1
|
Barkhuizen M, Vles JSH, van Mechelen R, Vermeer M, Kramer BW, Chedraui P, Bergs P, van Kranen-Mastenbroek VHJM, Gavilanes AWD. Preterm Perinatal Hypoxia-Ischemia Does not Affect Somatosensory Evoked Potentials in Adult Rats. Diagnostics (Basel) 2019; 9:E123. [PMID: 31540369 PMCID: PMC6787632 DOI: 10.3390/diagnostics9030123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022] Open
Abstract
Somatosensory evoked potentials (SSEPs) are a valuable tool to assess functional integrity of the somatosensory pathways and for the prediction of sensorimotor outcome in perinatal injuries, such as perinatal hypoxia-ischemia (HI). In the present research, we studied the translational potential of SSEPs together with sensory function in the male adult rat with perinatal HI compared to the male healthy adult rat. Both somatosensory response and evoked potential were measured at 10-11 months after global perinatal HI. Clear evoked potentials were obtained, but there were no group differences in the amplitude or latency of the evoked potentials of the preceding sensory response. The bilateral tactile stimulation test was also normal in both groups. This lack of effect may be ascribed to the late age-of-testing and functional recovery of the rats.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom 2531, South Africa.
| | - Johan S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- Child Neurology, Maastricht University Medical Centre, 6229 HX, Maastricht, The Netherlands.
| | - Ralph van Mechelen
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Marijne Vermeer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Peter Chedraui
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil 090615, Ecuador.
| | - Paul Bergs
- Clinical Neurophysiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | | | - Antonio W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil 090615, Ecuador.
| |
Collapse
|
2
|
Zhu W, Chen X, Ning L, Jin K. Network Analysis Reveals TNF as a Major Hub of Reactive Inflammation Following Spinal Cord Injury. Sci Rep 2019; 9:928. [PMID: 30700814 PMCID: PMC6354014 DOI: 10.1038/s41598-018-37357-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) leads to reactive inflammation and other harmful events that limit spinal cord regeneration. We propose an approach for studying the mechanisms at the levels of network topology, gene ontology, signaling pathways, and disease inference. We treated inflammatory mediators as toxic chemicals and retrieved the genes and interacting proteins associated with them via a set of biological medical databases and software. We identified >10,000 genes associated with SCI. Tumor necrosis factor (TNF) had the highest scores, and the top 30 were adopted as core data. In the core interacting protein network, TNF and other top 10 nodes were the major hubs. The core members were involved in cellular responses and metabolic processes, as components of the extracellular space and regions, in protein-binding and receptor-binding functions, as well as in the TNF signaling pathway. In addition, both seizures and SCI were highly associated with TNF levels; therefore, for achieving a better curative effect on SCI, TNF and other major hubs should be targeted together according to the theory of network intervention, rather than a single target such as TNF alone. Furthermore, certain drugs used to treat epilepsy could be used to treat SCI as adjuvants.
Collapse
Affiliation(s)
- Weiping Zhu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China.
| | - Xuning Chen
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| | - Le Ning
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| | - Kan Jin
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
3
|
Stigger F, Barbosa S, Marques MR, Segabinazi E, Augustin OA, Achaval M, Marcuzzo S. Synaptophysin and caspase-3 expression on lumbar segments of spinal cord after sensorimotor restriction during early postnatal period and treadmill training. J Exerc Rehabil 2018; 14:489-496. [PMID: 30018938 PMCID: PMC6028203 DOI: 10.12965/jer.1836086.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
The purpose of the current study was to investigate whether locomotor stimulation training could have beneficial effects on spinal cord plasticity consequent to sensorimotor restriction (SR). Male Wistar rats were exposed to SR from postnatal day 2 (P2) to P28. Control and experimental rats underwent locomotor stimulation training in a treadmill from P31 to P52. The intensity of the synaptophysin and caspase-3 immunoreaction was determined on ventral horn of spinal cord. The synaptophysin immunoreactivity was lower in the ventral horn of sensorimotor restricted rats compared to controls animals and was accompanied by an increased caspase-3 immunoreactivity. Those alterations were reversed at the end of the training period. Our results suggest that immobility affects the normal developmental process that spinal cord undergoes in early postnatal life influencing both pro-apoptotic and synapse markers. Also, we demonstrated that this phenomenon was reversed by 3 weeks of treadmill training.
Collapse
Affiliation(s)
- Felipe Stigger
- Department of Physiotherapy, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Silvia Barbosa
- Laboratory of Comparative Histophysiology, Department of Morphological Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília Rossato Marques
- Postgraduation Program of Neurosciences, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ethiane Segabinazi
- Postgraduation Program of Neurosciences, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Otávio Américo Augustin
- Laboratory of Comparative Histophysiology, Department of Morphological Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Matilde Achaval
- Postgraduation Program of Neurosciences, Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Marcuzzo
- Postgraduation Program of Neurosciences, Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
5
|
Santos AS, Almeida W, Popik B, Sbardelotto BM, Torrejais MM, Souza MA, Centenaro LA. Characterization of a cerebral palsy‐like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas. Int J Dev Neurosci 2017; 60:48-55. [DOI: 10.1016/j.ijdevneu.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adriana Souza Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Wellington Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Popik
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Márcia Miranda Torrejais
- Laboratório de Morfologia Experimental, Programa de Pós‐Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Marcelo Alves Souza
- Universidade Federal do Paraná, Rua General Rondon2195, ToledoParanáCEP: 85902‐090Brazil
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| |
Collapse
|
6
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
7
|
Short- and long-term consequences of perinatal asphyxia: looking for neuroprotective strategies. ADVANCES IN NEUROBIOLOGY 2015; 10:169-98. [PMID: 25287541 DOI: 10.1007/978-1-4939-1372-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. A primary insult is first produced by the length of the time without oxygenation, leading to hypoxia/ischemia and death if oxygenation is not promptly established. A second insult is produced by re-oxygenation, eliciting a cascade of biochemical events for restoring function, implying, however, improper homeostasis. The effects observed long after perinatal asphyxia can be explained by over-expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for oxidised nicotinamide adenine dinucleotide (NAD(+)) during re-oxygenation. Asphyxia also induces transcriptional activation of pro-inflammatory factors, including nuclear factor κB (NFκB) and its subunit p65, whose translocation to the nucleus is significantly increased in brain tissue from asphyxia-exposed animals, in tandem with PARP-1 overactivation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. It is proposed that PARP-1 inhibition also down-regulates the expression of pro-inflammatory cytokines.Nicotinamide is a suitable PARP-1 inhibitor, whose effects have been studied in an experimental model of global perinatal asphyxia in rats, inducing the insult by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, immediately treated, or given to surrogate dams for nursing, pending further experiments. Systemic administration of nicotinamide 1 h after the insult inhibited PARP-1 overactivity in peripheral and brain tissue, preventing several of the long-term consequences elicited by perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.
Collapse
|
8
|
Cai J, Zhang YP, Shields LBE, Zhang ZZ, Liu N, Xu XM, Feng SQ, Shields CB. Correlation between electrophysiological properties, morphological maturation, and olig gene changes during postnatal motor tract development. Dev Neurobiol 2013; 73:713-22. [PMID: 23696057 DOI: 10.1002/dneu.22094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/05/2022]
Abstract
This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor-evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin-relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte-lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts.
Collapse
Affiliation(s)
- Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Walker SM, Yaksh TL. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg 2012; 115:638-62. [PMID: 22798528 DOI: 10.1213/ane.0b013e31826253f2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuraxial drugs provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improves analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by the addition of clonidine, ketamine, neostigmine, or tramadol to single-shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high-quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, in the second half of this review, we present preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial drugs with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation before adoption of new analgesics or preparations into routine clinical practice.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK.
| | | |
Collapse
|
10
|
Walker SM, Grafe M, Yaksh TL. Intrathecal clonidine in the neonatal rat: dose-dependent analgesia and evaluation of spinal apoptosis and toxicity. Anesth Analg 2012; 115:450-60. [PMID: 22467896 DOI: 10.1213/ane.0b013e3182501a09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neuraxial clonidine is used for perioperative analgesia in children of all ages. Preclinical studies in the postnatal rat allow comparison of the relative toxicity and safety of spinal analgesics throughout postnatal development. METHODS Rat pups aged 3, 7, or 21 postnatal (P) days were briefly anesthetized for intrathecal injections of saline or clonidine. At each age, the maximum tolerated, antinociceptive (increased hindlimb mechanical withdrawal threshold) and antihyperalgesic (hindpaw carrageenan inflammation) doses were determined. Lumbar spinal cord sections were assessed for apoptosis and cell death (histology, activated caspase-3 immunohistochemistry, Fluoro-Jade C staining), histopathology (hematoxylin and eosin staining), and increased glial reactivity (microglial and astrocytic markers). P3 intrathecal ketamine sections served as positive controls. In additional groups, thermal latency and mechanical withdrawal threshold were measured at P35. RESULTS Intrathecal clonidine produces age- and dose-dependent analgesia in rat pups. Maximal doses of clonidine did not alter the degree or distribution of apoptosis or increase glial reactivity in the neonatal spinal cord. No spinal histopathology was seen 1 or 7 days after injection at any age. Intrathecal clonidine did not produce persistent changes in reflex sensitivity to mechanical or thermal stimuli at P35. CONCLUSIONS Intrathecal clonidine in the postnatal rat did not produce signs of spinal cord toxicity, even at doses much larger than required for analgesia. The therapeutic ratio (maximum tolerated dose/antihyperalgesic dose) was >300 at P3, >30 at P7, and >10 at P21. These data provide additional information to inform the clinical choice of spinal analgesic drug in early life.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond St. Hospital NHS Trust, 30 Guilford St., London WC1N 1EH, United Kingdom.
| | | | | |
Collapse
|
11
|
Validation of a preclinical spinal safety model: effects of intrathecal morphine in the neonatal rat. Anesthesiology 2010; 113:183-99. [PMID: 20526189 DOI: 10.1097/aln.0b013e3181dcd6ec] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. METHODS Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. RESULTS Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. CONCLUSIONS The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.
Collapse
|
12
|
Effects of intrathecal ketamine in the neonatal rat: evaluation of apoptosis and long-term functional outcome. Anesthesiology 2010; 113:147-59. [PMID: 20526188 DOI: 10.1097/aln.0b013e3181dcd71c] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Systemic ketamine can trigger apoptosis in the brain of rodents and primates during susceptible developmental periods. Clinically, spinally administered ketamine may improve the duration or quality of analgesia in children. Ketamine-induced spinal cord toxicity has been reported in adult animals but has not been systematically studied in early development. METHODS In anesthetized rat pups, intrathecal ketamine was administered by lumbar percutaneous injection. Changes in mechanical withdrawal threshold evaluated dose-dependent antinociceptive and carrageenan-induced antihyperalgesic effects in rat pups at postnatal day (P) 3 and 21. After intrathecal injection of ketamine at P3, 7, or 21, spinal cords were examined for apoptosis (Fluoro-Jade C and activated caspase-3), histopathologic change, and glial responses (ionized calcium-binding adapter molecule 1 and glial fibrillary acid protein). After maximal doses of ketamine or saline at P3 or P21, sensory thresholds and gait analysis were evaluated at P35. RESULTS Intrathecal injection of 3 mg/kg ketamine at P3 and 15 mg/kg at P21 reverses carrageenan-induced hyperalgesia. Baseline neuronal apoptosis in the spinal cord was greater at P3 than P7, predominantly in the dorsal horn. Intrathecal injection of 3-10 mg/kg ketamine in P3 pups (but not 15 mg/kg at P21) acutely increased apoptosis and microglial activation in the spinal cord and altered spinal function (reduced mechanical withdrawal threshold and altered static gait parameters) at P35. CONCLUSIONS Because acute pathology and long-term behavioral change occurred in the same dose range as antihyperalgesic effects, the therapeutic ratio of intrathecal ketamine is less than one in the neonatal rat. This measure facilitates comparison of the relative safety of spinally administered analgesic agents.
Collapse
|
13
|
Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 2010; 19:603-27. [PMID: 20645042 PMCID: PMC3291837 DOI: 10.1007/s12640-010-9208-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/19/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care.
Collapse
|
14
|
Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J Neurosci Res 2009; 87:1260-9. [PMID: 19006088 DOI: 10.1002/jnr.21922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal asphyxia (PA) is able to induce sequelae such as spinal spasticity. Previously, we demonstrated hypothermia as a neuroprotective treatment against cell degeneration triggered by increased nitric oxide (NO) release. Because spinal motoneurons are implicated in spasticity, our aim was to analyze the involvement of NO system at cervical and lumbar motoneurons after PA as well as the application of hypothermia as treatment. PA was performed by immersion of both uterine horns containing full-term fetuses in a water bath at 37 degrees C for 19 or 20 min (PA19 or PA20) or at 15 degrees C for 20 min (hypothermia during PA-HYP). Some randomly chosen PA20 rats were immediately exposed for 5 min over grain ice (hypothermia after PA-HPA). Full-term vaginally delivered rats were used as control (CTL). We analyzed NO synthase (NOS) activity, expression and localization by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity, inducible and neuronal NOS (iNOS and nNOS) by immunohistochemistry, and protein nitrotyrosilation state. We observed an increased NOS activity at cervical spinal cord of 60-day-old PA20 rats, with increased NADPH-d, iNOS, and nitrotyrosine expression in cervical motoneurons and increased NADPH-d in neurons of layer X. Lumbar neurons were not altered. Hypothermia was able to maintain CTL values. Also, we observed decreased forelimb motor potency in the PA20 group, which could be attributed to changes at cervical motoneurons. This study shows that PA can induce spasticity produced by alterations in the NO system of the cervical spinal cord. Moreover, this situation can be prevented by perinatal hypothermia.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Laboratorio de Neuropatología Experimental-Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Marcuzzo S, Ferreira Dutra M, Stigger F, Severo do Nascimento P, Ilha J, Kalil-Gaspar PI, Achaval M. Beneficial effects of treadmill training in a cerebral palsy-like rodent model: Walking pattern and soleus quantitative histology. Brain Res 2008; 1222:129-40. [DOI: 10.1016/j.brainres.2008.05.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
|
16
|
Groenendaal F, Vles J, Lammers H, De Vente J, Smit D, Nikkels PGJ. Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia. Neonatology 2008; 93:1-6. [PMID: 17652956 DOI: 10.1159/000106432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/09/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Spinal cord injury has been reported after perinatal asphyxia in full-term neonates. OBJECTIVES To examine the role of excessive nitric oxide production in perinatal spinal cord injury. SUBJECTS AND METHODS Tissue samples of 18 full-term neonates who died of hypoxic-ischemic encephalopathy were analyzed for the presence of nitrotyrosine (NT). RESULTS NT was demonstrated in 5 of these 18 neonates. In addition, activated caspase 3, a marker of apoptosis, and CD68, as a marker of inflammation, could be demonstrated in some infants. CONCLUSIONS excessive nitric oxide production and subsequent NT formation is seen in spinal cord tissue after severe perinatal asphyxia. This finding may be relevant for the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Ma L, Morton AJ, Nicholson LFB. Microglia density decreases with age in a mouse model of Huntington's disease. Glia 2003; 43:274-80. [PMID: 12898706 DOI: 10.1002/glia.10261] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Huntington's disease (HD) is characterized by selective neuronal loss and reactive gliosis. In the R6/2 transgenic HD mouse model, there is no selective cell loss, although astrocytosis has been reported. Since there have been no previous studies on microglia in this model, we have undertaken a detailed investigation of microglia in six different forebrain regions in the R6/2 mouse and their wild-type littermates at two time points. Microglia were identified using the histochemical marker isolectin B4 and interactions of genotype, region, and age were analyzed. Results showed that there was a significant decrease in the number of microglia with age in both wild-type and R6/2 brains, which was more pronounced in the transgenic mouse. There were also morphological changes with age observed in both genotypes. As early as 7 weeks of age, structural microglial abnormalities could be seen in R6/2 brains, including bulbous swellings and long stringy processes; comparable changes were seen at 16 weeks in wild-type brains. At 14.5 weeks, microglia in R6/2 mouse brains were smaller in size with condensed nuclei and fragmentation of their processes. We suggest that the density and morphology of microglia change with normal aging and that this process is accelerated in R6/2 brains. Such changes in the dynamic status of microglia may lead to an impairment of their neurosupportive functions. Further studies are needed to understand better the role of microglia in aging and neurodegeneration.
Collapse
Affiliation(s)
- Li Ma
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|