecoxib significantly attenuated CIN in vitro and in vivo.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
39
|
Hyeraci M, Colalillo M, Labella L, Marchetti F, Samaritani S, Scalcon V, Rigobello MP, Dalla Via L. Platinum(II) Complexes Bearing Triphenylphosphine and Chelating Oximes: Antiproliferative Effect and Biological Profile in Resistant Cells. ChemMedChem 2020; 15:1464-1472. [DOI: 10.1002/cmdc.202000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological SciencesUniversità di Padova Via F. Marzolo, 5 35131 Padova Italy
| | - Marialuigia Colalillo
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Valeria Scalcon
- Department of Biomedical SciencesUniversità di Padova Via U. Bassi 58/b 35131 Padova Italy
| | - Maria Pia Rigobello
- Department of Biomedical SciencesUniversità di Padova Via U. Bassi 58/b 35131 Padova Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological SciencesUniversità di Padova Via F. Marzolo, 5 35131 Padova Italy
| |
Collapse
|
40
|
Non-coding RNAs in drug resistance of head and neck cancers: A review. Biomed Pharmacother 2020; 127:110231. [PMID: 32428836 DOI: 10.1016/j.biopha.2020.110231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC), which includes epithelial malignancies of the upper aerodigestive tract (oral cavity, oropharynx, pharynx, hypopharynx, larynx, and thyroid), are slowly but consistently increasing, while the overall survival rate remains unsatisfactory. Because of the multifunctional anatomical intricacies of the head and neck, disease progression and therapy-related side effects often severely affect the patient's appearance and self-image, as well as their ability to breathe, speak, and swallow. Patients with HNC require a multidisciplinary approach involving surgery, radiation therapy, and chemotherapeutics. Chemotherapy is an important part of the comprehensive treatment of tumors, especially advanced HNC, but drug resistance is the main cause of poor clinical efficacy. The most important determinant of this phenomenon is still largely unknown. Recent studies have shown that non-coding RNAs have a crucial role in HNC drug resistance. In addition, they can serve as biomarkers in the diagnosis, treatment, and prognosis of HNCs. In this review, we summarize the relationship between non-coding RNAs and drug resistance of HNC, and discuss their potential clinical application in overcoming HNC chemoresistance.
Collapse
|
41
|
Berrocal-Martin R, Sanchez-Cano C, Chiu CKC, Needham RJ, Sadler PJ, Magennis SW. Metallation-Induced Heterogeneous Dynamics of DNA Revealed by Single-Molecule FRET. Chemistry 2020; 26:4980-4987. [PMID: 31999015 DOI: 10.1002/chem.202000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/09/2022]
Abstract
The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.
Collapse
Affiliation(s)
- Raul Berrocal-Martin
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Cookson K C Chiu
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
42
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
43
|
Labaki C, Rawadi E, Chebel R, Bakouny Z, Droz JP, Kattan JG. Anti-neoplastic agents for patients on peritoneal dialysis: A systematic review. Crit Rev Oncol Hematol 2020; 150:102947. [PMID: 32294609 DOI: 10.1016/j.critrevonc.2020.102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is no clear consensus on the administration of anti-neoplastic agents to patients on peritoneal dialysis. Dose adjustments to prevent serious adverse events are still not established. Thus, the aim of this study was to systematically review current evidence on the use of systemic oncology therapies in peritoneal dialysis. METHODS A systematic review was conducted using PubMed, Scopus, and Cochrane. All relevant data was collected, including clinical and pharmacokinetic parameters, with comparison to subjects with normal renal function. RESULTS Sixteen studies were included. All were case reports. Eighteen types of anti-cancer drugs were reviewed. Multiple adverse events and altered pharmacokinetics were reported. CONCLUSION Data concerning the use of anti-neoplastic drugs in patients on peritoneal dialysis are still sparse. The elimination of anti-cancer agents seems often altered in such patients, resulting in serious adverse events. Based on the available evidence, we suggest the need for dose adjustment of each drug.
Collapse
Affiliation(s)
- Chris Labaki
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
| | - Elsa Rawadi
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Roy Chebel
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Ziad Bakouny
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jean-Pierre Droz
- Department of Oncology, Claude-Bernard Lyon-1 University, Lyon, France
| | - Joseph G Kattan
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
44
|
Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1475-1485. [PMID: 32200461 DOI: 10.1007/s00210-020-01855-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/13/2020] [Indexed: 01/15/2023]
Abstract
The present work was to examine a combination of therapy for a low dose of cisplatin and a magnetic field (MF) on Ehrlich carcinoma-bearing mice. In this study, a total of 50 BALB/C female mice were equally distributed into five groups. Mice from the control group did not receive MF or cisplatin. The low and high dose cisplatin groups were injected intraperitoneal (i.p.) with 3 and 6 mg/kg cisplatin, respectively, on the experimental days (1, 4, and 8). Mice group of cisplatin + MF was injected with a low dose of cisplatin followed by MF exposure (50 Hz, 50 mT), and the MF group was exposed to MF only. The impact of MF and cisplatin on the tumor and kidney were evaluated by measuring superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels, DNA injury (comet assay), histopathological investigation of tissues, and tumor progress. The results suggested that the combination of a low dose of cisplatin with MF was significantly elevated in MDA levels, reduced SOD activity, and GSH levels. Furthermore, it caused a rise in comet parameters and inhibition in tumor growth. These results showed that MF enhances the therapeutic efficacy of low cisplatin doses and reduces nephrotoxicity.
Collapse
|
45
|
Wang F, Ji X, Wang J, Ma X, Yang Y, Zuo J, Cui J. LncRNA PVT1 Enhances Proliferation and Cisplatin Resistance via Regulating miR-194-5p/HIF1a Axis in Oral Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:243-252. [PMID: 32021271 PMCID: PMC6957095 DOI: 10.2147/ott.s232405] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy. Recent studies have revealed that long non-coding RNA (lncRNA) PVT1 plays important roles in the pathogenesis of various cancers. However, the functional roles of PVT1 in OSCC progression and cisplatin resistance have not been elucidated. Material and Methods In this study, PVT1 expression level in cisplatin-sensitive and cisplatin-resistant OSCC tissues and cell lines was determined using qRT-PCR. Gain-of-function and loss-of-function assays were performed to explore the biological roles of PVT1 in OSCC cell proliferation and cisplatin resistance. Western blot, luciferase reporter assay and bioinformatics analysis were employed to investigate the underlying mechanism of PVT1 in OSCC progression. Results Here, we found that PVT1 was frequently up-regulated in cisplatin-resistant tissues and cell lines and strongly correlated with worse overall survival. Functional studies showed that PVT1 promoted OSCC cell proliferation and cisplatin resistance. Mechanistic investigation revealed that PVT1 could positively regulate HIF1a expression via its competing endogenous RNA (ceRNA) activity on miR-194-5p. In addition, miR-194-5p conversely correlated with PVT1 and HIF1a expression in OSCC samples. More importantly, HIF1a knock-down or miR-194-5p overexpression reversed PVT1-induced promotion of OSCC cell proliferation and cisplatin resistance. Conclusion Our results indicated that PVT1 functions as an oncogene involved in OSCC cell proliferation and cisplatin-resistance and may serve as a novel therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Xin Ji
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jingjing Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Yong Yang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jinhua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jun Cui
- Department of Implant Dentistry, Jinnan Stomatological Hospital, Jinan 250001, People's Republic of China
| |
Collapse
|
46
|
Kishimoto T, Yoshikawa Y, Yoshikawa K, Komeda S. Different Effects of Cisplatin and Transplatin on the Higher-Order Structure of DNA and Gene Expression. Int J Mol Sci 2019; 21:E34. [PMID: 31861648 PMCID: PMC6981875 DOI: 10.3390/ijms21010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of cisplatin as an anticancer agent, its trans-isomer, transplatin, is clinically ineffective. Although both isomers target nuclear DNA, there is a large difference in the magnitude of their biological effects. Here, we compared their effects on gene expression in an in vitro luciferase assay and quantified their effects on the higher-order structure of DNA using fluorescence microscopy (FM) and atomic force microscopy (AFM). The inhibitory effect of cisplatin on gene expression was about 7 times that of transplatin. Analysis of the fluctuation autocorrelation function of the intrachain Brownian motion of individual DNA molecules showed that cisplatin increases the spring and damping constants of DNA by one order of magnitude and these visco-elastic characteristics tend to increase gradually over several hours. Transplatin had a weaker effect, which tended to decrease with time. These results agree with a stronger inhibitory effect of cisplatin on gene expression. We discussed the characteristic effects of the two compounds on the higher-order DNA structure and gene expression in terms of the differences in their binding to DNA.
Collapse
Affiliation(s)
- Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Seiji Komeda
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| |
Collapse
|
47
|
Xie L, Rajpurkar A, Quarles E, Taube N, Rai AS, Erba J, Sliwinski B, Markowitz M, Jakob U, Knoefler D. Accumulation of Nucleolar Inorganic Polyphosphate Is a Cellular Response to Cisplatin-Induced Apoptosis. Front Oncol 2019; 9:1410. [PMID: 31921667 PMCID: PMC6920253 DOI: 10.3389/fonc.2019.01410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
The chemotherapeutic drug cisplatin, which targets DNA, serves as one of the main staples in cancer treatment. Yet, the therapeutic application of cisplatin is limited by two major challenges: the occurrence of reversible and irreversible side effects due to non-specific toxicity, and the intrinsic or developing resistance of tumor cells toward cisplatin. Here we demonstrate that cancer cells respond to cisplatin treatment with the nucleolar accumulation of inorganic polyphosphate (polyP), a universally conserved high-energy compound. PolyP accumulation positively correlates with the levels of activated caspase-3, suggesting a novel role of polyP in cisplatin-mediated apoptosis. In support of this finding, we discovered that administration of exogenous polyP increases cisplatin-induced toxicity in select cancer cell lines, raising the exciting possibility that enhancing endogenous polyP levels might be a novel mechanism to sensitize cancer cells to cisplatin treatment.
Collapse
Affiliation(s)
- Lihan Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Asavari Rajpurkar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ellen Quarles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Taube
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Akash S Rai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jake Erba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Sliwinski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Moses Markowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Daniela Knoefler
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Paradoxical Effect of Grape Pomace Extract on Cisplatin-Induced Acute Kidney Injury in Rats. Pharmaceutics 2019; 11:pharmaceutics11120656. [PMID: 31817713 PMCID: PMC6956102 DOI: 10.3390/pharmaceutics11120656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most used drugs in the therapy of different types of cancer. However, its use is limited by nephrotoxicity. This study investigated the effects of a commercially available grape pomace extract (GE) from Vitis vinifera on cisplatin-induced kidney toxicity in rats. Sixty-four male Wistar albino rats were randomly divided into eight groups. Groups 1–3 were controls, receiving 0.9% saline and doses 1 and 2 of GE respectively. Cisplatin was given to groups 4–8. Two groups received pretreatment with GE, while another two groups received pre- and post-treatment with GE. Blood samples were collected and all animals sacrificed. Kidneys were harvested for histopathological analysis. GE significantly increased blood creatinine and urea levels, the severity of kidney histopathological damage, and mortality in all cisplatin groups, except for group 7 which received pre- and post-treatment with a low dose of GE. Renal toxicity was determined by mortality and severe histopathological renal lesions. Additionally, the serum total antioxidant capacity (TAC) was not significantly modified in the treated groups compared to the control. These results indicate that the GE did not have a protective effect on cisplatin-induced nephrotoxicity; on the contrary, GE accentuated the toxic effect of cisplatin.
Collapse
|
49
|
Modulation of the solubility properties of arene ruthenium complexes bearing stannyl ligands as potential anti-cancer agents. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Cocetta V, Ragazzi E, Montopoli M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 2019; 20:ijms20143384. [PMID: 31295873 PMCID: PMC6678541 DOI: 10.3390/ijms20143384] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the worldwide anticancer drugs and, despite its toxicity and frequent recurrence of resistance phenomena, it still remains the only therapeutic option for several tumors. Circumventing cisplatin resistance remains, therefore, a major goal for clinical therapy and represents a challenge for scientific research. Recent studies have brought to light the fundamental role of mitochondria in onset, progression, and metastasis of cancer, as well as its importance in the resistance to chemotherapy. The aim of this review is to give an overview of the current knowledge about the implication of mitochondria in cisplatin resistance and on the recent development in this research field. Recent studies have highlighted the role of mitochondrial DNA alterations in onset of resistance phenomena, being related both to redox balance alterations and to signal crosstalk with the nucleus, allowing a rewiring of cell metabolism. Moreover, an important role of the mitochondrial dynamics in the adaptation mechanism of cancer cells to challenging environment has been revealed. Giving bioenergetic plasticity to tumor cells, mitochondria allow cells to evade death pathways in stressful conditions, including chemotherapy. So far, even if the central role of mitochondria is recognized, little is known about the specific mechanisms implicated in the resistance. Nevertheless, mitochondria appear to be promising pharmacological targets for overcoming cisplatin resistance, but further studies are necessary.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy.
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy.
| |
Collapse
|