1
|
Bernareggi A, Luin E, Formaggio E, Fumagalli G, Lorenzon P. Novel role for prepatterned nicotinic acetylcholine receptors during myogenesis. Muscle Nerve 2012; 46:112-21. [DOI: 10.1002/mus.23284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2011] [Indexed: 12/29/2022]
|
2
|
Quarta M, Scorzeto M, Canato M, Dal Maschio M, Conte D, Blaauw B, Vassanelli S, Reggiani C. The modulation of myogenic cells differentiation using a semiconductor-muscle junction. Biomaterials 2011; 32:4228-37. [DOI: 10.1016/j.biomaterials.2011.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
|
3
|
Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases. Exp Cell Res 2010; 316:2260-77. [PMID: 20471381 DOI: 10.1016/j.yexcr.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/16/2023]
Abstract
Filopodia sense the extracellular environment and direct movement in many cell types, including neurons. Recent reports suggest that the transmembrane form of the widely expressed proteoglycan agrin (TM-agrin) regulates formation and stability of neuronal filopodia. In order to elucidate the mechanism by which TM-agrin regulates filopodia, we investigated the role of agrin's glycosaminoglycan (GAG) chains in the induction of filopodia formation by TM-agrin over-expression in hippocampal neurons, and in the induction of filopodia-like processes in COS7 cells. Deletion of the GAG chains of TM-agrin sharply reduced formation of filopodia-like branched retraction fibers (BRFs) in COS7 cells, with deletion of the heparan sulfate GAG chains being most effective, and eliminated filopodia induction in hippocampal neurons. GAG chain deletion also reduced the activation of Cdc42 and Rac1 resulting from TM-agrin over-expression. Moreover, dominant-negative Cdc42 and Rac1 inhibited BRF formation. Lastly, over-expression of TM-agrin increased the adhesiveness of COS7 cells and this increase was reduced by deletion of the GAG chains. Our results suggest that TM-agrin regulates actin-based protrusions in large part through interaction of its GAG chains with extracellular or transmembrane proteins, leading to the activation of Cdc42 and Rac1.
Collapse
|
4
|
Godfrey EW, Schwarte RC. Nitric oxide and cyclic GMP regulate early events in agrin signaling in skeletal muscle cells. Exp Cell Res 2010; 316:1935-45. [PMID: 20346357 DOI: 10.1016/j.yexcr.2010.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 01/09/2023]
Abstract
Agrin released from motor nerve terminals directs differentiation of the vertebrate neuromuscular junction (NMJ). Activity of nitric oxide synthase (NOS), guanylate cyclase (GC), and cyclic GMP-dependent protein kinase (PKG) contributes to agrin signaling in embryonic frog and chick muscle cells. Stimulation of the NO/cyclic GMP (cGMP) pathway in embryos potentiates agrin's ability to aggregate acetylcholine receptors (AChRs) at NMJs. Here we investigated the timing and mechanism of NO and cGMP action. Agrin increased NO levels in mouse C2C12 myotubes. NO donors potentiated agrin-induced AChR aggregation during the first 20 min of agrin treatment, but overnight treatment with NO donors inhibited agrin activity. Adenoviruses encoding siRNAs against each of three NOS isoforms reduced agrin activity, indicating that these isoforms all contribute to agrin signaling. Inhibitors of NOS, GC, or PKG reduced agrin-induced AChR aggregation in mouse muscle cells by approximately 50%. However, increased activation of the GTPase Rac1, an early step in agrin signaling, was dependent on NOS activity and was mimicked by NO donors and a cGMP analog. Our results indicate that stimulation of the NO/cGMP pathway is important during the first few minutes of agrin signaling and is required for agrin-induced Rac1 activation, a key step leading to reorganization of the actin cytoskeleton and subsequent aggregation of AChRs on the surface of skeletal muscle cells.
Collapse
Affiliation(s)
- Earl W Godfrey
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA.
| | | |
Collapse
|
5
|
Qian YK, Chan AWS, Madhavan R, Peng HB. The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters. BMC Neurosci 2008; 9:70. [PMID: 18647419 PMCID: PMC2490698 DOI: 10.1186/1471-2202-9-70] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/23/2008] [Indexed: 11/25/2022] Open
Abstract
Background A crucial event in the development of the vertebrate neuromuscular junction (NMJ) is the postsynaptic enrichment of muscle acetylcholine (ACh) receptors (AChRs). This process involves two distinct steps: the local clustering of AChRs at synapses, which depends on the activation of the muscle-specific receptor tyrosine kinase MuSK by neural agrin, and the global dispersal of aneural or "pre-patterned" AChR aggregates, which is triggered by ACh or by synaptogenic stimuli. We and others have previously shown that tyrosine phosphatases, such as the SH2 domain-containing phosphatase Shp2, regulate AChR cluster formation in muscle cells, and that tyrosine phosphatases also mediate the dispersal of pre-patterned AChR clusters by synaptogenic stimuli, although the specific phosphatases involved in this latter step remain unknown. Results Using an assay system that allows AChR cluster assembly and disassembly to be studied separately and quantitatively, we describe a previously unrecognized role of the tyrosine phosphatase Shp2 in AChR cluster disassembly. Shp2 was robustly expressed in embryonic Xenopus muscle in vivo and in cultured myotomal muscle cells, and treatment of the muscle cultures with an inhibitor of Shp2 (NSC-87877) blocked the dispersal of pre-patterned AChR clusters by synaptogenic stimuli. In contrast, over-expression in muscle cells of either wild-type or constitutively active Shp2 accelerated cluster dispersal. Significantly, forced expression in muscle of the Shp2-activator SIRPα1 (signal regulatory protein α1) also enhanced the disassembly of AChR clusters, whereas the expression of a truncated SIRPα1 mutant that suppresses Shp2 signaling inhibited cluster disassembly. Conclusion Our results suggest that Shp2 activation by synaptogenic stimuli, through signaling intermediates such as SIRPα1, promotes the dispersal of pre-patterned AChR clusters to facilitate the selective accumulation of AChRs at developing NMJs.
Collapse
Affiliation(s)
- Yueping K Qian
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | |
Collapse
|
6
|
Wang Q, Zhang B, Wang YE, Xiong WC, Mei L. The Ig1/2 domain of MuSK binds to muscle surface and is involved in acetylcholine receptor clustering. Neurosignals 2008; 16:246-53. [PMID: 18253062 DOI: 10.1159/000111567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains unclear. To address this question, we characterized the binding of the MuSK extracellular region to the muscle cell surface. The MuSK ectodomain was found to bind to muscle cells in a manner dependent on stimulation with neural agrin. Moreover, the binding was myotube specific and appeared to be mediated by two regions in the MuSK: one region containing the first and second immunoglobin domains and the other containing the cysteine-rich domain. Importantly, recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChR clustering. These results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface.
Collapse
Affiliation(s)
- Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
7
|
Milholland RBR, Gordon H. A role for acetylcholine receptors in their own aggregation on muscle cells. Dev Neurobiol 2007; 67:999-1008. [PMID: 17565711 DOI: 10.1002/dneu.20385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both neurotrophic factors and activity regulate synaptogenesis. At neuromuscular synapses, the neural factor agrin released from motor neuron terminals stimulates postsynaptic specialization by way of the muscle specific kinase MuSK. In addition, activity through acetylcholine receptors (AChRs) has been implicated in the stabilization of pre- and postsynaptic contacts on muscle at various stages of development. We show here that activation of AChRs with specific concentrations of nicotine is sufficient to induce AChR aggregation and that this induction requires the function of L-type calcium channels (L-CaChs). Furthermore, AChR function is required for agrin induced AChR aggregation in C2 muscle cells. The same concentrations of nicotine did not induce observable tyrosine phosphorylation on either MuSK or the AChR beta subunit, suggesting significant differences between the mechanisms of agrin and activity induced aggregation. The AChR/L-CaCh pathway provides a mechanism by which neuromuscular signal transmission can act in concert with the agrin-MuSK signaling cascade to regulate NMJ formation.
Collapse
Affiliation(s)
- Rebecca B R Milholland
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5044, USA
| | | |
Collapse
|
8
|
Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors. BMC Neurosci 2007; 8:46. [PMID: 17605785 PMCID: PMC1924855 DOI: 10.1186/1471-2202-8-46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 07/02/2007] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Development of neural networks requires that synapses are formed, eliminated and stabilized. At the neuromuscular junction (NMJ), agrin/MuSK signaling, by triggering downstream pathways, causes clustering and phosphorylation of postsynaptic acetylcholine receptors (AChRs). Postnatally, AChR aggregates are stabilized by molecular pathways that are poorly characterized. Gain or loss of function of Src-family kinases (SFKs) disassembles AChR clusters at adult NMJs in vivo, whereas AChR aggregates disperse rapidly upon withdrawal of agrin from cultured src-/-;fyn-/- myotubes. This suggests that a balance between protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) such as those of the Src-family may be essential in stabilizing clusters of AChRs. RESULTS We have analyzed the role of PTPs in maintenance of AChR aggregates, by adding and then withdrawing agrin from cultured myotubes in the presence of PTP or PTK inhibitors and quantitating remaining AChR clusters. In wild-type myotubes, blocking PTPs with pervanadate caused enhanced disassembly of AChR clusters after agrin withdrawal. When added at the time of agrin withdrawal, SFK inhibitors destabilized AChR aggregates but concomitant addition of pervanadate rescued cluster stability. Likewise in src-/-;fyn-/- myotubes, in which agrin-induced AChR clusters form normally but rapidly disintegrate after agrin withdrawal, pervanadate addition stabilized AChR clusters. The PTP SHP-2, known to be enriched at the NMJ, associated and colocalized with MuSK, and agrin increased this interaction. Specific SHP-2 knockdown by RNA interference reduced the stability of AChR clusters in wild-type myotubes. Similarly, knockdown of SHP-2 in adult mouse soleus muscle by electroporation of RNA interference constructs caused disassembly of pretzel-shaped AChR-rich areas in vivo. Finally, we found that src-/-;fyn-/- myotubes contained elevated levels of SHP-2 protein. CONCLUSION Our data are the first to show that the fine balance between PTPs and SFKs is a key aspect in stabilization of postsynaptic AChR clusters. One phosphatase that acts in this equilibrium is SHP-2. Thus, PTPs such as SHP-2 stabilize AChR clusters under normal circumstances, but when these PTPs are not balanced by SFKs, they render clusters unstable.
Collapse
|
9
|
Wang Q, Zhang B, Xiong WC, Mei L. MuSK signaling at the neuromuscular junction. J Mol Neurosci 2007; 30:223-6. [PMID: 17192681 DOI: 10.1385/jmn:30:1:223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The neuromuscular junction (NMJ) is a peripheral cholinergic synapse that conveys signals from motor neurons to muscle cells (Sanes and Lichtman, 1999; Sanes and Lichtman, 2001). The formation of the NMJ requires communication between motoneurons and muscle fibers. Three molecules are essential for NMJ formation: agrin, MuSK, and rapsyn. MuSK appears to be involved in every aspect of NMJ development and maintenance. The paper reviews agrin-MuSK cascades and its potential cross talk with Wnt signaling pathways.
Collapse
Affiliation(s)
- Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
10
|
Milholland RBR, Dulla C, Gordon H. L-type calcium channels mediate acetylcholine receptor aggregation on cultured muscle. Dev Neurobiol 2007; 67:987-98. [PMID: 17565707 DOI: 10.1002/dneu.20397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Agrin activation of muscle specific kinase (MuSK) initiates postsynaptic development on skeletal muscle that includes the aggregation of acetylcholine receptors (AChRs; Glass et al. [1996]: Cell 85: 513-523; Gautam et al. [1996]: Cell 85: 525-535). Although the agrin/MuSK signaling pathway remains largely unknown, changes in intracellular calcium levels are required for agrin-induced AChR aggregation (Megeath and Fallon [1998]: J Neurosci 18: 672-678). Here, we show that L-type calcium channels (L-CaChs) are required for full agrin-induced aggregation of AChRs and sufficient to induce agrin-independent AChR aggregation. Blockade of L-CaChs in muscle cultures inhibited agrin-induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Activation of L-CaChs in the absence of agrin induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Agrin responsiveness was significantly reduced in primary muscle cultures from the muscular dysgenesis mouse, a natural mutant, which does not express the L-CaCh. Our results establish a novel role for L-CaChs as important sources of the intracellular calcium necessary for the aggregation of AChRs.
Collapse
Affiliation(s)
- Rebecca B R Milholland
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5044, USA
| | | | | |
Collapse
|
11
|
Campagna JA, Fallon J. Lipid rafts are involved in C95 (4,8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 2006; 138:123-32. [PMID: 16377091 DOI: 10.1016/j.neuroscience.2005.11.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 09/22/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
During development of the neuromuscular junction, high densities of acetylcholine receptors accumulate beneath the overlying nerve terminal. A defining feature of mature synapses is the sharp demarcation of acetylcholine receptor density, which is approximately 1000-fold higher in the postsynaptic as compared with the contiguous extrasynaptic muscle membrane. These high densities of receptors accumulate by at least four mechanisms, re-distribution of existing surface receptors, local synthesis of new receptors, decreased turnover of synaptic receptors, and limitation of diffusion of sub-neural, aggregated receptors. The limitation of receptor diffusion within the membrane is likely in part due to the anchoring of acetylcholine receptor complexes to components of the cytoskeleton. Here we have tested the idea that lipid rafts--mobile, cholesterol enriched microdomains within the lipid bilayer--are another mechanism by which acetylcholine receptors are clustered in the postsynaptic apparatus. Using mouse C2C12 cells, a muscle cell line, we show that a carboxy terminal 95 amino acid fragment [C95 (4,8)] of the extracellular matrix molecule agrin that is essential for nerve-induced postsynaptic differentiation, promotes the redistribution of acetylcholine receptors into lipid rafts. Disruption of lipid rafts before agrin treatment largely inhibits de novo agrin-induced acetylcholine receptor clustering. Moreover, mature acetylcholine receptor clusters are destabilized if lipid rafts are disrupted. These results show that lipid rafts are important in both the initial clustering and later stabilization of agrin-induced acetylcholine receptor clusters and also suggest that lipid rafts may contribute to the postsynaptic localization of acetylcholine receptors in vivo.
Collapse
Affiliation(s)
- J A Campagna
- Department of Anesthesia, Longnecker Anesthesia Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
12
|
Madhavan R, Peng HB. Molecular regulation of postsynaptic differentiation at the neuromuscular junction. IUBMB Life 2005; 57:719-30. [PMID: 16511964 DOI: 10.1080/15216540500338739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
13
|
Gervásio OL, Phillips WD. Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse. J Physiol 2004; 562:673-85. [PMID: 15550459 PMCID: PMC1665540 DOI: 10.1113/jphysiol.2004.077685] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The metabolic turnover of nicotinic ACh receptors (AChR) at the neuromuscular synapse is regulated over a tenfold range by innervation status, muscle electrical activity and neural agrin, but the downstream effector of such changes has not been defined. The AChR-associated protein rapsyn is essential for forming AChR clusters during development. Here, rapsyn was tagged with enhanced green fluorescent protein (EGFP) to begin to probe its influence at the adult synapse. In C2 myotubes, rapsyn-EGFP participated with AChR in agrin-induced AChR cluster formation. When electroporated into the tibialis anterior muscle of young adult mice, rapsyn-EGFP accumulated in discrete subcellular structures, many of which colocalized with Golgi markers, consistent with the idea that rapsyn assembles with AChR in the exocytic pathway. Rapsyn-EGFP also targeted directly to the postsynaptic membrane where it occupied previously vacant rapsyn binding sites, thereby increasing the rapsyn to AChR ratio. At endplates displaying rapsyn-EGFP, the metabolic turnover of AChR (labelled with rhodamine-alpha-bungarotoxin) was slowed. Thus, the metabolic half-life of receptors at the synapse may be modulated by local changes in the subsynaptic ratio of rapsyn to AChR.
Collapse
Affiliation(s)
- Othon L Gervásio
- Department of Physiology (F13), Institute for Biomedical Research, The University of Sydney, NSW 2006 Australia
| | | |
Collapse
|
14
|
Ling KKY, Siow NL, Choi RCY, Ting AKL, Kong LW, Tsim KWK. ATP potentiates agrin-induced AChR aggregation in cultured myotubes: activation of RhoA in P2Y1 nucleotide receptor signaling at vertebrate neuromuscular junctions. J Biol Chem 2004; 279:31081-8. [PMID: 15145960 DOI: 10.1074/jbc.m403316200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At vertebrate neuromuscular junctions, ATP is known to stabilize acetylcholine in the synaptic vesicles and to be co-released with it. We have shown previously that a nucleotide receptor, P2Y(1) receptor, is localized at the nmjs, and we propose that this mediates a trophic role for synaptic ATP there. In cultured myotubes, the activation of P2Y(1) receptors modulated agrin-induced acetylcholine receptor (AChR) aggregation in a potentiation manner. This potentiation effect in agrin-induced AChR aggregation was reduced by antagonizing the P2Y(1) receptors. The guanosine triphosphatase RhoA was shown to be responsible for this P2Y(1)-potentiated effect. The localization of RhoA in rat and chicken skeletal muscles was restricted at the neuromuscular junctions. Application of P2Y(1) agonists in cultured myotubes induced RhoA activation, which showed an additive effect with agrin-induced RhoA activation. Over-expression of dominant-negative mutant of RhoA in cultured myotubes diminished the agrin-induced AChR aggregation, as well as the potentiation effect of P2Y(1)-specific agonist. Application of UTP in the cultures also triggered similar responses as did 2-methylthioadenosine 5'-diphosphate, suggesting the involvement of other subtypes of P2Y receptors. These results demonstrate that RhoA could serve as a downstream mediator of signaling mediated by P2Y(1) receptor and agrin, which therefore synergizes the effects of the two neuron-derived trophic factors in modulating the formation and/or maintenance of post-synaptic apparatus at the neuromuscular junctions.
Collapse
Affiliation(s)
- Karen K Y Ling
- Department of Biology and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
15
|
Hilgenberg LGW, Smith MA. Agrin signaling in cortical neurons is mediated by a tyrosine kinase-dependent increase in intracellular Ca2+ that engages both CaMKII and MAPK signal pathways. ACTA ACUST UNITED AC 2004; 61:289-300. [PMID: 15389602 DOI: 10.1002/neu.20049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Agrin has been implicated in multiple aspects of central nervous system (CNS) neuron differentiation and function including neurite formation, synaptogenesis, and synaptic transmission. However, little is known about the signaling mechanisms whereby agrin exerts its effects. We have recently identified a neuronal receptor for agrin, whose activation induces expression of c-fos, and provided evidence that agrin binding to this receptor is associated with a rise in intracellular Ca2+, a ubiquitous second messenger capable of mediating a wide range of effects. To gain further insight into agrin's role in brain, we used Ca2+ imaging to explore agrin signal transduction in cultured cortical neurons. Bath application of either z+ or z-agrin isoforms resulted in marked changes in intracellular Ca2+ concentration specifically in neurons. Propagation of the Ca2+ response was a two-step process characterized by an initial increase in intracellular Ca2+ mediated by ryanodine receptor (RyR) release from intracellular stores, supplemented by influx through voltage-gated calcium channels (VGCCs). Agrin-induced increases in intracellular Ca2+ were blocked by genistein and herbimycin, suggesting that the agrin receptor is a tyrosine kinase. Ca2+ release from intracellular stores activates both calcium/calmodulin-dependent kinase II (CaMKII) and mitogen activated protein kinase (MAPK). Activation of CaMKII is required for propagation of the Ca2+ wave itself, whereas both MAPK and CaMKII play a role in mediating long latency responses such as induction of c-fos. These results suggest that an agrin-dependent tyrosine kinase could play a critical role in modulating levels of intracellular Ca2+ and activity of MAPK and CaMKII in CNS neurons.
Collapse
Affiliation(s)
- Lutz G W Hilgenberg
- Department of Anatomy and Neurobiology, University of California, Irvine Hall, Rm 110, Irvine, California 92697, USA
| | | |
Collapse
|