1
|
Doty RL, MacGillivray MR, Talab H, Tourbier I, Reish M, Davis S, Cuzzocreo JL, Shepard NT, Pham DL. Balance in multiple sclerosis: relationship to central brain regions. Exp Brain Res 2018; 236:2739-2750. [PMID: 30019234 DOI: 10.1007/s00221-018-5332-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
Abstract
Dizziness, postural instability, and ataxia are among the most debilitating symptoms of multiple sclerosis (MS), reflecting, in large part, dysfunctional integration of visual, somatosensory, and vestibular sensory cues. However, the role of MS-related supratentorial lesions in producing such symptoms is poorly understood. In this study, motor control test (MCT) and dynamic sensory organization test (SOT) scores of 58 MS patients were compared to those of 72 healthy controls; correlations were determined between the MS scores of 49 patients and lesion volumes within 26 brain regions. Depending upon platform excursion direction and magnitude, MCT latencies, which were longer in MS patients than controls (p < 0.0001), were correlated with lesion volumes in the cortex, medial frontal lobes, temporal lobes, and parietal opercula (r's ranging from 0.20 to 0.39). SOT test scores were also impacted by MS and correlated with lesions in these same brain regions as well as within the superior frontal lobe (r's ranging from - 0.28 to - 0.40). The strongest and most consistent correlations occurred for the most challenging tasks in which incongruent visual and proprioceptive feedback were given. This study demonstrates that supratentorial lesion volumes are associated with quantitative balance measures in MS, in accord with the concept that balance relies upon highly convergent and multimodal neural pathways involving the skin, muscles, joints, eyes, and vestibular system.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA.
| | - Michael R MacGillivray
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
| | - Hussam Talab
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
| | - Isabelle Tourbier
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
| | - Megan Reish
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
| | - Sherrie Davis
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
| | | | - Neil T Shepard
- Division of Audiology, Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, USA
| |
Collapse
|
2
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
3
|
Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABA A and Alpha 2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 2017; 179:37-53. [DOI: 10.1016/j.lfs.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
|
4
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
5
|
Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:696-707. [PMID: 24685330 DOI: 10.1016/j.jplph.2014.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, Minsk 220030, Belarus.
| |
Collapse
|
6
|
Shin HJ, Kim H, Heo RW, Kim HJ, Choi WS, Kwon HM, Roh GS. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures. Cell Death Differ 2014; 21:1095-106. [PMID: 24608792 DOI: 10.1038/cdd.2014.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 12/21/2022] Open
Abstract
Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target.
Collapse
Affiliation(s)
- H J Shin
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - R W Heo
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H J Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - W S Choi
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H M Kwon
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - G S Roh
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| |
Collapse
|
7
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
8
|
Hu SL, Du P, Hu R, Li F, Feng H. Imbalance of Ca2+ and K+ fluxes in C6 glioma cells after PDT measured with scanning ion-selective electrode technique. Lasers Med Sci 2014; 29:1261-7. [DOI: 10.1007/s10103-014-1518-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
9
|
Song M, Yu SP. Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 2013; 5:17-27. [PMID: 24323733 DOI: 10.1007/s12975-013-0314-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Stroke is a leading cause of human death and disability in the USA and around the world. Shortly after the cerebral ischemia, cell swelling is the earliest morphological change in injured neuronal, glial, and endothelial cells. Cytotoxic swelling directly results from increased Na(+) (with H2O) and Ca(2+) influx into cells via ionic mechanisms evoked by membrane depolarization and a number of harmful factors such as glutamate accumulation and the production of oxygen reactive species. During the sub-acute and chronic phases after ischemia, injured cells may show a phenotype of cell shrinkage due to complex processes involving membrane receptors/channels and programmed cell death signals. This review will introduce some progress in the understanding of the regulation of pathological cell volume changes and the involved receptors and channels, including NMDA and AMPA receptors, acid-sensing ion channels, hemichannels, transient receptor potential channels, and KCNQ channels. Moreover, accumulating evidence supports a key role of energy deficiency and dysfunction of Na(+)/K(+)-ATPase in ischemia-induced cell volume changes and cell death. Specifically, the Na(+) pump failure is a prerequisite for disruption of ionic homeostasis including a pro-apoptotic disruption of the K(+) homeostasis. Finally, we will introduce the concept of hybrid cell death as a result of the Na(+) pump failure in cultured cells and the ischemic brain. The goal of this review is to outline recent understanding of the ionic mechanism of ischemic cytotoxicity and suggest innovative ideas for future translational research.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, WMB Building Suite 620, Atlanta, GA, 30322, USA
| | | |
Collapse
|
10
|
Yi MH, Lee YS, Kang JW, Kim SJ, Oh SH, Kim YM, Lee YH, Lee SD, Kim DW. NFAT5-dependent expression of AQP4 in astrocytes. Cell Mol Neurobiol 2013; 33:223-32. [PMID: 23180003 DOI: 10.1007/s10571-012-9889-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The maintenance of water homeostasis under pathological conditions is mediated by the aquaporin-4 (AQP4) channel in astrocytes. To clarify the transcriptional regulation for AQP4 under conditions of astrocytic swelling, we examined the role of nuclear factor of activated T cells 5 (NFAT5). We evaluated NFAT5 expression patterns after the induction of brain edema and following excitotoxic neuronal death by kainic acid injection. In injured hippocampi, NFAT5 expression increased in astrocytes from 12 h to 3 days post-injection. AQP4 was redistributed from perivascular to whole-cell processes in astrocytes. NFAT5 and AQP4 expression increased under astrocytic swelling induced by ammonia treatment, and NFAT5-targeted silencing significantly reduced AQP4 expression. The promoter region required for NFAT5 transcriptional activation was located between -49 and -38 bp of rat AQP4. The amount of NFAT5 bound to the promoter of AQP4 was increased in response to ammonia. Our data demonstrate that NFAT5 is necessary for the transcriptional regulation of AQP4 expression and for local astrocyte swelling with accompanying restriction of the neuropil extracellular space in vivo.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
El-Ansary AK, Ben Bacha AG, Al-Ayadhi LY. Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation 2011; 8:142. [PMID: 21999440 PMCID: PMC3213048 DOI: 10.1186/1742-2094-8-142] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/15/2011] [Indexed: 01/30/2023] Open
Abstract
Objectives Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to clarify the relationship amongst absolute and relative concentrations of K+, Na+, Ca2+, Mg2+ and/or proinflammatory and proapoptotic biomarkers. Materials and methods Na+, K+, Ca2+, Mg2+, Na+/K+, Ca2+/Mg2+ together with IL6, TNFα as proinflammatory cytokines and caspase3 as proapoptotic biomarker were determined in plasma of 25 Saudi autistic male patients and compared to 16 age and gender matching control samples. Results The obtained data recorded that Saudi autistic patients have a remarkable lower plasma caspase3, IL6, TNFα, Ca2+ and a significantly higher K+ compared to age and gender matching controls. On the other hand both Mg2+ and Na+ were non-significantly altered in autistic patients. Pearson correlations revealed that plasma concentrations of the measured cytokines and caspase-3 were positively correlated with Ca2+ and Ca2+/K+ ratio. Reciever Operating Characteristics (ROC) analysis proved that the measured parameters recorded satisfactory levels of specificity and sensitivity. Conclusion Alteration of the selected measured ions confirms that oxidative stress and defective mitochondrial energy production could be contributed in the pathogenesis of autism. Moreover, it highlights the relationship between the measured ions, IL6, TNFα and caspase3 as a set of signalling pathways that might have a role in generating this increasingly prevalent disorder. The role of ions in the possible proinflammation and proapoptic mechanisms of autistics' brains were hypothesized and explained.
Collapse
Affiliation(s)
- Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, P,O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
12
|
Shabala L, Howells C, West AK, Chung RS. Prolonged Abeta treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis. Mol Neurodegener 2010; 5:30. [PMID: 20704753 PMCID: PMC2927593 DOI: 10.1186/1750-1326-5-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterised by the formation of insoluble amyloidogenic plaques and neurofibrillary tangles. Beta amyloid (Abeta) peptide is one of the main constituents in Abeta plaques, and is thought to be a primary causative agent in AD. Neurons are likely to be exposed to chronic, sublethal doses of Abeta over an extended time during the pathogenesis of AD, however most studies published to date using in vitro models have focussed on acute studies. To experimentally model the progressive pathogenesis of AD, we exposed primary cortical neurons daily to 1 muM of Abeta1-40 over 7 days and compared their survival with age-similar untreated cells. We also investigated whether chronic Abeta exposure affects neuronal susceptibility to the subsequent acute excitotoxicity induced by 10 muM glutamate and assessed how Ca2+ and K+ homeostasis were affected by either treatment. RESULTS We show that continuous exposure to 1 muM Abeta1-40 for seven days decreased survival of cultured cortical neurons by 20%. This decrease in survival correlated with increased K+ efflux from the cells. One day treatment with 1 muM Abeta followed by glutamate led to a substantially higher K+ efflux than in the age-similar untreated control. This difference further increased with the duration of the treatment. K+ efflux also remained higher in Abeta treated cells 20 min after glutamate application leading to 2.8-fold higher total K+ effluxed from the cells compared to controls. Ca2+ uptake was significantly higher only after prolonged Abeta treatment with 2.5-fold increase in total Ca2+ uptake over 20 min post glutamate application after six days of Abeta treatment or longer (P < 0.05). CONCLUSIONS Our data suggest that long term exposure to Abeta is detrimental because it reduces the ability of cortical neurons to maintain K+ and Ca2+ homeostasis in response to glutamate challenge, a response that might underlie the early symptoms of AD. The observed inability to maintain K+ homeostasis might furthermore be useful in future studies as an early indicator of pathological changes in response to Abeta.
Collapse
Affiliation(s)
- Lana Shabala
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7001, Australia.
| | | | | | | |
Collapse
|
13
|
Hernández-Enríquez B, Arellano R, Morán J. Role for ionic fluxes on cell death and apoptotic volume decrease in cultured cerebellar granule neurons. Neuroscience 2010; 167:298-311. [DOI: 10.1016/j.neuroscience.2010.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 01/17/2023]
|
14
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
15
|
Apoptosis and the Receptor Specificity of Its Mechanisms During the Neurotoxic Action of Glutamate. ACTA ACUST UNITED AC 2009; 39:353-62. [DOI: 10.1007/s11055-009-9141-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Indexed: 10/20/2022]
|
16
|
Jessica Chen M, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, Jeyaseelan K, Sang Cheung N. Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 2008; 6:102-16. [PMID: 19305791 PMCID: PMC2647147 DOI: 10.2174/157015908784533879] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/09/2007] [Accepted: 10/01/2007] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K(+), Na(+) and Cl(-). It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.
Collapse
Affiliation(s)
- Minghui Jessica Chen
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng Shyan Choy
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jayapal Manikandan
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alirio J Melendez
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nam Sang Cheung
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
17
|
Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y. Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 2008; 18:2217-27. [PMID: 18203692 DOI: 10.1093/cercor/bhm247] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have recently found that in the mouse cortex, activation of delta-opioid receptor (DOR) attenuates the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K(+) homeostasis because the disruption of K(+) homeostasis plays a critical role in neuronal injury under hypoxic/ischemic stress. The present study was performed to explore the ionic mechanism underlying the DOR-induced neuroprotection. Because anoxia causes Na(+) influx and thus stimulates K(+) leakage, we investigated whether DOR protects the cortex from anoxic K(+) derangement by targeting the Na(+)-based K(+) leakage. By using K(+)-sensitive microelectrodes in mouse cortical slices, we showed that 1) lowering Na(+) concentration and substituting with impermeable N-methyl-D-glucamine caused a concentration-dependent attenuation of anoxic K(+) derangement; 2) lowering Na(+) concentration by substituting with permeable Li(+) tended to potentiate the anoxic K(+) derangement; and 3) the DOR-induced protection against the anoxic K(+) responses was largely abolished by low-Na(+) perfusion irrespective of the substituted cation. We conclude that external Na(+) concentration greatly influences anoxic K(+) derangement and that DOR activation likely attenuates anoxic K(+) derangement induced by the Na(+)-activated mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
18
|
Chao D, Bazzy-Asaad A, Balboni G, Xia Y. delta-, but not mu-, opioid receptor stabilizes K(+) homeostasis by reducing Ca(2+) influx in the cortex during acute hypoxia. J Cell Physiol 2007; 212:60-7. [PMID: 17373650 DOI: 10.1002/jcp.21000] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Past work has shown that delta-opioid receptor (DOR) activation by [D-Ala(2),D-Leu(5)]-enkephalin (DADLE) attenuated the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation (OGD) in the cortex, while naltrindole, a DOR antagonist blocked this effect, suggesting that DOR activity stabilizes K(+) homeostasis in the cortex during hypoxic/ischemic stress. However, several important issues remain unclear regarding this new observation, especially the difference between DOR and other opioid receptors in the stabilization of K(+) homeostasis and the underlying mechanism. In this study, we asked whether DOR is different from micro-opioid receptors (MOR) in stabilizing K(+) homeostasis and which membrane channel(s) is critically involved in the DOR effect. The main findings are that (1) similar to DADLE (10 microM), H-Dmt-Tic-NH-CH (CH(2)--COOH)-Bid (1-10 microM), a more specific and potent DOR agonist significantly attenuated anoxic K(+) derangement in cortical slice; (2) [D-Ala(2), N-Me-Phe(4), glycinol(5)]-enkephalin (DAGO; 10 microM), a MOR agonist, did not produce any appreciable change in anoxic disruption of K(+) homeostasis; (3) absence of Ca(2+) greatly attenuated anoxic K(+) derangement; (4) inhibition of Ca(2+)-activated K(+) (BK) channels with paxilline (10 microM) reduced anoxic K(+) derangement; (5) DADLE (10 microM) could not further reduce anoxic K(+) derangement in the Ca(2+)-free perfused slices or in the presence of paxilline; and (6) glybenclamide (20 microM), a K(ATP) channel blocker, decreased anoxia-induced K(+) derangement, but DADLE (10 microM) could further attenuate anoxic K(+) derangement in the glybenclamide-perfused slices. These data suggest that DOR, but not MOR, activation is protective against anoxic K(+) derangement in the cortex, at least partially via an inhibition of hypoxia-induced increase in Ca(2+) entry-BK channel activity.
Collapse
Affiliation(s)
- Dongman Chao
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
19
|
Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 2007; 27:356-68. [PMID: 16773140 DOI: 10.1038/sj.jcbfm.9600352] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Cerebral Cortex/physiology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enzyme Inhibitors/pharmacology
- Extracellular Space/metabolism
- Glucose/deficiency
- Homeostasis/physiology
- Hypoxia, Brain/metabolism
- In Vitro Techniques
- Indicators and Reagents
- Male
- Mice
- Mice, Inbred C57BL
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Potassium/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Dongman Chao
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Monnerie H, Le Roux PD. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. J Neurosci Res 2006; 83:944-56. [PMID: 16498632 DOI: 10.1002/jnr.20805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate is an important regulator of dendrite development that may inhibit, (during ischemic injury), or facilitate (during early development) dendrite growth. Previous studies have reported mainly on the N-methyl-D-aspartate (NMDA) receptor-mediated dendrite growth-promoting effect of glutamate. In this study, we examined how the non-NMDA receptor agonist kainate influenced dendrite growth. E18 mouse cortical neurons were grown for 3 days in vitro and immunolabeled with anti-microtubule-associated protein 2 (MAP2) and anti-neurofilament (NF-H), to identify dendrites and axons, respectively. Exposure of cortical neurons to kainate increased dendrite growth without affecting neuron survival. This effect was dose-dependent, reversible and blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA)/kainate receptor antagonist NBQX and the low-affinity kainate receptor antagonist NS-102, but not by the AMPA receptor antagonist CFM-2. In addition, the NMDA receptor antagonist MK-801 had no effect on kainate-induced dendrite growth. Immunolabeling and Western blot analysis of kainate receptors using antibodies against the GluR6 and KA2 subunits, demonstrated that the immature cortical neurons used in this study express kainate receptor proteins. These results suggest that kainate-induced non-NMDA receptor activation promotes dendrite growth, and in particular primary dendrite number and length, from immature cortical neurons in vitro, and that kainate receptors may be directly involved in this process. Furthermore, these data support the possibility that like NMDA receptors, kainate receptor activation may also contribute to early neurite growth from cortical neurons in vitro.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
21
|
Mazurek B, Amarjargal N, Haupt H, Gross J. High potassium concentrations protect inner and outer hair cells in the newborn rat culture from ischemia-induced damage. Hear Res 2006; 215:31-8. [PMID: 16678987 DOI: 10.1016/j.heares.2006.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/31/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Several studies indicate that an increase in the extracellular potassium (K+) concentration is a factor exerting a damaging effect on cochlear hair cells (HCs). The present study was designed to examine the effects of high extracellular K+ concentrations on the HCs under normoxic and ischemic conditions. Organotypic cultures of the organ of Corti of newborn rats were exposed to normoxia and ischemia at K+ concentrations of 5-70 mM in artificial perilymph for 3-4h. The number of IHCs and OHCs in the apical, medial and basal parts of the cochlea were counted 24h later. The work resulted in two main findings: (1) extracellular K+ concentrations of 30-70 mM had no effect on the HCs under normoxic conditions; (2) under ischemic conditions, a clear HC loss, mainly in the medial and basal cochlear parts, was observed at 5 mM K+ as previously reported. In contrast, a high extracellular K+ concentration strongly attenuated the HC loss. This effect nearly completely disappeared by the addition of both eosin, an inhibitor of the plasma membrane calcium ATPase (PMCA), and linopirdine, an inhibitor of the KCNQ4 channel, indicating that a normal activity of the PMCA and the KCNQ4 channels are key factors for HC survival under ischemia and depolarizing conditions.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular-Biological Research Laboratory, Department of Otorhinolaryngology, Charité - University Medicine Berlin, Spandauer Damm 130, Bld. 31, 14050 Berlin, Germany.
| | | | | | | |
Collapse
|
22
|
Yu SP. Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 2003; 66:1601-9. [PMID: 14555240 DOI: 10.1016/s0006-2952(03)00531-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na(+), K(+)-ATPase is a ubiquitous membrane transport protein in mammalian cells, responsible for establishing and maintaining high K(+) and low Na(+) in the cytoplasm required for normal resting membrane potentials and various cellular activities. The ionic homeostasis maintained by the Na(+), K(+)-ATPase is also critical for cell growth, differentiation, and cell survival. Although the toxic effects of blocking the Na(+), K(+)-ATPase by ouabain and other selective inhibitors have been known for years, the mechanism of action remained unclear. Recent progress in two areas has significantly advanced our understanding of the role and mechanism of Na(+), K(+)-ATPase in cell death. Along with increased recognition of apoptosis in a wide range of disease states, Na(+), K(+)-ATPase deficiency has been identified as a contributor to apoptosis and pathogenesis. More importantly, accumulating evidence now endorses a close relationship between ionic homeostasis and apoptosis, namely the regulation of apoptosis by K(+) homeostasis. Since Na(+), K(+)-ATPase is the primary system for K(+) uptake, dysfunction of the transport enzyme and resultant disruption of ionic homeostasis have been re-evaluated for their critical roles in apoptosis and apoptosis-related diseases. In this review, instead of giving a detailed description of the structure and regulation of Na(+), K(+)-ATPase, the author will focus on the most recent evidence indicating the unique role of Na(+), K(+)-ATPase in cell death, including apoptosis and the newly recognized "hybrid death" of concurrent apoptosis and necrosis in the same cells. It is also hoped that discussion of some seemingly conflicting reports will inspire further debate and benefit future investigation in this important research field.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
23
|
Ichinose T, Yu S, Wang XQ, Yu SP. Ca2+-independent, but voltage- and activity-dependent regulation of the NMDA receptor outward K+ current in mouse cortical neurons. J Physiol 2003; 551:403-17. [PMID: 12860921 PMCID: PMC2343239 DOI: 10.1113/jphysiol.2003.041723] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To test the novel hypothesis that the K+ efflux mediated by NMDA receptors might be regulated differently than the influx of Ca2+ and Na+ through the same receptor channels, NMDA receptor whole-cell currents carried concurrently or individually by Ca2+, Na+ and K+ were analysed in cultured mouse cortical neurons. In contrast to the NMDA inward current carried by Ca2+ and Na+, the NMDA receptor outward K+ current or NMDA-K current, recorded either in the presence or absence of extracellular Ca2+ and Na+, and at different or the same membrane potentials, showed much less sensitivity to alterations in intracellular Ca2+ concentration and underwent little rundown. In line with a selective regulation of the NMDA receptor K+ permeability, the ratio of the NMDA inward/outward currents decreased, and the reversal potential of composite NMDA currents recorded in physiological solutions shifted by -8.5 mV after repeated activation of NMDA receptors. Moreover, a depolarizing pre-pulse of a few seconds or a burst of brief depolarizing pulses selectively augmented the subsequent NMDA-K current, but not the NMDA inward current. On the other hand, a hyperpolarizing pre-pulse showed the opposite effect of reducing the NMDA-K current. The voltage- and activity-dependent regulation of the NMDA-K current did not require the existence of extracellular Ca2+ or Ca2+ influx; it was, however, affected by the duration of the pre-pulse and was subject to a time-dependent decay. The burst of excitatory activity revealed a lasting upregulation of the NMDA-K current even 5 s after termination of the pre-pulses. Our data reveal a selective regulation of the NMDA receptor K+ permeability and represent a novel model of voltage- and excitatory activity-dependent plasticity at the receptor level.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Neurology and Center for the Study of Nervous System Injury, School of Medicine, Washington University, St Louis, MO, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Programmed cell death or apoptosis is broadly responsible for the normal homeostatic removal of cells and has been increasingly implicated in mediating pathological cell loss in many disease states. As the molecular mechanisms of apoptosis have been extensively investigated a critical role for ionic homeostasis in apoptosis has been recently endorsed. In contrast to the ionic mechanism of necrosis that involves Ca(2+) influx and intracellular Ca(2+) accumulation, compelling evidence now indicates that excessive K(+) efflux and intracellular K(+) depletion are key early steps in apoptosis. Physiological concentration of intracellular K(+) acts as a repressor of apoptotic effectors. A huge loss of cellular K(+), likely a common event in apoptosis of many cell types, may serve as a disaster signal allowing the execution of the suicide program by activating key events in the apoptotic cascade including caspase cleavage, cytochrome c release, and endonuclease activation. The pro-apoptotic disruption of K(+) homeostasis can be mediated by over-activated K(+) channels or ionotropic glutamate receptor channels, and most likely, accompanied by reduced K(+) uptake due to dysfunction of Na(+), K(+)-ATPase. Recent studies indicate that, in addition to the K(+) channels in the plasma membrane, mitochondrial K(+) channels and K(+) homeostasis also play important roles in apoptosis. Investigations on the K(+) regulation of apoptosis have provided a more comprehensive understanding of the apoptotic mechanism and may afford novel therapeutic strategies for apoptosis-related diseases.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA.
| |
Collapse
|
25
|
Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003; 116:2099-110. [PMID: 12679386 DOI: 10.1242/jcs.00420] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Na+, K+-ATPase (Na+, K+-pump) plays critical roles in maintaining ion homeostasis. Blocking the Na+, K+-pump may lead to apoptosis. By contrast, whether an apoptotic insult may affect the Na+, K+-pump activity is largely undefined. In cultured cortical neurons, the Na+, K+-pump activity measured as a membrane current Ipump was time-dependently suppressed by apoptotic insults including serum deprivation, staurosporine, and C2-ceramide, concomitant with depletion of intracellular ATP and production of reactive oxygen species. Signifying a putative relationship among these events, Ipump was highly sensitive to changes in ATP and reactive oxygen species levels. Moreover, the apoptosis-associated Na+, K+-pump failure and serum deprivation-induced neuronal death were antagonized by pyruvate and succinate in ATP- and reactive-oxygen-species-dependent manners. We suggest that failure of the Na+, K+-pump as a result of a combination of energy deficiency and production of reactive oxygen species is a common event in the apoptotic cascade; preserving the pump activity provides a neuroprotective strategy in certain pathological conditions.
Collapse
Affiliation(s)
- Xue Qing Wang
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|