1
|
He W, Zhu H, Zhang S, Shu G, Lei H, Wang M, Yin G, Ni X, Wu Q. Epigenetic editing of BRCA1 promoter increases cisplatin and olaparib sensitivity of ovarian cancer cells. Epigenetics 2024; 19:2357518. [PMID: 38796857 PMCID: PMC11135871 DOI: 10.1080/15592294.2024.2357518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Drug resistance is the primary contributor to the high mortality rate of ovarian cancer (OC). The loss of BRCA1/2 function is linked to drug sensitivity in OC cells. The aim of this study is to enhance the drug sensitivity of OC cells by inducing BRCA1 dysfunction through promoter epigenetic editing. Epigenetic regulatory regions within the BRCA1 promoter, affecting gene expression, were initially discerned through analysis of clinical samples. Subsequently, we designed and rigorously validated epigenetic editing tools. Ultimately, we evaluated the cisplatin and olaparib sensitivity of the OC cells after editing. The BRCA1 promoter contains two CpG-rich regions, with methylation of the region covering the transcription start site (TSS) strongly correlating with transcription and influencing OC development, prognosis, and homologous recombination (HR) defects. Targeting this region in OC cells using our designed epigenetic editing tools led to substantial and persistent DNA methylation changes, accompanied by significant reductions in H3K27ac histone modifications. This resulted in a notable suppression of BRCA1 expression and a decrease in HR repair capacity. Consequently, edited OC cells exhibited heightened sensitivity to cisplatin and olaparib, leading to increased apoptosis rates. Epigenetic inactivation of the BRCA1 promoter can enhance cisplatin and olaparib sensitivity of OC cells through a reduction in HR repair capacity, indicating the potential utility of epigenetic editing technology in sensitization therapy for OC.
Collapse
Affiliation(s)
- Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Sufen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Han Lei
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
2
|
Khalouei A, Masoumi-Ardakani Y, Jafarzaheh A, Kalantari Khandani B, Sedghy F, Khosravi Mashizi A, Yaghoobi MM, Zangouey M, Shahouzehi B. Association of ERCC1 Gene Polymorphisms (rs3212986 and rs11615) With the Risk of Lung Cancer in a Population From Southeast Iran. J Res Health Sci 2024; 24:e00631. [PMID: 39431656 PMCID: PMC11492521 DOI: 10.34172/jrhs.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Polymorphisms within the excision repair cross-complementation group 1 (ERCC1), an essential component of DNA repair mechanisms, have been associated with various malignancies. This study aimed to evaluate the association of the single-nucleotide polymorphisms (SNPs) rs3212986 and rs11615 within the ERCC1 gene in non-small cell lung cancer (NSCLC) patients. Study Design: A case-control study. METHODS Genomic DNA was extracted from the peripheral blood samples of 83 NSCLC patients and 119 healthy individuals. The genetic diversity of SNPs rs3212986 and rs11615 was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The RFLP results were confirmed through sequencing. RESULTS The TT genotype of the rs11615 SNP was associated with a higher risk of NSCLC development (odds ratio: 3.900, 95% confidence interval: 0.603, 22.866, P=0.050). Furthermore, the AA genotype of rs3212986 was related to a higher risk of NSCLC development (OR: 2.531, 95% CI: 1.017, 6.300, P=0.046). A significant association was observed between smoking and lung cancer (OR: 3.072, 95% CI: 1.715, 5.503, P<0.001). Moreover, among non-smokers, there was an association between lung cancer risk and the AA (OR: 6.825, 95% CI: 1.722, 27.044, P=0.006) and AC (OR: 2.503, 95% CI: 0.977, 6.412, P=0.056) genotypes of rs3212986. However, no correlation was found between the genotypes of these SNPs and patients' sensitivity to cisplatin and carboplatin (P ˃ 0.05). CONCLUSION The rs11615-related TT genotype and the rs3212986-related AA genotype may be associated with a higher risk of lung cancer development.
Collapse
Affiliation(s)
- Ali Khalouei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzaheh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezu Khosravi Mashizi
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Research Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammadreza Zangouey
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Xu L, Kong X, Li X, Zhang B, Deng Y, Wang J, Duan C, Zhang D, Liu W. Current Status of Novel Multifunctional Targeted Pt(IV) Compounds and Their Reductive Release Properties. Molecules 2024; 29:746. [PMID: 38398498 PMCID: PMC10892972 DOI: 10.3390/molecules29040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Platinum-based drugs are widely used in chemotherapy for various types of cancer and are considered crucial. Tetravalent platinum (Pt(IV)) compounds have gained significant attention and have been extensively researched among these drugs. Traditionally, Pt(IV) compounds are reduced to divalent platinum (Pt(II)) after entering cells, causing DNA lesions and exhibiting their anti-tumor effect. However, the available evidence indicates that some Pt(IV) derivatives may differ from the traditional mechanism and exert their anti-tumor effect through their overall structure. This review primarily focuses on the existing literature regarding targeted Pt(II) and Pt(IV) compounds, with a specific emphasis on their in vivo mode of action and the properties of reduction release in multifunctional Pt(IV) compounds. This review provides a comprehensive summary of the design and synthesis strategies employed for Pt(II) derivatives that selectively target various enzymes (glucose receptor, folate, telomerase, etc.) or substances (mitochondria, oleic acid, etc.). Furthermore, it thoroughly examines and summarizes the rational design, anti-tumor mechanism of action, and reductive release capacity of novel multifunctional Pt(IV) compounds, such as those targeting p53-MDM2, COX-2, lipid metabolism, dual drugs, and drug delivery systems. Finally, this review aims to provide theoretical support for the rational design and development of new targeted Pt(IV) compounds.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Jinhu Wang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Chonggang Duan
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
5
|
Zhang X, Liu L, Wang J, Liang L, Wang X, Wang G, He Z, Cui X, Du H, Pang B, Li J. The alternation of halobenzoquinone disinfection byproduct on toxicogenomics of DNA damage and repair in uroepithelial cells. ENVIRONMENT INTERNATIONAL 2024; 183:108407. [PMID: 38150806 DOI: 10.1016/j.envint.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Halobenzoquinones (HBQs) were recently discovered as an emerging class of drinking water disinfection byproducts with carcinogenic concern. However, the molecular mechanism underlying HBQs-induced DNA damage is not clear. In this study, we integrated in vitro genotoxicity, computational toxicology, and the quantitative toxicogenomic analysis of HBQs on DNA damage/repair pathways in human bladder epithelial cells SV-HUC-1. The results showed that HBQs could induce cytotoxicity with the descending order as 2,6-DIBQ > 2,6-DCBQ ≈ 2,6-DBBQ. Also, HBQs can increase DNA damage in SV-HUC-1 cells and thus generate genotoxicity. However, there is no significant difference in genotoxicity among the three HBQs. The results of molecular docking and molecular dynamics simulation further confirmed that HBQs had high binding fractions and stability to DNA. Toxicogenomic analysis indicated that HBQs interfered with DNA repair pathways, mainly affecting base excision repair, nucleotide excision repair and homologous recombination repair. These results have provided new insights into the underlying molecular mechanisms of HBQs-induced DNA damage, and contributed to the understanding of the relationship between exposure to DBPs and risks of developing bladder cancer.
Collapse
Affiliation(s)
- Xu Zhang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lifang Liu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xu Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Du
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Wynen F, Krautstrunk J, Müller LM, Graf V, Brinkmann V, Fritz G. Cisplatin-induced DNA crosslinks trigger neurotoxicity in C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119591. [PMID: 37730131 DOI: 10.1016/j.bbamcr.2023.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The anticancer drug cisplatin (CisPt) injures post-mitotic neuronal cells, leading to neuropathy. Furthermore, CisPt triggers cell death in replicating cells. Here, we aim to unravel the relevance of different types of CisPt-induced DNA lesions for evoking neurotoxicity. To this end, we comparatively analyzed wild-type and loss of function mutants of C. elegans lacking key players of specific DNA repair pathways. Deficiency in ercc-1, which is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair, revealed the most pronounced enhancement in CisPt-induced neurotoxicity with respect to the functionality of post-mitotic chemosensory AWA neurons, without inducing neuronal cell death. Potentiation of CisPt-triggered neurotoxicity in ercc-1 mutants was accompanied by complex alterations in both basal and CisPt-stimulated mRNA expression of genes involved in the regulation of neurotransmission, including cat-4, tph-1, mod-1, glr-1, unc-30 and eat-18. Moreover, xpf-1, csb-1, csb-1;xpc-1 and msh-6 mutants were significantly more sensitive to CisPt-induced neurotoxicity than the wild-type, whereas xpc-1, msh-2, brc-1 and dog-1 mutants did not distinguish from the wild-type. The majority of DNA repair mutants also revealed increased basal germline apoptosis, which was analyzed for control. Yet, only xpc-1, xpc-1;csb-1 and dog-1 mutants showed elevated apoptosis in the germline following CisPt treatment. To conclude, we provide evidence that neurotoxicity, including sensory neurotoxicity, is triggered by CisPt-induced DNA intra- and interstrand crosslinks that are subject of repair by NER and ICL repair. We hypothesize that especially ERCC1/XPF, CSB and MSH6-related DNA repair protects from chemotherapy-induced neuropathy in the context of CisPt-based anticancer therapy.
Collapse
Affiliation(s)
- Fabian Wynen
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Johannes Krautstrunk
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Lisa Marie Müller
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Viktoria Graf
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Vanessa Brinkmann
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Gerhard Fritz
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Nabeta R, Kanaya A, Elbadawy M, Usui T, Furuya T, Suzuki K, Uchide T. Chemosensitivity of three patient-derived primary cultures of canine pericardial mesothelioma by single-agent and combination treatment. Front Vet Sci 2023; 10:1267359. [PMID: 38026668 PMCID: PMC10653591 DOI: 10.3389/fvets.2023.1267359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Canine mesothelioma is a rare malignant tumor that mostly affects body cavities, such as the pericardial and pleural cavities. Chemotherapy plays a crucial role in the treatment of canine mesotheliomas. We aimed to compare the antitumor effects of single-agent and combination chemotherapeutic agents on patient-derived primary cultures of canine pericardial mesothelioma established in this study. We planned to generate xenograft models for future studies. Material and methods Effusion samples were collected from three dogs with histologically diagnosed pericardial mesothelioma and used for primary culture. Cultured cells were characterized by immunostaining for pan-cytokeratin AE1/AE3, vimentin, Wilms' tumor suppressor gene 1 (WT1), and cytokeratin 5 (CK5). To assess the tumorigenic properties of cells in the effusion and generate a xenograft model, the cell suspension was injected into a severe combined immunodeficient (SCID) mouse either subcutaneously (SC) or intraperitoneally (IP). Lastly, chemosensitivity of established primary cultures against four drugs, doxorubicin, vinorelbine, carboplatin, and gemcitabine, by single-agent treatment as well as combination treatment of carboplatin at a fixed concentration, either 10 or 100 μM, and gemcitabine at different concentrations ranging from 0-1000 μM was assessed by cell viability assay. Results Primary cultures were successfully generated and characterized by dual positivity for AE1/AE3 and vimentin and positive staining for WT-1 and CK5, confirming the mesothelial origin of the cells. In the xenograft models, SC mouse developed a subcutaneous mass, whereas IP mouse developed multiple intraperitoneal nodules. The masses were histopathologically consistent with mesotheliomas. The chemosensitivity assay revealed that carboplatin had the highest anti-tumor effects among the four tested single-agent treatments. Furthermore, carboplatin at 100 μM combined with gemcitabine at clinically relevant doses demonstrated the augmented anti-tumor effects compared to single-agent treatment. Discussion and conclusion Primary cultures and xenograft models generated in this study could be useful tools for in vitro and in vivo studies of canine mesothelioma. Carboplatin is a highly effective chemotherapeutic agent against canine mesothelioma when used as a sole agent and in combination with gemcitabine.
Collapse
Affiliation(s)
- Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ami Kanaya
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
8
|
Balfourier A, Marty AP, Gazeau F. Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study. ACS NANOSCIENCE AU 2022; 3:46-57. [PMID: 36820094 PMCID: PMC9936776 DOI: 10.1021/acsnanoscienceau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles' solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.
Collapse
Affiliation(s)
- Alice Balfourier
- Université
Paris Cité, Laboratoire Matière
et Systèmes Complexes (MSC), CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Anne-Pia Marty
- Université
Paris Cité, Laboratoire Matière
et Systèmes Complexes (MSC), CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Florence Gazeau
- Université
Paris Cité, Laboratoire Matière
et Systèmes Complexes (MSC), CNRS, 45 rue des Saints Pères, 75006 Paris, France,. Phone: +33 (0)157276203
| |
Collapse
|
9
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
10
|
Folk WP, Kumari A, Iwasaki T, Cassimere EK, Pyndiah S, Martin E, Homlar K, Sakamuro D. New Synthetic Lethality Re-Sensitizing Platinum-Refractory Cancer Cells to Cisplatin In Vitro: The Rationale to Co-Use PARP and ATM Inhibitors. Int J Mol Sci 2021; 22:ijms222413324. [PMID: 34948122 PMCID: PMC8704450 DOI: 10.3390/ijms222413324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by BIN1 deficits. Forced BIN1 depletion compromised cisplatin sensitivity irrespective of Ser15-phosphorylated, pro-apoptotic TP53 tumor suppressor. The BIN1 deficit facilitated ATM to phosphorylate the DNA-damage-response (DDR) effectors, including MDC1. Consequently, another DDR protein, RNF8, bound to ATM-phosphorylated MDC1 and protected MDC1 from caspase-3-dependent proteolytic cleavage to hinder cisplatin sensitivity. Of note, long-term and repeated exposure to cisplatin naturally recapitulated the BIN1 loss and accompanying RNF8-dependent cisplatin resistance. Simultaneously, endogenous MYC was remarkably activated by PARP1, thereby repressing the BIN1 promoter, whereas PARP inhibition abolished the hyperactivated MYC-dependent BIN1 suppression and restored cisplatin sensitivity. Since the BIN1 gene rarely mutates in human cancers, our results suggest that simultaneous inhibition of PARP1 and ATM provokes a new BRCAness-independent synthetic lethal effect and ultimately re-establishes cisplatin sensitivity even in platinum-refractory cancer cells.
Collapse
Affiliation(s)
- Watson P. Folk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
| | - Tetsushi Iwasaki
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe 657, Japan
| | - Erica K. Cassimere
- Department of Biology, College of Science, Engineering and Technology, Texas Southern University, Houston, TX 77004, USA;
| | | | - Elizabeth Martin
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Department of Pathology, Medical College of Georgia, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Kelly Homlar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Correspondence: ; Tel.: +1-706-(721)-1018
| |
Collapse
|
11
|
Wang W, Ma S, Ding Z, Yang Y, Wang H, Yang K, Cai X, Li H, Gao Z, Qu M. XPC Protein Improves Lung Adenocarcinoma Prognosis by Inhibiting Lung Cancer Cell Stemness. Front Pharmacol 2021; 12:707940. [PMID: 34803670 PMCID: PMC8595099 DOI: 10.3389/fphar.2021.707940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Xeroderma Pigmentosum Complementation Group C (XPC) is a protein involving in nucleotide excision repair (NER). XPC also plays an important role in the lung cancer occurrence with the mechanism remian unclear up to date. Studies showed that the increased stemness of lung cancer cells is related to the recurrence and metastasis of lung cancer. This study aimed to study and analyze the correlation of XPC with lung cancer stem cell biomarkers expression and the overall survival (OS) of lung adenocarcinoma patients. Methods: 140 cases of clinical lung adenocarcinoma tissue samples and 48 cases of paired paracancerous tissue samples were made into tissue microarray. Immunohistochemistry (IHC) was used to detect the expression of XPC and CD133 in cancer and paracancerous tissues. Semi-quantitative analysis and statistics were performed by Pannoramic Digital Slide Scanner. The expression of XPC and CD133 in fresh tissues was verified by Western blotting assay. siXPC was used to knock down XPC in lung cancer cell lines to study the effect of XPC on the expression of lung cancer stem cell biomarkers and the ability of cell invasion. And shXPC was used to knockdown XPC in A549 and H1650 to study the effect of XPC on the expression of lung cancer stem cell biomarkers. Results: IHC and Western blotting results showed that XPC expression significantly decreased, while CD133 expression significantly increased in cancer tissues comparing to paracancerous tissues (P XPC < 0.0001, P CD133 = 0.0395). The high level of XPC in cancer was associated with a better prognosis (Log-rank p = 0.0577) in lung adenocarcinoma patients. Downregulation of XPC in lung cancer cells showed increased expression of cancer stem cell biomarkers and the increased cell invasion abilities. Conclusion: It is suggested that XPC can exert the ability of anti-tumor formation, tumor invasion and metastasis inhibition, and prognostic survival improvement in lung adenocarcinoma patients by regulating the stemness of lung cancer cells.
Collapse
Affiliation(s)
- Weiyu Wang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Shengyao Ma
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenyu Ding
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Yang
- School of Public Health, Qingdao University, Qingdao, China
| | - Huaijie Wang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoshan Cai
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hanyue Li
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
ERCC1 rs11615 polymorphism and chemosensitivity to platinum drugs in patients with ovarian cancer: a systematic review and meta-analysis. J Ovarian Res 2021; 14:80. [PMID: 34148553 PMCID: PMC8215742 DOI: 10.1186/s13048-021-00831-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To explore the relationship between ERCC1 rs11615 polymorphism and chemosensitivity to platinum drugs in ovarian cancer by the method of meta-analysis. METHODS Pubmed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), and China Wanfang databases were comprehensively searched up to September 2020, to identify the relationship between ERCC1 rs11615 polymorphism and chemosensitivity of ovarian cancer. The data was analyzed by Stata 15.0 statistic software. RESULTS A total of 10 published papers were included, including 1866 patients with ovarian cancer. The results showed that compared allele C at ERCC1 rs11615 locus with allele T, the pooled OR was 0.92 (95%CI:0.68 ~ 1.24, P > 0.05). There were no significant differences in recessive, dominant, homozygous, and heterozygous models. In accordance with a subgroup analysis of Ethnicity, all genotypes were statistically significant in the Asian population. In the allelic, dominant, recessive, homozygous and heterozygous models, the OR was 0.70 (95%CI:0.51 ~ 0.95), 0.20 (95%CI:0.07 ~ 0.56), 0.79 (95%CI:0.63 ~ 1.00), 0.21 (95%CI:0.07 ~ 0.59), 0.19 (95%CI:0.07 ~ 0.54), respectively, while in the Caucasian population, no statistically significant genotype was found. CONCLUSION The ERCC1 rs11615 polymorphism is associated with chemosensitivity in patients with ovarian cancer, especially in the Asian population, but not in the Caucasian population.
Collapse
|
13
|
Morelli C, Formica V, Riondino S, Russo A, Ferroni P, Guadagni F, Roselli M. Irinotecan or Oxaliplatin: Which is the First Move for the Mate? Curr Med Chem 2021; 28:3158-3172. [PMID: 33069191 DOI: 10.2174/0929867327666201016124950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of the present review is to discuss the potential link between RAS, BRAF and microsatellite instability (MSI) mutational patterns and chemotherapeutic agent efficacy [Irinotecan (IRI) vs. Oxaliplatin (OXA)], and how this can potentially influence the choice of the chemotherapy backbone. METHODS Following a review of the research literature, all pertinent articles published in the core journals were selected for the study. The inclusion criteria regarded relevant clinical and pre-clinical studies on the topic of interest (Relationship of OXA and IRI to KRAS/BRAF mutations and MSI). RESULTS Excision repair cross complementation group 1 (ERCC1) expression is inhibited by KRAS mutation, making tumor cells more sensitive to OXA. Results from OPUS, COIN and PRIME trials support that no conclusive data are available for BRAF mutant population because of the small number of patients. Enhanced IRI cytotoxicity to MSI cell lines is due to the participation of some of the mismatch repair (MMR) components in various DNA repair processes and their role in the maintenance of the pro-apoptotic effect of IRI and G2/M cell arrest. CONCLUSION OXA and IRI are indispensable drugs for mCRC treatment and their selection must be as careful as that of targeted agents. We suggest taking into consideration the interaction between known genomic alterations and OXA and IRI activity to personalize chemotherapy in mCRC patients.
Collapse
Affiliation(s)
- Cristina Morelli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Vincenzo Formica
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Silvia Riondino
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
14
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
15
|
Chen LH, Shen TC, Li CH, Chiu KL, Hsiau YC, Wang YC, Gong CL, Wang ZH, Chang WS, Tsai CW, Hsia TC, Bau DAT. The Significant Interaction of Excision Repair Cross-complementing Group 1 Genotypes and Smoking to Lung Cancer Risk. Cancer Genomics Proteomics 2021; 17:571-577. [PMID: 32859635 DOI: 10.21873/cgp.20213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The study aims to evaluate the contribution of excision repair cross-complementing group 1 (ERCC1), which plays an important role in genome integrity maintenance, to lung cancer risk. MATERIALS AND METHODS ERCC1 rs11615 and rs3212986 genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism analysis and their association with lung cancer risk was examined among 358 lung cancer patients and 716 controls. RESULTS The proportions of CC, CT and TT for the rs11615 genotype were 43.6%, 41.6% and 14.8% in the case group and 50.0%, 41.1% and 8.9% in the control group, respectively (p for trend=0.0082). Allelic analysis showed that ERCC1 rs11615 T-allele carriers have a 1.32-fold higher risk of lung cancer than wild-type C-allele carriers [95%confidence interval (CI)=1.09-1.60, p=0.0039]. In addition, a significant interaction between the rs11615 genotype and smoking status was observed. CONCLUSION The T allele of ERCC1 rs11615 jointly with smoking habits may contribute to a higher lung cancer risk in Taiwan.
Collapse
Affiliation(s)
- Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Hsiang Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Kuo-Liang Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Chen Hsiau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
16
|
Excision Repair Cross-Complementation Group 6 Gene Polymorphism Is Associated with the Response to FOLFIRINOX Chemotherapy in Asian Patients with Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061196. [PMID: 33801891 PMCID: PMC7998301 DOI: 10.3390/cancers13061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary FOLFIRINOX is a platinum-based chemotherapy regimen for patients with pancreatic cancer and is known to be more effective in the presence of the BRCA mutation, one of the DNA damage repair (DDR) gene mutations. However, BRCA mutations are less common in pancreatic cancer patients, accounting for only about 5% of cases worldwide, and are known to be even rarer in Asians. Therefore, this study aimed to uncover new genetic variants of DDR genes related to the response of FOLFIRINOX by analyzing variants of DDR genes using whole exome sequencing. Multivariable Cox regression analysis adjusted for clinical variables showed that a single nucleotide polymorphism (SNP) of the ERCC6 gene is an independent predictor for progression-free survival. If validated, the ERCC6 SNP found in this study could be used as a biomarker to predict responses to FOLFIRINOX. Abstract FOLFIRINOX is currently one of the standard chemotherapy regimens for pancreatic cancer patients, but little is known about the factors that can predict a response to it. We performed a study to discover novel DNA damage repair (DDR) gene variants associated with the response to FOLFIRINOX chemotherapy in patients with pancreatic cancer. We queried a cohort of pancreatic cancer patients who received FOLFIRINOX chemotherapy as the first treatment and who had tissue obtained through an endoscopic ultrasound-guided biopsy that was suitable for DNA sequencing. We explored variants of 148 DDR genes based on whole exome sequencing and performed multivariate Cox regression to find genetic variants associated with progression-free survival (PFS). Overall, 103 patients were included. Among 2384 variants of 141 DDR genes, 612 non-synonymous variants of 123 genes were selected for Cox regression analysis. The multivariate Cox model showed that rs2228528 in ERCC6 was significantly associated with improved PFS (hazard ratio 0.54, p = 0.001). The median PFS was significantly longer in patients with rs2228528 genotype AA vs. genotype GA and GG (23.5 vs. 16.2 and 8.6 months; log-rank p < 0.001). This study suggests that rs2228528 in ERCC6 could be a potential predictor of response to FOLFIRINOX chemotherapy in patients with pancreatic cancer.
Collapse
|
17
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
18
|
Skowron MA, Hoffmann MJ, Watolla MM, Nettersheim D. Evaluation of Chemotherapeutic Drugs for Treatment of (Cisplatin-Resistant) Germ Cell Cancer Cell Lines. Methods Mol Biol 2021; 2195:99-111. [PMID: 32852760 DOI: 10.1007/978-1-0716-0860-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cisplatin resistance still remains a major obstacle in the standard chemotherapeutic approach in late-stage and metastatic testicular germ cell cancer (GCC) patients. This multifactorial and complex phenomenon arises (concomitantly) on several levels due to impaired transport, decreased adduct formation, increased DNA-repair, decreased apoptosis, or compensating pathways. Evaluation of novel therapeutic approaches and pharmacological inhibitors still remains necessary to treat cisplatin-resistant GCCs. In this chapter, we present in vitro techniques to measure cytotoxic impacts of chemotherapeutic drugs on GCC cell lines. Specifically, we will discuss the measurement of relative cell viability by XTT assay, as well as cell cycle distribution and apoptosis assay by Nicoletti- and Annexin V/PI apoptosis assay with subsequent flow cytometry, respectively, to evaluate the effects of cytotoxic treatment in GCC cell lines.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Meike M Watolla
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
20
|
Casal-Mouriño A, Ruano-Ravina A, Torres-Durán M, Parente-Lamelas I, Provencio-Pulla M, Castro-Añón O, Vidal-García I, Abal-Arca J, Piñeiro-Lamas M, Fernández-Villar A, Valdés-Cuadrado L, Barros-Dios JM, Pérez-Ríos M. Polymorphisms in the BER and NER pathways and their influence on survival and toxicity in never-smokers with lung cancer. Sci Rep 2020; 10:21147. [PMID: 33273562 PMCID: PMC7713126 DOI: 10.1038/s41598-020-78051-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023] Open
Abstract
Polymorphisms in DNA repair pathways may play a relevant role in lung cancer survival in never-smokers. Furthermore, they could be implicated in the response to chemotherapy and toxicity of platinum agents. The aim of this study was to evaluate the influence of various genetic polymorphisms in the BER and NER DNA repair pathways on survival and toxicity in never-smoker LC patients. The study included never-smokers LC cases diagnosed from 2011 through 2019, belonging to the Lung Cancer Research In Never Smokers study. A total of 356 never-smokers cases participated (79% women; 83% adenocarcinoma and 65% stage IV). Survival at 3 and 5 years from diagnosis was not associated with genetic polymorphisms, except in the subgroup of patients who received radiotherapy or chemo-radiotherapy, and presented with ERCC1 rs3212986 polymorphism. There was greater toxicity in those presenting OGG1 rs1052133 (CG) and ERCC1 rs11615 polymorphisms among patients treated with radiotherapy or chemo-radiotherapy, respectively. In general, polymorphisms in the BER and NER pathways do not seem to play a relevant role in survival and response to treatment among never-smoker LC patients.
Collapse
Affiliation(s)
- Ana Casal-Mouriño
- Department of Pneumology, Santiago de Compostela University Clinical Teaching Hospital, Santiago de Compostela, Spain.,Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/San Francisco s/n, 15782, Santiago de Compostela, Spain
| | - Alberto Ruano-Ravina
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/San Francisco s/n, 15782, Santiago de Compostela, Spain. .,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología and Salud Pública-CIBERESP), Madrid, Spain. .,C013 Group-Health Research Institute of Santiago de Compostela (Instituto Investigación Sanitaria de Santiago de Compostela/IDIS), Santiago de Compostela, Spain.
| | - María Torres-Durán
- Department of Pneumology, Vigo University Teaching Hospital Complex, Vigo, Spain
| | | | | | | | - Iria Vidal-García
- Department of Pneumology, A Coruña University Teaching Hospital Complex, Vigo, Spain
| | - José Abal-Arca
- Department of Pneumology, Ourense University Teaching Hospital Complex, Ourense, Spain
| | - María Piñeiro-Lamas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología and Salud Pública-CIBERESP), Madrid, Spain
| | | | - Luis Valdés-Cuadrado
- Department of Pneumology, Santiago de Compostela University Clinical Teaching Hospital, Santiago de Compostela, Spain.,Interdisciplinary Neumology Research Group, Health Research Institute of Santiago de Compostela (Instituto Investigación Sanitaria de Santiago de Compostela/IDIS), Santiago de Compostela, Spain
| | - Juan Miguel Barros-Dios
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/San Francisco s/n, 15782, Santiago de Compostela, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología and Salud Pública-CIBERESP), Madrid, Spain
| | - Mónica Pérez-Ríos
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/San Francisco s/n, 15782, Santiago de Compostela, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología and Salud Pública-CIBERESP), Madrid, Spain.,C013 Group-Health Research Institute of Santiago de Compostela (Instituto Investigación Sanitaria de Santiago de Compostela/IDIS), Santiago de Compostela, Spain
| |
Collapse
|
21
|
Zhang C, Gao S, Hou J. ERCC1 expression and platinum chemosensitivity in patients with ovarian cancer: A meta-analysis. Int J Biol Markers 2020; 35:12-19. [PMID: 33126828 DOI: 10.1177/1724600820963396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study aimed to comprehensively investigate the correlation of ERCC1 expression and chemosensitivity of ovarian cancer. METHODS The literature on the relationship between the excision repair cross complementary gene 1 (ERCC1) and the chemosensitivity of ovarian cancer published in PubMed, Web of Science, EMBASE, CNKI, and the China Wanfang database from the establishment of the databases to June 2020 were searched. Chemosensitivity is evaluated by clinical effective rate (complete remission plus partial remission). Statistical analysis was carried out by using Stata 15.1 software. RESULTS A total of 11 articles met the inclusion criteria, consisting of 758 patients with ovarian cancer. The results showed a significant difference in chemosensitivity between the low expression group and the high expression group of ERCC1 (odds ratio 4.23; 95% confidence interval 2.96, 6.06; P < 0. 01). The same result was shown in the ethnicity subgroup. CONCLUSION The chemosensitivity of ovarian cancer patients with a low expression of ERCC1 is better than that of patients with a high expression.
Collapse
Affiliation(s)
- Chunjie Zhang
- Gynecology Unit II, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Northwest Minzu University, The Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Jingwen Hou
- Department of Emergency, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
22
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
23
|
Azambuja AA, Engroff P, Silva BT, Zorzetti RCS, Morrone FB. Evaluation of nuclear NF-κB, transglutaminase2, and ERCC1 as predictors of platinum resistance in testicular tumors. Int Braz J Urol 2020; 46:353-362. [PMID: 32167697 PMCID: PMC7088506 DOI: 10.1590/s1677-5538.ibju.2019.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Testicular germ cells tumor (TGCT) are associated with a high cure rate and are treated with platinum-based chemotherapy. However, a group of testicular cancer patients may have a very unfavorable evolution and insensitivity to the main therapeutic agent chemotherapy (CT) cisplatin. The aim of this study was to evaluate the risk of recurrence and overall survival related to the expression of nuclear factor kappa-B (NF-κB), transglutaminase 2 (TG2) and excision repair cross-complementation group 1 (ERCC1) in patients with TGCT treated with platinum combinations. PATIENTS AND METHODS A retrospective study was performed with TGCT patients treated with platinum-based chemotherapy. Immunohistochemical analysis was performed and the expression was correlated with clinical and laboratory data. RESULTS Fifty patients were included, the mean age was 28.4 years (18 to 45), and 76% were non-seminoma. All patients were treated with standard cisplatin, etoposide and bleomycin or cisplatin, and etoposide. Patient's analyzed immunodetection for NF-κB, TG2, and ERCC1 were positive in 76%, 54% and 42%, respectively. Multivariate analysis identified that positive expressions to ERCC1 and NF-κB are independent risk factors for higher recurrence TGCT after chemotherapy (RR 2.96 and 3.16, respectively). Patients with positive expression of ERCC1 presented a poor overall survival rate for 10-year follow (p=0.001). CONCLUSIONS The expression of ERCC1 and NF-κB give a worse prognosis for relapse, and only ERCC1 had an influence on the overall survival of TGCT patients treated with platinum-based chemotherapy. These may represent markers that predict poor clinical outcome and response to cisplatin.
Collapse
Affiliation(s)
- Alan A Azambuja
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS e Hospital Mãe de Deus, Porto Alegre, Brasil
| | - Paula Engroff
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brasil
| | - Bruna T Silva
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brasil
| | - Roberta C S Zorzetti
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brasil
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina e Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
24
|
Double-staining Immunohistochemistry Reveals in Malignant Pleural Mesothelioma the Coexpression of ERCC1 and RRM1 as a Frequent Biological Event Related to Poorer Survival. Appl Immunohistochem Mol Morphol 2020; 29:231-238. [PMID: 32842027 DOI: 10.1097/pai.0000000000000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer with a poor prognosis. To date, standard MPM therapy is still limited to surgery, radiotherapy, and chemotherapy, including pemetrexed and platinum compounds. The main mechanisms of platinum resistance are associated with DNA repair pathways. Excision repair cross-complementing group 1 (ERCC1) and ribonucleotide reductase subunit M1 (RRM1) are important components of the DNA repair, considered as prognostic and predictive biomarkers in various cancer types. The main goal of the present study was to investigate the ERCC1 and RRM1 expression and their potential impact on outcome in this tumor. A series of 73 MPM, mainly treated with a platin-based regimen, was collected and the immunohistochemistry tests were performed to assess ERCC1 and RRM1 expression. In addition, a multiplex immunohistochemistry has been validated to detect simultaneously the 2 proteins on the same slide. In our series, 36 of 73 cases showed ERCC1 expression and 55 of 73 showed RRM1 expression. The double immunohistochemical staining showed the coexpression of ERCC1/RRM1 in 34 of 73 cases. A significant association between ERCC1 and RRM1 expression was observed in our series (P<0.05). Patients with ERCC1/RRM1 coexpression experienced shorter median overall survival (6.6 vs. 13.8 mo, log-rank=7688; P=0.006). Our results suggest that the coexpression of ERCC1/RRM1 could define a group of MPM patients with the worst prognosis who should need likely alternative treatment. In conclusion, we propose the putative usefulness of ERCC1/RRM1 coexpression as prognostic biomarkers for overall survival in MPM.
Collapse
|
25
|
Gray A, Dang BN, Moore TB, Clemens R, Pressman P. A review of nutrition and dietary interventions in oncology. SAGE Open Med 2020; 8:2050312120926877. [PMID: 32537159 PMCID: PMC7268120 DOI: 10.1177/2050312120926877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The complex cellular mechanisms and inter-related pathways of cancer proliferation, evasion, and metastasis remain an emerging field of research. Over the last several decades, nutritional research has prominent role in identifying emerging adjuvant therapies in our fight against cancer. Nutritional and dietary interventions are being explored to improve the morbidity and mortality for cancer patients worldwide. In this review, we examine several dietary interventions and their proposed mechanisms against cancer as well as identifying limitations in the currently available literature. This review provides a comprehensive review of the cancer metabolism, dietary interventions used during cancer treatment, anti metabolic drugs, and their impact on nutritional deficiencies along with a critical review of the following diets: caloric restriction, intermittent fasting, ketogenic diet, Mediterranean diet, Japanese diet, and vegan diet.
Collapse
Affiliation(s)
- Ashley Gray
- Division of Pediatric Hematology/Oncology, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brian N Dang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore B Moore
- Division of Pediatric Hematology/Oncology, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger Clemens
- Pharmacology & Pharmaceutical Sciences, USC School of Pharmacy, International Center for Regulatory Science, Los Angeles, CA, USA
| | - Peter Pressman
- Polyscience Consulting & Director of Nutrition and Public Health, The Daedalus Foundation, San Clemente, CA, USA
| |
Collapse
|
26
|
Meta-Analysis of ERCC1 Protein Expression and Platinum Chemosensitivity in Non-Small-Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7376568. [PMID: 32419821 PMCID: PMC7210550 DOI: 10.1155/2020/7376568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Objective To carry out the meta-analysis on the relationship between the expression of nucleotide excision repair cross-complementary enzyme 1 (ERCC1) protein and platinum chemosensitivity in patients with advanced non-small-cell lung cancer (NSCLC). Methods The literature on the expression of ERCC1 and platinum chemosensitivity in patients with advanced NSCLC was searched in computer, which was published from January 2009 to August 2019 on the databases such as China Journal Full-text Database (CJFD), China National Knowledge Infrastructure (CNKI), Wanfang Database, VIP, PubMed, EMBASE, and others. Stata 15.0 was used for statistical analysis, and ethnicity subgroup analysis was taken. Results Finally, 14 studies were included and 1337 patients were involved, of which 697 were ERCC1 positive, with a positive rate of 53.5%. The combined OR was 0.53 (95% CI: 0.30∼0.79; P < 0.01). The results of ethnicity subgroup analysis showed that there was no significant difference, with OR of 0.50 (95% CI: 0.31∼0.82; P=0.001) in Asian population and OR of 0.56 (95% CI: 0.30∼1.07) in Caucasian population. Conclusion The sensitivity to platinum chemotherapy in patients with ERCC1 protein negative expression in the middle and late stages of NSCLC is better than that in patients with positive expression, especially in Asian population. There is no correlation in Caucasian population.
Collapse
|
27
|
Abstract
OBJECTIVES A platinum/etoposide doublet is standard first-line therapy for poorly differentiated neuroendocrine carcinoma (PD NEC); however, evidence to guide treatment beyond first-line regimens is lacking. This study aimed to evaluate the efficacy of second-line regimens in PD NEC. METHODS We performed a retrospective analysis of patients treated with second-line chemotherapy for PD NEC. Inclusion criteria were previous first-line therapy with platinum/etoposide, extrapulmonary PD NEC, and follow-up data. The primary end points were overall survival (OS) and progression-free survival (PFS) after second-line therapy. Secondary end points included OS and PFS from first-line therapy. RESULTS Sixty-four patients were included. The median OS from initiation of second-line therapy was 6.2 months (95% confidence interval [CI], 4.9-8.9). The median PFS was 2.3 months (95% CI, 2.0-3.2). No second-line regimen showed a statistically significant difference in OS or PFS. There was a significant increase in OS for cisplatin first-line regimens compared with carboplatin (17.0 months [95% CI, 12.5-22.6] vs 11.7 months [95% CI, 8.0-14.0]). CONCLUSIONS The efficacy of current second-line therapy in PD NEC is poor. No second-line regimen showed statistically significant superiority. Cisplatin was associated with longer OS regardless of second-line regimen or age. However, unmeasured confounders such as performance status or comorbidities may explain this effect.
Collapse
|
28
|
Bao Y, Yang B, Zhao J, Shen S, Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int J Immunogenet 2020; 47:443-453. [PMID: 32173978 DOI: 10.1111/iji.12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) contributes the majority of death cases among various ovarian malignancies. Although a standard method of treatment is the surgical removal of malignant tissue followed by platinum-based chemotherapy, a group of patients does not respond appropriately to cisplatin. An appropriate response to cisplatin has been linked with the nucleotide excision repair mechanism. The present study aims to investigate the role of polymorphisms in DNA repair genes, excision repair cross-complementation group 1 (ERCC1) with susceptibility to EOC development and tumour response to platinum-based chemotherapy in Chinese EOC patients. Patients (n = 559) reporting to the Department of Oncology and general surgery, the First Affiliated Hospital of Kunming Medical University, were enrolled in the study. Three hundred twenty-three healthy controls hailing from similar geographical areas without a history of cancer enrolled as healthy controls. Excision repair cross-complementation group 1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were genotyped by appropriate methods. Distribution of genotypes and allele for ERCC1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were comparable among healthy controls and EOC patients. Interestingly, homozygous mutant and the minor allele for rs11615 and rs3212986 polymorphisms were significantly higher in nonresponder EOC patients when compared to those with a proper response to cisplatin treatment. The prevalence of other SNPs was comparable among the two treated clinical categories. Furthermore, combined genotype revealed significant association of rs11615: TT/ rs3212986: AA genotype combination with cisplatin nonresponder. Variants of rs11615, rs3212986 polymorphisms are associated with cisplatin resistance in Chinese EOC patients. Combined rs11615 and rs3212986 genotypes can be used as a predictive biomarker for platinum-based chemotherapy outcomes.
Collapse
Affiliation(s)
- Yuxia Bao
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Experimental Diagnosis, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Bin Yang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Simin Shen
- Department of Pain treatment, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianyuan Gao
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Huang MY, Huang CW, Wang JY. Surgical treatment following neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Kaohsiung J Med Sci 2019; 36:152-159. [PMID: 31814296 DOI: 10.1002/kjm2.12161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is a major public health problem worldwide, and locally advanced rectal cancer (LARC) is known for its poor prognosis. A multimodal treatment approach is the only method to achieve satisfactory local recurrence and survival rates in LARC. Determining which therapeutic modality for LARC has the most satisfactory influence on quality of life and disease outcome is still controversial. LARC treatment is subject to continuous advancement due to the development of new and better diagnostic tools, radiotherapy techniques, and chemotherapeutic agents. Herein, we review various therapeutic modalities for LARC from several aspects. In addition to radiotherapy techniques such as neoadjuvant chemoradiotherapy (NCRT), we discuss the progress of chemotherapy, appropriate time interval between NCRT and surgery, relationship between tumor location and NCRT efficacy/safety, wait-and-watch policy, and predictors of treatment response following NCRT. Because of the controversies and unanswered questions regarding NCRT treatments for LARC, additional investigations are required to determine which therapeutic approach is the most feasible for LARC patients.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Haynes B, Gajan A, Nangia-Makker P, Shekhar MP. RAD6B is a major mediator of triple negative breast cancer cisplatin resistance: Regulation of translesion synthesis/Fanconi anemia crosstalk and BRCA1 independence. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165561. [PMID: 31639439 DOI: 10.1016/j.bbadis.2019.165561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with few therapy options besides chemotherapy. Although platinum-based drugs have shown initial activity in BRCA1-mutated TNBCs, chemoresistance remains a challenge. Here we show that RAD6B (UBE2B), a principal mediator of translesion synthesis (TLS), is overexpressed in BRCA1 wild-type and mutant TNBCs, and RAD6B overexpression correlates with poor survival. Pretreatment with a RAD6-selective inhibitor, SMI#9, enhanced cisplatin chemosensitivity of BRCA1 wild-type and mutant TNBCs. SMI#9 attenuated cisplatin-induced PCNA monoubiquitination (TLS marker), FANCD2 (Fanconi anemia (FA) activation marker), and TLS polymerase POL η. SMI#9-induced decreases in γH2AX levels were associated with concomitant inhibition of H2AX monoubiquitination, suggesting a key role for RAD6 in modulating cisplatin-induced γH2AX via H2AX monoubiquitination. Concordantly, SMI#9 inhibited γH2AX, POL η and FANCD2 foci formation. RAD51 foci formation was unaffected by SMI#9, however, its recruitment to double-strand breaks was inhibited. Using the DR-GFP-based assay, we showed that RAD6B silencing or SMI#9 treatment impairs homologous recombination (HR) in HR-proficient cells. DNA fiber assays confirmed that restart of cisplatin-stalled replicating forks is inhibited by SMI#9 in both BRCA1 wild-type and mutant TNBC cells. Consistent with the in vitro data, SMI#9 and cisplatin combination treatment inhibited BRCA1 wild-type and mutant TNBC growth as compared to controls. These RAD6B activities are unaffected by BRCA1 status of TNBCs suggesting that the RAD6B function in TLS/FA crosstalk could occur in HR-dependent and independent modes. Collectively, these data implicate RAD6 as an important therapeutic target for TNBCs irrespective of their BRCA1 status.
Collapse
Affiliation(s)
- Brittany Haynes
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Ambikai Gajan
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Malathy P Shekhar
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
31
|
Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 2019; 24:146-154. [PMID: 31624720 PMCID: PMC6786808 DOI: 10.15430/jcp.2019.24.3.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.,Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
32
|
Excision repair cross-complementing group-1 (ERCC1) induction kinetics and polymorphism are markers of inferior outcome in patients with colorectal cancer treated with oxaliplatin. Oncotarget 2019; 10:5510-5522. [PMID: 31565185 PMCID: PMC6756860 DOI: 10.18632/oncotarget.27140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background ERCC1, a component of nucleotide excision repair pathway, is known to repair DNA breaks induced by platinum drugs. We sought to ascertain if ERCC1 expression dynamics and a single nucleotide polymorphism (SNP) rs11615 are biomarkers of sensitivity to oxaliplatin therapy in patients with colorectal cancer (CRC). Methods Western blot and qPCR for ERCC1 expression was performed from PBMCs isolated from patients receiving oxaliplatin-based therapy at specified timepoints. DNA was also isolated from 59 biorepository specimens for SNP analysis. Clinical benefit was determined using progression free survival (PFS) for metastatic CRC. Results ERCC1 was induced in PBMC in response to oxaliplatin in 13/25 patients with mCRC (52%). Median PFS with ERCC1 induction was 190d compared to 237d in non-induced patients (HR 2.35, CI 1.005-5.479; p=0.0182). ERCC1 rs11615 SNP analysis revealed that 43.3% harbored C/C, 41.2%-T/C and 15.5%-T/T genotype. Median PFS was significantly lower with C/C or T/C (211 and 196d) compared to T/T (590d; p=0.0310). Conclusions ERCC1 was induced in a sub-population of patients undergoing oxaliplatin treatment, which was associated with poorer outcome, suggesting this could serve as a marker of oxaliplatin response. C/C or C/T genotype in ERCC1 rs11615 locus decreased benefit from oxaliplatin.
Collapse
|
33
|
Pfitzer L, Moser C, Gegenfurtner F, Arner A, Foerster F, Atzberger C, Zisis T, Kubisch-Dohmen R, Busse J, Smith R, Timinszky G, Kalinina OV, Müller R, Wagner E, Vollmar AM, Zahler S. Targeting actin inhibits repair of doxorubicin-induced DNA damage: a novel therapeutic approach for combination therapy. Cell Death Dis 2019; 10:302. [PMID: 30944311 PMCID: PMC6447524 DOI: 10.1038/s41419-019-1546-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 01/22/2023]
Abstract
Severe side effects often restrict clinical application of the widely used chemotherapeutic drug doxorubicin. In order to decrease required substance concentrations, new concepts for successful combination therapy are needed. Since doxorubicin causes DNA damage, combination with compounds that modulate DNA repair could be a promising strategy. Very recently, a role of nuclear actin for DNA damage repair has been proposed, making actin a potential target for cancer therapy in combination with DNA-damaging therapeutics. This is of special interest, since actin-binding compounds have not yet found their way into clinics. We find that low-dose combination treatment of doxorubicin with the actin polymerizer chondramide B (ChB) synergistically inhibits tumor growth in vivo. On the cellular level we demonstrate that actin binders inhibit distinctive double strand break (DSB) repair pathways. Actin manipulation impairs the recruitment of replication factor A (RPA) to the site of damage, a process crucial for homologous recombination. In addition, actin binders reduce autophosphorylation of DNA-dependent protein kinase (DNA-PK) during nonhomologous end joining. Our findings substantiate a direct involvement of actin in nuclear DSB repair pathways, and propose actin as a therapeutic target for combination therapy with DNA-damaging agents such as doxorubicin.
Collapse
Affiliation(s)
- Lisa Pfitzer
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christina Moser
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Florian Gegenfurtner
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Anja Arner
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Florian Foerster
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Carina Atzberger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Themistoklis Zisis
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Rebekka Kubisch-Dohmen
- Department of Pharmacy, Pharmaceutical Biology and Biotechnology-Biotechnology and Nanomedicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Johanna Busse
- Department of Pharmacy, Pharmaceutical Biology and Biotechnology-Biotechnology and Nanomedicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Rebecca Smith
- Department of Physiological Chemistry, Ludwig Maximilian University, Munich, Germany.,CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, Univ Rennes, 35000, Rennes, France
| | - Gyula Timinszky
- Department of Physiological Chemistry, Ludwig Maximilian University, Munich, Germany.,MTA SZBK Lendület DNA Damage and Nuclear Dynamics Research Group, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Olga V Kalinina
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biology and Biotechnology-Biotechnology and Nanomedicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
34
|
Zhu J, Ji S, Hu Q, Chen Q, Liu Z, Wu J, Gu K. The prognostic value of excission repair cross-complementation group one enzyme expression in locally advanced cervical carcinoma patients treated with cisplatin-based treatment: a meta-analysis. Int J Gynecol Cancer 2019; 29:35-41. [PMID: 30640681 DOI: 10.1136/ijgc-2018-000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recently, several studies observed that locally advanced cervical carcinoma with negative excision repair crross-complementation group one enzyme expression has better outcomes in cisplatin-based chemotherapy or chemoradiotherapy than carcinoma with positive excission repair cross-complementation group one enzyme expression. In this meta-analysis, we quantitatively evaluated the prognostic value of excission repair cross-complementation group one enzyme expression in locally advanced cervical carcinoma patients receiving platinum-based chemotherapy or chemoradiotherapy. MATERIALS A systematic search for relevant studies was conducted in the PubMed, Cochrane Library, EMBASE and Medline databases. Fixed- or random-effects models were used for pooled analysis. The endpoints were overall survival and disease-free survival () reported as ORs and 95% CIs. The effects of excission repair cross-complementation group one enzyme expression on the clinicopathological parameters were measured by the pooled ORs and their 95% CIs. RESULTS Eight studies (612 patients in total) satisfied the inclusion criteria. Negative/low excission repair cross-complementation group one enzyme expression was significantly associated with better overall survival (OR, 1.92; 95% CI, 1.22 to 3.05; P = 0.005) and disease-free survival (OR, 5.77; 95% CI, 1.90 to 17.54; P = 0.002). Additionally, there were significant associations between excission repair cross-complementation group one enzyme expression and lymph node metastasis (OR, 2.57; 95% CI, 1.28 to 5.16; P = 0.008). CONCLUSIONS This meta-analysis suggested that pretreatment excission repair cross-complementation group one enzyme expression might be a useful biomarker to predict prognoses for locally advanced cervical carcinoma patients receiving platinum-based chemotherapy or chemoradiotherapy.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Department of Oncology, Nanjing Medical University, Nanjing, China
| | - Shengjun Ji
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qunchao Hu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qingqing Chen
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengcao Liu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ke Gu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
35
|
Ferguson SD, Zheng S, Xiu J, Zhou S, Khasraw M, Brastianos PK, Kesari S, Hu J, Rudnick J, Salacz ME, Piccioni D, Huang S, Davies MA, Glitza IC, Heymach JV, Zhang J, Ibrahim NK, DeGroot JF, McCarty J, O'Brien BJ, Sawaya R, Verhaak RG, Reddy SK, Priebe W, Gatalica Z, Spetzler D, Heimberger AB. Profiles of brain metastases: Prioritization of therapeutic targets. Int J Cancer 2018; 143:3019-3026. [PMID: 29923182 PMCID: PMC6235694 DOI: 10.1002/ijc.31624] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of nonsmall cell lung cancer, breast cancer and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry) and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification and mutations among brain metastases, extracranial metastases and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8,178 nonsmall cell lung cancers (5,098 primaries; 2,787 systemic metastases; 293 brain metastases), 7,064 breast cancers (3,496 primaries; 3,469 systemic metastases; 99 brain metastases) and 1,757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1 and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication and/or repair.
Collapse
Affiliation(s)
- Sherise D. Ferguson
- Departments of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Siyuan Zheng
- Departments of Genome MedicineThe University of Texas MD Anderson Cancer CenterHoustonTX
| | | | - Shouhao Zhou
- Departments of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Mustafa Khasraw
- NHMRC Clinical Trials CentreUniversity of SydneySydneyAustralia
| | | | - Santosh Kesari
- Pacific Neuroscience Institute and John Wayne Cancer Institute at Providence Saint John's Health CenterSanta MonicaCA
| | | | | | | | - David Piccioni
- Department of NeurosciencesUniversity of California at San Diego Moores Cancer CenterLa JollaCA
| | - Suyun Huang
- Departments of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Michael A. Davies
- Departments of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Isabella C. Glitza
- Departments of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - John V. Heymach
- Departments of Thoracic OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Jianjun Zhang
- Departments of Thoracic OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Nuhad K. Ibrahim
- Departments of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - John F. DeGroot
- Departments of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Joseph McCarty
- Departments of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Barbara J. O'Brien
- Departments of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Raymond Sawaya
- Departments of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Roeland G.W. Verhaak
- Departments of Genome MedicineThe University of Texas MD Anderson Cancer CenterHoustonTX
| | | | - Waldemar Priebe
- Departments of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTX
| | | | | | - Amy B. Heimberger
- Departments of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
36
|
Zhang R, Zhou F, Cheng L, Yu A, Zhu M, Wang M, Zhang Z, Xiang J, Wei Q. Genetic variants in nucleotide excision repair pathway predict survival of esophageal squamous cell cancer patients receiving platinum-based chemotherapy. Mol Carcinog 2018; 57:1553-1565. [PMID: 30035334 DOI: 10.1002/mc.22877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
The benefits of platinum-based chemotherapy (PBC) on survival of esophageal squamous cell carcinoma (ESCC) patients are inexplicit due to the varied therapeutic effects. Nucleotide excision repair (NER) pathway plays a vital role in removing platinum-DNA adducts in tumor cells and hence may modulate the therapeutic effect and survival outcome. The present study assessed the associations of 26 potentially functional regulatory single nucleotide polymorphisms (rSNPs) in nine core NER genes with disease-free survival (DFS) and overall survival (OS) in 339 ESCC patients. We found that ERCC2 rs2097215 T and rs3916788 A, ERCC5 rs3759497 A and XPC rs3731054 C alleles were associated with unfavorable DFS. Patients carrying high-risk allele group (HRG, 5-8 risk alleles) had a significantly shorter DFS, compared with those carrying low-risk alleles (LRG, 0-4 risk alleles) [adjusted hazards ratio (HRadj ) = 1.64, 95%CI = 1.23-2.19, Padj < 0.001]. Three of these SNPs (ie, ERCC2 rs2097215 T and rs3916788 A and ERCC5 rs3759497 A) were also significantly associated with a poorer OS (HRG vs LRG: HRadj = 1.75, 95%CI = 1.23-2.47, Padj = 0.002). The expression quantitative trait loci (eQTL) analysis revealed significant genotype-expression correlations for ERCC5 rs3759497 and ERCC2 2097215 and rs3916788, which suggest regulatory roles of these SNPs. It appears that these NER variants may independently or jointly exert an impact on survival outcome of Chinese ESCC patients undergoing adjuvant platinum-based therapy. Large studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Ruoxin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Zhou
- Department of Oncology, Shanghai Jiao Tong University affiliated Shanghai General Hospital, Shanghai, China
| | - Lei Cheng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Alexandria Yu
- Department of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuanxu Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiaqing Xiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
37
|
Huang MY, Huang JJ, Huang CM, Lin CH, Tsai HL, Huang CW, Chai CY, Lin CY, Wang JY. Relationship Between Expression of Proteins ERCC1, ERCC2, and XRCC1 and Clinical Outcomes in Patients with Rectal Cancer Treated with FOLFOX-Based Preoperative Chemoradiotherapy. World J Surg 2018; 41:2884-2897. [PMID: 28608017 DOI: 10.1007/s00268-017-4070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platinum resistance enhances DNA damage repair through nucleotide excision repair mechanisms involving the excision repair cross-complementing group 1 (ERCC1), X-ray cross-complementing group 1 (XRCC1), and excision repair cross-complementing group 2 (ERCC2). We evaluated the correlation between the expression of these three DNA repair genes and clinical outcomes in patients with rectal cancer receiving FOLFOX-based preoperative chemoradiotherapy (CRT). METHODS Using immunohistochemistry, we examined the expression of ERCC1, ERCC2, and XRCC1 in pre-CRT cancer tissues from 86 patients with rectal cancer who had undergone curative resection and preoperative CRT with FOLFOX-4 to identify potential predictors of clinical outcomes. RESULTS Following CRT, 57 and 29 patients were classified as responders (pathological tumor regression grade TRG 0 and TRG 1) and poor responders (TRG 2 and TRG 3), respectively. The multivariate analysis revealed that ERCC1 overexpression was correlated with a poor CRT response [p < 0.0001; odds ratio (OR), 9.397; 95% confidence interval (CI) 2.721-32.457]. Furthermore, a poor response to CRT (pathological TRG of 2-3) (p = 0.18; OR 5.685; 95% CI 1.349-23.954) and abnormal pre-CRT serum carcinoembryonic antigen levels (>5 ng/mL) (p = 0.03; OR 6.288; 95% CI 1.198-33.006) were independent predictors of postoperative relapse. By contrast, ERCC2 and XRCC1 expression did not play predictive roles in the analyzed patients. CONCLUSIONS ERCC1 overexpression is associated with a poor preoperative CRT response in patients with rectal cancer receiving FOLFOX-based preoperative CRT. ERCC1 is a potential biomarker for identifying patients who can benefit from customized treatment programs.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joh-Jong Huang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Ming Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Surgery, Graduate Institute of Clinical Medicine, College of Medicine, Center for Natural products and Drug Development, Center for Biomarkers and Biotech Drugs and Center for Environmental Medicine, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
38
|
Ju X, Yu H, Liang D, Jiang T, Liu Y, Chen L, Dong Q, Liu X. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions. Biomed Pharmacother 2018; 102:549-554. [PMID: 29597088 DOI: 10.1016/j.biopha.2018.03.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. METHODS The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. RESULTS The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. CONCLUSIONS LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression.
Collapse
Affiliation(s)
- Xingyan Ju
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongsheng Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Donghai Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanwei Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Qing Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoran Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Cytoprotective effects of sinapic acid on human keratinocytes (HaCaT) against ultraviolet B. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0021-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells. Oncotarget 2018; 7:75104-75117. [PMID: 27650543 PMCID: PMC5342726 DOI: 10.18632/oncotarget.12072] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
ERCC1-XPF heterodimer is a 5′-3′ structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy.
Collapse
|
41
|
Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C. Anticancer platinum-based complexes with non-classical structures. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linxiang Cai
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Congtao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Linkui Ba
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Qinghua Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yunxu Qian
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
42
|
Liu Y, Sun W, Ma X, Hao Y, Liu G, Hu X, Shang H, Wu P, Zhao Z, Liu W. Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma. Int J Mol Med 2018; 41:1233-1244. [PMID: 29328361 PMCID: PMC5819903 DOI: 10.3892/ijmm.2018.3360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet-derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuedong Hao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaohui Hu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Houlai Shang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Pengfei Wu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zexue Zhao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
43
|
Xu M, Liu Y, Li D, Wang X, Liang S, Zhang G, Yang X. Chinese C allele carriers of the ERCC5 rs1047768 polymorphism are more sensitive to platinum-based chemotherapy: a meta-analysis. Oncotarget 2018; 9:1248-1256. [PMID: 29416691 PMCID: PMC5787435 DOI: 10.18632/oncotarget.18981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
It is suspected that ERCC5 rs1047768 and rs17655 polymorphisms influence the response to platinum-based chemotherapy. This meta-analysis was performed to summarize the scattered evidence regarding the association between these two polymorphisms and sensitivity to platinum-based treatment. Thirteen studies were included after a comprehensive literature search. The pooled odds ratios and 95% confidence intervals suggested that the C allele of the ERCC5 rs1047768 polymorphism is associated with elevated sensitivity to platinating agents, especially for Chinese patients. However, no difference among rs17655 genotypes could be detected.
Collapse
Affiliation(s)
- Meizhen Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yina Liu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China.,Present address: Jiayin BioTechnology Co., Ltd., Shanghai, China
| | | | | | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
44
|
Ryu H, Song IC, Choi YS, Yun HJ, Jo DY, Kim JM, Ko YB, Lee HJ. ERCC1 expression status predicts the response and survival of patients with metastatic or recurrent cervical cancer treated via platinum-based chemotherapy. Medicine (Baltimore) 2017; 96:e9402. [PMID: 29390553 PMCID: PMC5758255 DOI: 10.1097/md.0000000000009402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The deoxyribonucleic acid (DNA) repair gene encoding the excision-repair cross-complementation group 1 (ERCC1) protein is known to predict the response to platinum-based chemotherapy. Our aim was to explore whether ERCC1 expression predicted tumor response and survival in patients with recurrent or metastatic cervical cancer treated via platinum-based chemotherapy. We analyzed 32 such patients. ERCC1 expression was assessed immunohistochemically in pretreatment biopsy samples. Of the 32 patients, 13 (40.6%) were ERCC1 high. ERCC1-low patients exhibited a significantly higher response rate (73.7%) than did others (15.4%). The median progression-free survival differed significantly by ERCC1 status, being 135 days in ERCC1-high and 242 days in ERCC1-low patients (hazard ratio, 2.428; 95% confidence interval, 1.145-5.148, P = .032). Overall survival was significantly longer in ERCC1-low (617 days) than in ERCC1-high (320 days) patients (hazard ratio, 2.322; 95% confidence interval, 1.051-5.29; P = .037). Thus, pretreatment ERCC1 expression status can be used to predict tumor response and survival of patients with recurrent or metastatic uterine cervical cancer receiving platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Man Kim
- Department of Pathology
- Infection Control Convergence Research Center
| | - Young Bok Ko
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Hyo Jin Lee
- Department of Internal Medicine
- Infection Control Convergence Research Center
| |
Collapse
|
45
|
Genetic variants in ERCC1 and XPC predict survival outcome of non-small cell lung cancer patients treated with platinum-based therapy. Sci Rep 2017; 7:10702. [PMID: 28878296 PMCID: PMC5587538 DOI: 10.1038/s41598-017-10800-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Nucleotide excision repair (NER) plays a vital role in platinum-induced DNA damage during chemotherapy. We hypothesize that regulatory single nucleotide polymorphisms (rSNPs) of the core NER genes modulate clinical outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with platinum-based chemotherapy (PBS). We investigated associations of 25 rSNPs in eight NER genes with progression free survival (PFS) and overall survival (OS) in 710 NSCLC patients. We found that ERCC1 rs3212924 AG/GG and XPC rs2229090 GC/CC genotypes were associated with patients’ PFS (HRadj = 1.21, 95% CI = 1.03–1.43, Padj = 0.021 for ERCC1 and HRadj = 0.80, 95% CI = 0.68–0.94, Padj = 0.007 for XPC), compared with the AA and GG genotypes, respectively. The association of XPC rs2229090 was more apparent in adenocarcinoma than in squamous cell carcinoma patients. Additionally, ERCC4 rs1799798 GA/AA genotypes were associated with poorer OS (HRadj = 1.32, 95% CI = 1.04–1.69, Padj = 0.026), compared with the GG genotype. The expression quantitative trait loci analysis revealed that ERCC1 rs3212924 and XPC rs2229090 might regulate transcription of their genes, which is consistent with their associations with survival. Larger studies are needed to validate our findings with further functional studies to elucidate the mechanisms underlying these observed associations.
Collapse
|
46
|
Tan LM, Qiu CF, Zhu T, Jin YX, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. Genetic Polymorphisms and Platinum-based Chemotherapy Treatment Outcomes in Patients with Non-Small Cell Lung Cancer: A Genetic Epidemiology Study Based Meta-analysis. Sci Rep 2017; 7:5593. [PMID: 28717179 PMCID: PMC5514117 DOI: 10.1038/s41598-017-05642-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Data regarding genetic polymorphisms and platinum-based chemotherapy (PBC) treatment outcomes in patients with NSCLC are published at a growing pace, but the results are inconsistent. This meta-analysis integrated eligible candidate genes to better evaluate the pharmacogenetics of PBC in NSCLC patients. Relevant studies were retrieved from PubMed, Chinese National Knowledge Infrastructure and WANFANG databases. A total of 111 articles comprising 18,196 subjects were included for this study. The associations of genetic polymorphisms with treatment outcomes of PBC including overall response rate (ORR), overall survival (OS) and progression-free survival (PFS) were determined by analyzing the relative risk (RR), hazard ration (HR), corresponding 95% confidence interval (CI). Eleven polymorphisms in 9 genes, including ERCC1 rs11615 (OS), rs3212986 (ORR), XPA rs1800975 (ORR), XPD rs1052555 (OS, PFS), rs13181 (OS, PFS), XPG rs2296147 (OS), XRCC1 rs1799782 (ORR), XRCC3 rs861539 (ORR), GSTP1 rs1695 (ORR), MTHFR rs1801133 (ORR) and MDR1 rs1045642 (ORR), were found significantly associated with PBC treatment outcomes. These variants were mainly involved in DNA repair (EXCC1, XPA, XPD, XPG, XRCC1 and XRCC3), drug influx and efflux (MDR1), metabolism and detoxification (GSTP1) and DNA synthesis (MTHFR), and might be considered as potential prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Cheng-Feng Qiu
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Yuan-Xiang Jin
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China.
| |
Collapse
|
47
|
Abstract
Abstract
RHAMM is hyaluronan- receptor with multiple functions in the cell, RHAMM is involved in proliferation, motility, migration, invasion, mitotic spindle formation in tumour cells. Therefore, RHAMM could be a relevant target for molecular targeted therapies against tumors.The role of RHAMM-target peptides in inhibition invasion for preventing breast cancer has not yet been investigated. Base on this, we analyzed the RHAMM-target peptides for their therapeutic activity against breast cancer cells. In the present study, we examined the effect of RHAMM-target peptides on the invasion of breast cancer cells (MDAMB- 231), using confocal microscopy. We shown that RHAMM-target peptides decreased formation of invadopodia of breast cancer cells. The treatment of breast cancer cells by RHAMM -target peptides inhibited the invasion up to 99 %. Additionally, RHAMM-target peptides induced the morphological changes of of breast cancer cells. Therefore, based on these results, we can conclude that RHAMM-target peptides may be potential anti-cancer agents.
Collapse
Affiliation(s)
- Natalia Akentieva
- Kinetics Chemical and Biological Processes; Institute problems of Chemical Physics RAS, pr.acad. Semenova, 1 Chernogolovka Moscow , Russian Federation
| |
Collapse
|
48
|
Liu SC, Lin H, Huang CC, Chang Chien CC, Tsai CC, Ou YC, Fu HC, Liu JM, Ma YY. Prognostic role of excision repair cross complementing-1 and topoisomerase-1 expression in epithelial ovarian cancer. Taiwan J Obstet Gynecol 2017; 55:213-9. [PMID: 27125404 DOI: 10.1016/j.tjog.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Epithelial ovarian cancer is the most lethal gynecologic cancer worldwide and chemoresistance is one of the major causes of treatment failure. We investigated whether ERCC1, TAU, TOPO2A, TOPO1, P53, and C-MYC expression could be used as predictors for treatment outcomes. MATERIALS AND METHODS Immunohistochemical staining was used to examine the expression of these biomarkers in resected tumor specimens from 38 patients treated in our institute. Clinicopathological data including demographics, staging, histological type, treatment response, expression of the biomarkers, and patient outcomes were analyzed. RESULTS The median follow-up period was 47.5 months (range, 10-135 months) and the median overall survival was 56.0 months. Patients who did not have expression of ERCC1, and those who had expression of TOPO1 had significantly better overall survival. Cox regression analysis also confirmed that these two biomarkers were significant independent factors predicting survival (ERCC1, hazard ratio 5.51, 95% confidence interval: 2.02-14.00, p = 0.001; TOPO1, hazard ratio 0.22, 95% confidence interval: 0.06-0.77, p = 0.017). CONCLUSION We concluded that poor overall survival was significantly associated with positive ERCC1 and negative TOPO1 expression. The results might be the consequence of chemoresistance to platinum and camptothecins, both of which are commonly used regimens in the treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Shih-Chieh Liu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chan-Chao Chang Chien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jacqueline M Liu
- TTY Oncology Translational Research Center, Taiwan Tung Yang Biopharm, Taipei, Taiwan
| | - Yen-Ying Ma
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Yunlin, Taiwan.
| |
Collapse
|
49
|
Biological and predictive role of ERCC1 polymorphisms in cancer. Crit Rev Oncol Hematol 2017; 111:133-143. [PMID: 28259288 DOI: 10.1016/j.critrevonc.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Excision repair cross-complementation group 1 (ERCC1) is a key component in DNA repair mechanisms and may influence the tumor DNA-targeting effect of the chemotherapeutic agent oxaliplatin. Germline ERCC1 polymorphisms may alter the protein expression and published data on their predictive and prognostic value have so far been contradictory. In the present article we review available evidence on the clinical role and utility of ERCC1 polymorphisms and, in the absence of a 'perfect' trial, what we call the 'sliding doors' trial, we present the data of ERCC1 genotyping in our local patient population. We found a useful predictive value for oxaliplatin-induced risk of anemia.
Collapse
|
50
|
Piljić Burazer M, Mladinov S, Ćapkun V, Kuret S, Glavina Durdov M. The Utility of Thyroid Transcription Factor 1 (TTF-1), Napsin A, Excision Repair Cross-Complementing 1 (ERCC1), Anaplastic Lymphoma Kinase (ALK) and the Epidermal Growth Factor Receptor (EGFR) Expression in Small Biopsy in Prognosis of Patients with Lung Adenocarcinoma - A Retrograde Single-Center Study from Croatia. Med Sci Monit 2017; 23:489-497. [PMID: 28128193 PMCID: PMC5292985 DOI: 10.12659/msm.899378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The present study was carried out in order to evaluate our institutional experience with small biopsy in diagnosis and molecular testing of lung adenocarcinoma. Few specific and predictive markers have been evaluated and correlated with clinicopathologic characteristics and survival in patients with lung adenocarcinoma who received platinum-based chemotherapy. There have not been such reports from Croatia. Material/Methods A total of 142 cases of lung adenocarcinoma were retrospectively investigated in small biopsies for the immunohistochemical expression of TTF-1, napsin A, ERCC1, ALK, and the EGFR mutation by real-time polymerase chain reaction (rtPCR). Results TTF-1, napsin A, and ERCC1 expression was found in 81%, 78%, and 69% of patients, respectively, and the expressions were not significantly associated with subtype. Expression of ALK was found in 4% and EGFR mutation in 10% of patients. Exon 19 deletions were the most common. Longer survival was significantly associated with TTF-1 positivity (p=0.007) and napsin A positivity (p=0.026). Higher relative risk of death significantly correlated with positive expression of ERCC1 (p=0.041). Conclusions Positive TTF-1 and napsin A expressions in lung adenocarcinoma tissues were useful diagnostic and favorable prognostic parameters. Positive ERCC1 expression was identified as a negative prognostic marker in patients treated with platinum-based chemotherapy. The percentages of EGFR and ALK mutations corresponded to those in previously published reports for Caucasians.
Collapse
Affiliation(s)
- Marina Piljić Burazer
- Department of Pathology, Forensic Medicine and Cytology, Clinical Hospital Center Split, Split, Croatia
| | - Suzana Mladinov
- Department of Pulmonology, Clinical Hospital Center Split, Split, Croatia
| | - Vesna Ćapkun
- Department of Nuclear Medicine, Clinical Hospital Center Split, Split, Croatia
| | - Sendi Kuret
- Department of Pathology, Forensic Medicine and Cytology, Clinical Hospital Center Split, Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, Clinical Hospital Center Split, Split, Croatia
| |
Collapse
|