1
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response. Int J Mol Sci 2022; 23:ijms232314936. [PMID: 36499262 PMCID: PMC9738544 DOI: 10.3390/ijms232314936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Determination of metal ions such as zinc in solution remains an important task in analytical and biological chemistry. We describe a novel zinc ion biosensing approach using a carbonic anhydrase-Oplophorus luciferase fusion protein that employs bioluminescence resonance energy transfer (BRET) to transduce the level of free zinc as a ratio of emission intensities in the blue and orange portions of the spectrum. In addition to high sensitivity (below nanomolar levels) and selectivity, this approach allows both quantitative determination of "free" zinc ion (also termed "mobile" or "labile") using bioluminescence ratios and determination of the presence of the ion above a threshold simply by the change in color of bioluminescence, without an instrument. The carbonic anhydrase metal ion sensing platform offers well-established flexibility in sensitivity, selectivity, and response kinetics. Finally, bioluminescence labeling has proven an effective approach for molecular imaging in vivo since no exciting light is required; the expressible nature of this sensor offers the prospect of imaging zinc fluxes in vivo.
Collapse
|
3
|
He H, Cheng Z, Zheng L. Aqueous Zn2+ analysis: Specific recognition and instant imaging by Schiff base fluorescent probes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Dual actions of Psalmotoxin at ASIC1a and ASIC2a heteromeric channels (ASIC1a/2a). Sci Rep 2018; 8:7179. [PMID: 29739981 PMCID: PMC5940917 DOI: 10.1038/s41598-018-25386-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Acid-Sensing Ion Channels (ASICs) are gated by extracellular protons and play important roles in physiological and pathological states, such as pain and stroke. ASIC1a and ASIC2a, two of the most highly expressed subunits in the brain, form functional homo- and hetero-meric (ASIC1a/2a) channels. The function of ASIC1a has been widely studied using psalmotoxin (PcTx1), a venom-derived peptide, as an ASIC1a-selective antagonist. Here, using whole-cell patch clamp, we show that PcTx1 has dual actions at ASIC1a/2a. It can either inhibit or potentiate the heteromeric channel, depending on the conditioning and stimulating pHs. Potent inhibition occurs only at conditioning pHs that begin to desensitize the channel (IC50 = 2.9 nM at pH7.0, a threshold pH for desensitization of ASIC1a/2a). By contrast, potent potentiation can occur at the physiological pH in both CHO cells (EC50 = 56.1 nM) and cortical neurons (threshold concentration < 10 nM). PcTx1 potentiates ASIC1a/2a by increasing the apparent affinity of channel activation for protons. As such, potentiation is the strongest at moderate pHs, diminishing with increasing proton concentrations. Our findings identify PcTx1 as a valuable tool for studying ASIC1a/2a function and contribute significantly to the understanding of the diverse and complex pharmacology of PcTx1.
Collapse
|
5
|
Pan Y, Shi Y, Chen J, Wong CM, Zhang H, Li MJ, Li CW, Yi C. Grafting polyethylenimine with quinoline derivatives for targeted imaging of intracellular Zn 2+ and logic gate operations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:561-8. [DOI: 10.1016/j.msec.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
6
|
Quinta-Ferreira ME, Sampaio Dos Aidos FDS, Matias CM, Mendes PJ, Dionísio JC, Santos RM, Rosário LM, Quinta-Ferreira RM. Modelling zinc changes at the hippocampal mossy fiber synaptic cleft. J Comput Neurosci 2016; 41:323-337. [PMID: 27696002 DOI: 10.1007/s10827-016-0620-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Zinc, a transition metal existing in very high concentrations in the hippocampal mossy fibers from CA3 area, is assumed to be co-released with glutamate and to have a neuromodulatory role at the corresponding synapses. The synaptic action of zinc is determined both by the spatiotemporal characteristics of the zinc release process and by the kinetics of zinc binding to sites located in the cleft area, as well as by their concentrations. This work addresses total, free and complexed zinc concentration changes, in an individual synaptic cleft, following single, short and long periods of evoked zinc release. The results estimate the magnitude and time course of the concentrations of zinc complexes, assuming that the dynamics of the release processes are similar to those of glutamate. It is also considered that, for the cleft zinc concentrations used in the model (≤ 1 μM), there is no postsynaptic zinc entry. For this reason, all released zinc ends up being reuptaken in a process that is several orders of magnitude slower than that of release and has thus a much smaller amplitude. The time derivative of the total zinc concentration in the cleft is represented by the difference between two alpha functions, corresponding to the released and uptaken components. These include specific parameters that were chosen assuming zinc and glutamate co-release, with similar time courses. The peak amplitudes of free zinc in the cleft were selected based on previously reported experimental cleft zinc concentration changes evoked by single and multiple stimulation protocols. The results suggest that following a low amount of zinc release, similar to that associated with one or a few stimuli, zinc clearance is mainly mediated by zinc binding to the high-affinity sites on the NMDA receptors and to the low-affinity sites on the highly abundant GLAST glutamate transporters. In the case of higher zinc release brought about by a larger group of stimuli, most zinc binding occurs essentially to the GLAST transporters, having the corresponding zinc complex a maximum concentration that is more than one order of magnitude larger than that for the high and low affinity NMDA sites. The other zinc complexes considered in the model, namely those formed with sites on the AMPA receptors, calcium and KATP channels and with ATP molecules, have much smaller contributions to the synaptic zinc clearance.
Collapse
Affiliation(s)
- M E Quinta-Ferreira
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal.
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal.
| | - F D S Sampaio Dos Aidos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
- CFisUC, Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - C M Matias
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- UTAD- University of Trás-os-montes and Alto Douro, P-5000-801, Vila Real, Portugal
| | - P J Mendes
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
- LIP- Laboratory of Instrumentation and Experimental Particles Physics, P-3004-516, Coimbra, Portugal
| | - J C Dionísio
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Animal Biology, University of Lisbon, P-1749-016, Lisbon, Portugal
| | - R M Santos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - L M Rosário
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - R M Quinta-Ferreira
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790, Coimbra, Portugal
| |
Collapse
|
7
|
Guo Y, Chen J, Li J, Cheng L, Lin N. Unique roles played by Acid-sensing ion channel 2. Channels (Austin) 2015:0. [PMID: 26552578 DOI: 10.1080/19336950.2015.1106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The discovery of Acid-sensing ion channels (ASICs) provided us the theoretical basis to understand the pathological acidic environment. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level, and this characteristic make them spotlights in the regulation or response of pH change. As a regulatory system, keeping the intra- and extra-balance seems to be significant for ASICs, in which ASIC2 plays an important role. We surprisingly noticed that ASIC2 owns some distinctive properties, including its inter-system regulation, specific distribution and transporting patterns, influence on cell migration and the unique role in mechanosensitivity. Therefore, to conclude the functions and characterisitics of ASIC2 indeed assist the understanding of interaction among ASICs subunits and the regulation from extracellular environment to ASICs.
Collapse
Affiliation(s)
- Yingjun Guo
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Jingying Chen
- b Dept. of Gynaecology and Obstetrics , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China. Zip code: 250012
| | - Jingkun Li
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Lei Cheng
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Nie Lin
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| |
Collapse
|
8
|
Chemate S, Sekar N. Highly sensitive and selective chemosensors for Cu2+and Al3+based on photoinduced electron transfer (PET) mechanism. RSC Adv 2015. [DOI: 10.1039/c5ra00123d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new fluorescent PET chemosensors were synthesised from an acridine core. The sensors can be used to monitor Cu2+and Al3+in CH3CN. The detection limits for7a–Cu2+and7b–Al3+were calculated to be 2.8 × 10−7M and 5.8 × 10−7M, respectively.
Collapse
Affiliation(s)
- Santosh Chemate
- Tinctorial Chemistry Group
- Department of Dyestuff Technology
- Institute of Chemical Technology
- Mumbai-400 019
- India
| | - Nagaiyan Sekar
- Tinctorial Chemistry Group
- Department of Dyestuff Technology
- Institute of Chemical Technology
- Mumbai-400 019
- India
| |
Collapse
|
9
|
Matias CM, Dionísio JC, Saggau P, Quinta-Ferreira ME. Activation of group II metabotropic glutamate receptors blocks zinc release from hippocampal mossy fibers. Biol Res 2014; 47:73. [PMID: 25723955 PMCID: PMC4289587 DOI: 10.1186/0717-6287-47-73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background The hippocampal CA3 area contains large amounts of vesicular zinc in the mossy fiber terminals which is released during synaptic activity, depending on presynaptic calcium. Another characteristic of these synapses is the presynaptic localization of high concentrations of group II metabotropic glutamate receptors, specifically activated by DCG-IV. Previous work has shown that DCG-IV affects only mossy fiber-evoked responses but not the signals from associational-commissural afferents, blocking mossy fiber synaptic transmission. Since zinc is released from mossy fibers even for single stimuli and it is generally assumed to be co-released with glutamate, the aim of the work was to investigate the effect of DCG-IV on mossy fiber zinc signals. Results Studies were performed using the membrane-permeant fluorescent zinc probe TSQ, and indicate that DCG-IV almost completely abolishes mossy fiber zinc changes as it does with synaptic transmission. Conclusions Zinc signaling is regulated by the activation of type II metabotropic receptors, as it has been previously shown for glutamate, further supporting the corelease of glutamate and zinc from mossy fibers.
Collapse
Affiliation(s)
- Carlos M Matias
- Center for Neurosciences of Coimbra, University of Coimbra, 3004-516, Coimbra, Portugal. .,Department of Physics, School of Science and Technology, University of Trás-os-montes and Alto Douro (UTAD), Quinta dos Prados, 5000-911, Vila Real, Portugal.
| | - Jose C Dionísio
- Department Animal Biology, FCUL, University Lisbon, Campo Grande, Lisbon, Portugal.
| | - Peter Saggau
- Allen Institute for Brain Science, 551, N 34th Street, Seattle, USA.
| | - Maria Emilia Quinta-Ferreira
- Center for Neurosciences of Coimbra, University of Coimbra, 3004-516, Coimbra, Portugal. .,Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal, University of Coimbra, 3004-516, Coimbra, Portugal.
| |
Collapse
|
10
|
Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch 2014; 467:959-72. [PMID: 25482672 DOI: 10.1007/s00424-014-1664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Members of the two-pore domain K(+) channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1-3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca(2+)- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood-brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, University of Münster, Münster, Germany,
| | | | | | | | | |
Collapse
|
11
|
Hung HH, Huang WP, Pan CY. Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell Biol Toxicol 2014; 29:415-29. [PMID: 24077806 DOI: 10.1007/s10565-013-9261-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Dopamine oxidation and divalent cations have been reported to induce neuronal cell death. Although autophagy is involved in neuronal cell death, it has also been suggested to facilitate cell survival. We sought to investigate the role of autophagy in PC12 cells and cultured neurons treated with dopamine and Zn2+. Cells expressing EGFP-LC3 were treated with high concentrations of dopamine and Zn2+, and the formation of EGFP-LC3 fluorescence aggregates was monitored. Our results showed a significant increase in the number of fluorescent puncta in the cytosol of PC12 cells treated with these chemicals. These treatments enhanced LC3 lipidation levels in PC12 cells. Decreasing the ATG7 protein level using specific small interference RNA (siRNA) and pretreating with phosphatidylinositol 3-phosphate kinase blockers, wortmannin and LY294002, inhibited puncta formation. Dopamine or Zn2+ treatment significantly elevated the intracellular Zn2+ concentration ([Zn2+] i ); however, inhibiting the [Zn2+] i elevation in dopamine-treated cells suppressed the puncta formation. LY294002 or siRNA-directed members of the autophagy pathway increased the fraction of phosphatidylserine present on the outer membrane leaflet in PC12 cells treated with dopamine or Zn2+, suggesting an increase in apoptosis. Primary embryonic midbrain neurons expressing EGFP-LC3 also displayed a significant increase in the number of fluorescent aggregates in cells upon treatment with dopamine or Zn2+. Dopamine or Zn2+ treatment significantly elevated the [Zn2+] i in neurons and caused neuronal death. Our results indicate that treating cells with dopamine and Zn2+ results in the activation of the autophagy pathway in an effort to enhance cell survival.
Collapse
|
12
|
Two-photon imaging of Zn2+ dynamics in mossy fiber boutons of adult hippocampal slices. Proc Natl Acad Sci U S A 2014; 111:6786-91. [PMID: 24757053 DOI: 10.1073/pnas.1405154111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mossy fiber termini in the hippocampus accumulate Zn(2+), which is released with glutamate from synaptic vesicles upon neural excitation. Understanding the spatiotemporal regulation of mobile Zn(2+) at the synaptic level is challenging owing to the difficulty of visualizing Zn(2+) at individual synapses. Here we describe the use of zinc-responsive fluorescent probes together with two-photon microscopy to image Zn(2+) dynamics mediated by NMDA receptor-dependent long-term potentiation induction at single mossy fiber termini of dentate gyrus neurons in adult mouse hippocampal slices. The membrane-impermeant fluorescent Zn(2+) probe, 6-CO2H-ZAP4, was loaded into presynaptic vesicles in hippocampal mossy fiber termini upon KCl-induced depolarization, which triggers subsequent endocytosis and vesicular restoration. Local tetanic stimulation decreased the Zn(2+) signal observed at individual presynaptic sites, indicating release of the Zn(2+) from vesicles in synaptic potentiation. This synapse-level two-photon Zn(2+) imaging method enables monitoring of presynaptic Zn(2+) dynamics for improving the understanding of physiological roles of mobile Zn(2+) in regular and aberrant neurologic function.
Collapse
|
13
|
Li L, Zhang X, Zhang W, Li W, Sun WH, Redshaw C. Zinc 2-((2-(benzoimidazol-2-yl)quinolin-8-ylimino)methyl)phenolates: synthesis, characterization and photoluminescence behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:1047-1055. [PMID: 24161867 DOI: 10.1016/j.saa.2013.09.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
A series of 2-(2-(1H-benzoimidazol-2-yl)quinolin-8-yliminomethyl)phenol derivatives and their zinc complexes (C1-C5) were synthesized and fully characterized. The molecular structure of the representative complex C2 was determined by single crystal X-ray diffraction, which revealed that the zinc was five-coordinated with the tetra-dentate ligand and a methanol bound to the metal to afford a distorted square-pyramidal geometry. The UV-Vis absorption and fluorescence spectra of the organic compounds and their zinc complexes were measured and investigated in various solvents such as methanol, THF, dichloromethane, and toluene; significant influences by solvents were observed on their luminescent properties; red-shifts for the zinc complexes were clearly observed in comparison to the free organic compounds.
Collapse
Affiliation(s)
- Longlong Li
- School of Materials Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhu L, Yuan Z, Simmons JT, Sreenath K. Zn(II)-coordination modulated ligand photophysical processes - the development of fluorescent indicators for imaging biological Zn(II) ions. RSC Adv 2014; 4:20398-20440. [PMID: 25071933 PMCID: PMC4111279 DOI: 10.1039/c4ra00354c] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - J. Tyler Simmons
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| |
Collapse
|
15
|
Gyurcsik B, Czene A, Jankovics H, Jakab-Simon NI, Ślaska-Kiss K, Kiss A, Kele Z. Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Expr Purif 2013; 89:210-8. [DOI: 10.1016/j.pep.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
16
|
Niu W, Guo J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. MOLECULAR BIOSYSTEMS 2013; 9:2961-70. [DOI: 10.1039/c3mb70204a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Synthesis, structure and fluorescent properties of 2-(1H-benzoimidazol-2-yl)quinolin-8-ol ligands and their zinc complexes. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
De Leon-Rodriguez L, Lubag AJM, Sherry AD. Imaging free zinc levels in vivo - what can be learned? Inorganica Chim Acta 2012; 393:12-23. [PMID: 23180883 PMCID: PMC3501686 DOI: 10.1016/j.ica.2012.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
Collapse
Affiliation(s)
- Luis De Leon-Rodriguez
- Departamento de Quimica. Universidad de Guanajuato. Cerro de la Venada S.N. Col. Pueblito de Rocha., Guanajuato, Gto. Mexico, C.P, 36040
| | | | | |
Collapse
|
19
|
Nydegger I, Rumschik SM, Zhao J, Kay AR. Evidence for an extracellular zinc-veneer in rodent brains from experiments with Zn-ionophores and ZnT3 knockouts. ACS Chem Neurosci 2012; 3:761-6. [PMID: 23077720 DOI: 10.1021/cn300061z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/02/2012] [Indexed: 01/03/2023] Open
Abstract
Ionic zinc is found at a high concentration in some glutamatergic vesicles of the mammalian brain. Ionic zinc is also found chelated to macromolecules in the extracellular space, constituting what has been called the "zinc veneer". In this communication we show that the zinc ionophore, pyrithione, can be used to demonstrate the presence of the veneer. Application of pyrithione without added ionic zinc to rodent hippocampal slices mobilizes extracellular zinc, which can be detected intracellularly by the zinc probe FluoZin-3. In addition, we show that ZnT3 null mice, which lack the transporter responsible for stocking synaptic vesicles, nevertheless do have a zinc veneer, albeit diminished compared to wild type animals. The presence of the zinc veneer in ZnT3 null mice may account for the absence of any marked deficit in these animals.
Collapse
Affiliation(s)
- Irma Nydegger
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sean M. Rumschik
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jinfu Zhao
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alan R. Kay
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Zhou X, Li P, Shi Z, Tang X, Chen C, Liu W. A highly selective fluorescent sensor for distinguishing cadmium from zinc ions based on a quinoline platform. Inorg Chem 2012; 51:9226-31. [PMID: 22905728 DOI: 10.1021/ic300661c] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fluorescent sensor, N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide (HL), based on 8-aminoquinoline and 8-hydroxyquinoline platforms has been synthesized. This sensor displays high selectivity and sensitive fluorescence enhancement to Cd(2+) in ethanol. Moreover, sensor HL can distinguish Cd(2+) from Zn(2+) via two different sensing mechanisms (photoinduced electron transfer for Cd(2+); internal charge transfer for Zn(2+)). The composition of the complex Cd(2+)/HL or Zn(2+)/L(-) has been found to be 1:1, based on the fluorescence/absorption titration and further confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
21
|
Meeusen JW, Nowakowski A, Petering DH. Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem 2012; 51:3625-32. [PMID: 22380934 PMCID: PMC3564517 DOI: 10.1021/ic2025236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The commonly used Zn(2+) sensors 6-methoxy-8-p-toluenesulfonamidoquinoline (TSQ) and Zinquin have been shown to image zinc proteins as a result of the formation of sensor-zinc-protein ternary adducts not Zn(TSQ)(2) or Zn(Zinquin)(2) complexes. The powerful, cell-permeant chelating agent N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) is also used in conjunction with these and other Zn(2+) sensors to validate that the observed fluorescence enhancement seen with the sensors depends on intracellular interaction with Zn(2+). We demonstrated that the kinetics of the reaction of TPEN with cells pretreated with TSQ or Zinquin was not consistent with its reaction with Zn(TSQ)(2) or Zn(Zinquin)(2). Instead, TPEN and other chelating agents extract between 25 and 35% of the Zn(2+) bound to the proteome, including zinc(2+) from zinc metallothionein, and thereby quench some, but not all, of the sensor-zinc-protein fluorescence. Another mechanism in which TPEN exchanges with TSQ or Zinquin to form TPEN-zinc-protein adducts found support in the reactions of TPEN with Zinquin-zinc-alcohol dehydrogenase. TPEN also removed one of the two Zn(2+) ions per monomer from zinc-alcohol dehydrogenase and zinc-alkaline phosphatase, consistent with its ligand substitution reactivity with the zinc proteome.
Collapse
Affiliation(s)
- Jeffrey W. Meeusen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
| | - Andrew Nowakowski
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
| | - David H. Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
| |
Collapse
|
22
|
Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO. Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 2011; 71:1116-26. [PMID: 21943607 DOI: 10.1016/j.neuron.2011.07.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2011] [Indexed: 01/05/2023]
Abstract
The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long-term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits a form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions, vesicular zinc is critical to proper function of hippocampal circuitry in health and disease.
Collapse
Affiliation(s)
- Enhui Pan
- Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nowakowski AB, Petering DH. Reactions of the fluorescent sensor, Zinquin, with the zinc-proteome: adduct formation and ligand substitution. Inorg Chem 2011; 50:10124-33. [PMID: 21905645 DOI: 10.1021/ic201076w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinquin (ZQ) is a commonly used sensor for cellular Zn(2+) status. It has been assumed that it measures accessible Zn(2+) concentrations in the nanomolar range. Instead, this report shows a consistent pattern across seven mammalian cell and tissue types that ZQ reacts with micromolar concentrations of Zn(2+) bound as Zn-proteins. The predominant class of products were ZQ-Zn-protein adducts that were characterized in vivo and in vitro by a fluorescence emission spectrum centered at about 470 nm, by their migration over Sephadex G-75 as protein not low molecular weight species, by the exclusion of reaction with lipid vesicles, and by their large aggregate concentration. In addition, variable, minor formation of Zn(ZQ)(2) with a fluorescence band at about 490 nm was observed in vivo in each case. Because incubation of isolated Zn-proteome with ZQ also generated similar amounts of Zn(ZQ)(2), it was concluded that this species had formed through direct ligand substitution in which ZQ had successfully competed for protein-bound Zn(2+). Parallel studies with the model Zn-proteins, alcohol dehydrogenase (ADH), and alkaline phosphatase (AP) revealed a similar picture of reactivity: ZQ(ACID) (Zinquin acid, (2-methyl-8-p-toluenesulfonamido-6-quinolyloxy)acetate)) able to bind to one Zn(2+) and extract the other in Zn(2)-ADH, whereas it removed one Zn(2+) from Zn(2)-AP and did not bind to the other. Zinquin ethyl ester (ethyl(2-methyl-8-p-toluenesulfonamido-6-quinolyloxy)acetate); ZQ(EE)) bound to both proteins without sequestering Zn(2+) from either one. In contrast to a closely related sensor, 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ), neither ZQ(ACID) nor ZQ(EE) associated with Zn-carbonic anhydrase. A survey of reactivity of these sensors with partially fractionated Zn-proteome confirmed that ZQ and TSQ bind to distinct, overlapping subsets of the Zn-proteome.
Collapse
Affiliation(s)
- Andrew B Nowakowski
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
24
|
Ju CC, Yin HJ, Yuan CL, Wang KZ. A fluorescent probe for both pH and Zn2+ based on 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1876-1880. [PMID: 21676645 DOI: 10.1016/j.saa.2011.05.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 05/30/2023]
Abstract
A sensitive fluorescent probe 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenol (HBIZ) for pH and Zn2+ has been developed. Great changes have taken place in the UV-vis absorption and fluorescence spectra for HBIZ upon increasing pH of its aqueous solution, acting as a pH-induced emission "off-on-off" switch with large enhancement factors of ∼290 and ∼75 over the pH range of 1.00-5.40 and 5.20-10.40. A over 100-fold fluorescence enhancement was also observed after complexation of HBIZ to Zn2+ in N,N-dimethylformamide.
Collapse
Affiliation(s)
- Chuan-Chuan Ju
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
25
|
Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY. Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res 2011; 1418:12-22. [PMID: 21911210 DOI: 10.1016/j.brainres.2011.08.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022]
Abstract
In the brain, free zinc levels are under the exquisite control of a variety of zinc-regulating systems, in which zinc transporter (ZnT) proteins play a central role. ZnT3, which is prominently expressed in the brain, facilitates the concentration of free zinc in pre-synaptic vesicles. In addition to histochemical staining methods, a variety of zinc-specific fluorescence dyes has been developed to image or analyze zinc in brain tissue. In this study, we demonstrate the close correlations between histofluorescently reactive zinc and ZnT3. We examined the overlapping distribution of the zinc-specific fluorescent dye, N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ)-, and ZnT3-immunoreactive fluorescence throughout the normal brain. TSQ and ZnT3-antibody intensely stained the hippocampus, cortex and amygdala, highlighting the characteristic laminar organization of these regions by variably staining the different layers. TSQ fluorescence and ZnT3 immunoreactivity were roughly co-localized with synaptophysin along the neuropil, but were absent in the neuronal soma. However, albeit relatively faint, TSQ fluorescence was also found throughout the brains of ZnT3-knockout mice. Although these results may indicate the presence of very small cerebral free zinc pools distinct from synaptic vesicle zinc, the synaptic vesicle zinc pool is predominant, accounting for more than 95% of the entire histofluorescently reactive zinc pool in the hippocampus and cortex. Thus, the physiological activity of free zinc in the normal brain might largely depend on the pool of synaptic vesicle zinc that is determined by ZnT3.
Collapse
Affiliation(s)
- Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea.
| | | | | | | | | |
Collapse
|
26
|
Meeusen JW, Tomasiewicz H, Nowakowski A, Petering DH. TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline), a common fluorescent sensor for cellular zinc, images zinc proteins. Inorg Chem 2011; 50:7563-73. [PMID: 21774459 DOI: 10.1021/ic200478q] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zn(2+) is a necessary cofactor for thousands of mammalian proteins. Research has suggested that transient fluxes of cellular Zn(2+) are also involved in processes such as apoptosis. Observations of Zn(2+) trafficking have been collected using Zn(2+) responsive fluorescent dyes. A commonly used Zn(2+) fluorophore is 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ). The chemical species responsible for TSQ's observed fluorescence in resting or activated cells have not been characterized. Parallel fluorescence microscopy and spectrofluorometry of LLC-PK(1) cells incubated with TSQ demonstrated punctate staining that concentrated around the nucleus and was characterized by an emission maximum near 470 nm. Addition of cell permeable Zn-pyrithione resulted in greatly increased, diffuse fluorescence that shifted the emission peak to 490 nm, indicative of the formation of Zn(TSQ)(2). TPEN (N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine), a cell permeant Zn(2+) chelator, largely quenched TSQ fluorescence returning the residual fluorescence to the 470 nm emission maximum. Gel filtration chromatography of cell supernatant from LLC-PK(1) cells treated with TSQ revealed that TSQ fluorescence (470 nm emission) eluted with the proteome fractions. Similarly, addition of TSQ to proteome prior to chromatography resulted in 470 nm fluorescence emission that was not observed in smaller molecular weight fractions. It is hypothesized that Zn-TSQ fluorescence, blue-shifted from the 490 nm emission maximum of Zn(TSQ)(2), results from ternary complex, TSQ-Zn-protein formation. As an example, Zn-carbonic anhydrase formed a ternary adduct with TSQ characterized by a fluorescence emission maximum of 470 nm and a dissociation constant of 1.55 × 10(-7) M. Quantification of TSQ-Zn-proteome fluorescence indicated that approximately 8% of cellular Zn(2+) was imaged by TSQ. These results were generalized to other cell types and model Zn-proteins.
Collapse
Affiliation(s)
- Jeffrey W Meeusen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
27
|
Rastogi SK, Pal P, Aston DE, Bitterwolf TE, Branen AL. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1731-1739. [PMID: 21510674 DOI: 10.1021/am2002394] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | | | | | | | | |
Collapse
|
28
|
Huang C, Qu J, Qi J, Yan M, Xu G. Dicyanostilbene-Derived Two-Photon Fluorescence Probe for Free Zinc Ions in Live Cells and Tissues with a Large Two-Photon Action Cross Section. Org Lett 2011; 13:1462-5. [DOI: 10.1021/ol200146j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chibao Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China, Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China, and Department of Instrument Science and Technology, Optoelectronic Technology College, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China, Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China, and Department of Instrument Science and Technology, Optoelectronic Technology College, Shenzhen University, Shenzhen 518060, China
| | - Jing Qi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China, Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China, and Department of Instrument Science and Technology, Optoelectronic Technology College, Shenzhen University, Shenzhen 518060, China
| | - Meng Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China, Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China, and Department of Instrument Science and Technology, Optoelectronic Technology College, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China, Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China, and Department of Instrument Science and Technology, Optoelectronic Technology College, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
29
|
Tian Y, Yang Z, Zhang T. Zinc ion as modulator effects on excitability and synaptic transmission in hippocampal CA1 neurons in Wistar rats. Neurosci Res 2010; 68:167-75. [DOI: 10.1016/j.neures.2010.07.2030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
30
|
Affiliation(s)
- Min Su Han
- a Center for Integrated Molecular Systems and Department of Chemistry, Division of Molecular and Life Sciences , Pohang University of Science and Technology , San 31 Hyojadong, Pohang, 790-784, South Korea
| | - Dong H. Kim
- a Center for Integrated Molecular Systems and Department of Chemistry, Division of Molecular and Life Sciences , Pohang University of Science and Technology , San 31 Hyojadong, Pohang, 790-784, South Korea
| |
Collapse
|
31
|
Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 2010; 3:30. [PMID: 20974010 PMCID: PMC2988061 DOI: 10.1186/1756-6606-3-30] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/18/2022] Open
Abstract
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Department of Neurology, Asan Institute for Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea
| | | |
Collapse
|
32
|
Zhou X, Yu B, Guo Y, Tang X, Zhang H, Liu W. Both Visual and Fluorescent Sensor for Zn2+ Based on Quinoline Platform. Inorg Chem 2010; 49:4002-7. [DOI: 10.1021/ic901354x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingran Yu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanling Guo
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huihui Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Hosseini M, Vaezi Z, Ganjali MR, Faridbod F, Abkenar SD, Alizadeh K, Salavati-Niasari M. Fluorescence "turn-on" chemosensor for the selective detection of zinc ion based on Schiff-base derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:978-82. [PMID: 20060778 DOI: 10.1016/j.saa.2009.12.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/21/2009] [Accepted: 12/02/2009] [Indexed: 05/23/2023]
Abstract
N,N'-phenylenebis(salicylideaminato) (L) has been used to detect trace amounts of zinc ion in acetonitrile-water solution by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to zinc ions in MeCN/H(2)O (1:1, v/v) solution. The fluorescence enhancement of L is attributed to the 1:1 complex formation between L and Zn(II), which has been utilized as the basis for selective detection of Zn(II). The linear response range for Zn(II) covers a concentration range of 1.6x10(-7) to 1.0x10(-5)mol/L, and the detection limit is 1.5x10(-7)mol/L. The fluorescent probe exhibits high selectivity over other common metal ions, and the proposed fluorescent sensor was applied to determine zinc in water samples and waste water.
Collapse
Affiliation(s)
- Morteza Hosseini
- Department of Chemistry, Islamic Azad University, Savadkooh Branch, Savadkooh, Iran.
| | | | | | | | | | | | | |
Collapse
|
34
|
Beyer N, Coulson DT, Heggarty S, Ravid R, Irvine GB, Hellemans J, Johnston JA. ZnT3 mRNA levels are reduced in Alzheimer's disease post-mortem brain. Mol Neurodegener 2009; 4:53. [PMID: 20030848 PMCID: PMC2806356 DOI: 10.1186/1750-1326-4-53] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/23/2009] [Indexed: 12/28/2022] Open
Abstract
Background ZnT3 is a membrane Zn2+ transporter that is responsible for concentrating Zn2+ into neuronal presynaptic vesicles. Zn2+ homeostasis in the brain is relevant to Alzheimer's disease (AD) because Zn2+ released during neurotransmission may bind to Aβ peptides, accelerating the assembly of Aβ into oligomers which have been shown to impair synaptic function. Results We quantified ZnT3 mRNA levels in Braak-staged human post mortem (pm) brain tissue from medial temporal gyrus, superior occipital gyrus, superior parietal gyrus, superior frontal gyrus and cerebellum from individuals with AD (n = 28), and matched controls (n = 5) using quantitative real-time PCR. ZnT3 mRNA levels were significantly decreased in all four cortical regions examined in the AD patients, to 45-60% of control levels. This reduction was already apparent at Braak stage 4 in most cortical regions examined. Quantification of neuronal and glial-specific markers in the same samples (neuron-specific enolase, NSE; and glial fibrillary acidic protein, GFAP) indicated that loss of cortical ZnT3 expression was more pronounced, and occurred prior to, significant loss of NSE expression in the tissue. Significant increases in cortical GFAP expression were apparent as the disease progressed. No gene expression changes were observed in the cerebellum, which is relatively spared of AD neuropathology. Conclusions This first study to quantify ZnT3 mRNA levels in human pm brain tissue from individuals with AD and controls has revealed a significant loss of ZnT3 expression in cortical regions, suggesting that neuronal cells in particular show reduced expression of ZnT3 mRNA in the disease. This suggests that altered neuronal Zn2+ handling may be an early event in AD pathogenesis.
Collapse
Affiliation(s)
- Nancy Beyer
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhang N, Chen Y, Yu M, Liu Y. Benzenesulfonamidoquinolino-β-cyclodextrin as a Cell-Impermeable Fluorescent Sensor for Zn2+. Chem Asian J 2009; 4:1697-702. [DOI: 10.1002/asia.200900233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Lee JY, Son HJ, Choi JH, Cho E, Kim J, Chung SJ, Hwang O, Koh JY. Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment. Brain Res 2009; 1286:208-14. [PMID: 19559009 DOI: 10.1016/j.brainres.2009.06.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 01/24/2023]
Abstract
High levels of labile zinc accumulate in degenerating neurons after brain injury, such as ischemic stroke, trauma, epilepsy, and hypoglycemia. Cytosolic zinc accumulation is also found in brain neurons undergoing apoptosis during development or after neuronal target ablation. Thus, staining with zinc-specific probes can be used to identify neuronal death in the brain. In this study, mice were intraperitoneally given four 20 mg/kg doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 2-hour intervals, and dopaminergic neurons were then evaluated for zinc accumulation and apoptosis. In the substantia nigra pars compacta, zinc-specific fluorescent dyes revealed that all degenerating neurons, identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL), or acid fuchsin or Fluoro-Jade C staining, contained high levels of cytosolic labile zinc. Nuclear condensation/fragmentation was noted in dopaminergic neurons with cytosolic zinc accumulation, indicating apoptotic cell death. These findings support the supposition that cytosolic labile zinc accumulation is an indicator of degenerating dopaminergic neurons in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpagu, Seoul 138-736, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao J, Bertoglio BA, Gee KR, Kay AR. The zinc indicator FluoZin-3 is not perturbed significantly by physiological levels of calcium or magnesium. Cell Calcium 2009; 44:422-6. [PMID: 18353435 DOI: 10.1016/j.ceca.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 01/15/2023]
Abstract
There has been some dispute in the literature as to the sensitivity of the zinc indicator FluoZin-3 to calcium, with suggestions that physiological levels of calcium and magnesium effectively occlude the response of the probe to zinc. In this communication we demonstrate that calcium concentrations as high as 10 mM do not prevent FluoZin-3 from detecting zinc elevations as low as 100 pM. Moreover, the inclusion of a few microM Ca-EDTA does not prevent FluoZin-3 from responding to increases in zinc concentration but does extend the dynamic range of the probe by reducing contaminating zinc levels and allowing the probe to respond to multiple zinc additions. In addition, we have derived a mathematical model to account for the kinetics of FluoZin-3 response to zinc in the presence of an additional zinc and calcium chelator.
Collapse
Affiliation(s)
- Jinfu Zhao
- Department of Biology, 336 BB, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
38
|
Zinc and cortical plasticity. ACTA ACUST UNITED AC 2009; 59:347-73. [DOI: 10.1016/j.brainresrev.2008.10.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/17/2008] [Accepted: 10/21/2008] [Indexed: 01/08/2023]
|
39
|
Williams NJ, Gan W, Reibenspies JH, Hancock RD. Possible Steric Control of the Relative Strength of Chelation Enhanced Fluorescence for Zinc(II) Compared to Cadmium(II): Metal Ion Complexing Properties of Tris(2-quinolylmethyl)amine, a Crystallographic, UV−Visible, and Fluorometric Study. Inorg Chem 2009; 48:1407-15. [DOI: 10.1021/ic801403s] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neil J. Williams
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Wei Gan
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Joseph H. Reibenspies
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Robert D. Hancock
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
40
|
Ma QJ, Zhang XB, Zhao Y, Li CY, Han ZX, Shen GL, Yu RQ. A fluorescent probe for zinc ions based on N-methyltetraphenylporphine with high selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 71:1683-1687. [PMID: 18715820 DOI: 10.1016/j.saa.2008.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 05/23/2008] [Accepted: 06/23/2008] [Indexed: 05/26/2023]
Abstract
N-methyl-alpha,beta,gamma,delta-tetraphenylporphine (NMTPPH) has been used to detect trace amount of zinc ions in ethanol-water solution by fluorescence spectroscopy. The fluorescent probe undergoes a fluorescent emission intensity enhancement upon binding to zinc ions in EtOH/H(2)O (1:1, v/v) solution. The fluorescence enhancement of NMTPPH is attributed to the 1:1 complex formation between NMTPPH and Zn(II) which has been utilized as the basis for the selective detection of Zn(II). The linear response range covers a concentration range of Zn(II) from 5.0x10(-7) to 1.0x10(-5)mol/L and the detection limit is 1.5x10(-7)mol/L. The fluorescent probe exhibits high selectivity over other common metal ions except for Cu(II).
Collapse
Affiliation(s)
- Qiu-Juan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Suh SW. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation. J Neurosci Methods 2008; 177:1-13. [PMID: 18929598 DOI: 10.1016/j.jneumeth.2008.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/19/2022]
Abstract
Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
42
|
Tolosa J, Zucchero AJ, Bunz UHF. Water-Soluble Cruciforms: Response to Protons and Selected Metal Ions. J Am Chem Soc 2008; 130:6498-506. [DOI: 10.1021/ja800232f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Juan Tolosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Anthony J. Zucchero
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Uwe H. F. Bunz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
43
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1549] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
44
|
A novel method for the detection of viable human pancreatic beta cells by flow cytometry using fluorophores that selectively detect labile zinc, mitochondrial membrane potential and protein thiols. Cytometry A 2008; 73:615-25. [DOI: 10.1002/cyto.a.20560] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Dhara K, Karan S, Ratha J, Roy P, Chandra G, Manassero M, Mallik B, Banerjee P. A two-dimensional coordination compound as a zinc ion selective luminescent probe for biological applications. Chem Asian J 2007; 2:1091-100. [PMID: 17638378 DOI: 10.1002/asia.200700152] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 2D coordination compound {[Cu2(HL)(N3)]ClO4}infinity (1; H3L = 2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol) was synthesized and characterized by single-crystal X-ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]2H2O (2); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19-fold Zn2+-selective chelation-enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.
Collapse
Affiliation(s)
- Koushik Dhara
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang S, Clark RJ, Zhu L. Highly Sensitive Fluorescent Probes for Zinc Ion Based on Triazolyl-Containing Tetradentate Coordination Motifs. Org Lett 2007; 9:4999-5002. [DOI: 10.1021/ol702208y] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sha Huang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| | - Ronald J. Clark
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| |
Collapse
|
47
|
Major JL, Parigi G, Luchinat C, Meade TJ. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc Natl Acad Sci U S A 2007; 104:13881-6. [PMID: 17724345 PMCID: PMC1955783 DOI: 10.1073/pnas.0706247104] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc(II) plays a vital role in normal cellular function as an essential component of numerous enzymes, transcription factors, and synaptic vesicles. While zinc can be linked to a variety of physiological processes, the mechanisms of its cellular actions are less discernible. Here, we have synthesized and tested a Zn(II)-activated magnetic resonance imaging (MRI) contrast agent in which the coordination geometry of the complex rearranges upon binding of Zn(II). In the absence of Zn(II) water is restricted from binding to a chelated Gd(III) ion by coordinating acetate arms resulting in a low relaxivity of 2.33 mM(-1) x s(-1) at 60 MHz. Upon addition of Zn(II) the relaxivity of the Gd(III)-Zn(II) complex increases to 5.07 mM(-1) x s(-1) and is consistent with one water molecule bound to Gd(III). These results were confirmed by nuclear magnetic relaxation dispersion analysis. There was no observed change in relaxivity of the Gd(III) complex when physiologically competing cations Ca(II) and Mg(II) were added. A competitive binding assay gave a dissociation constant of 2.38 x 10(-4) M for the Gd(III)-Zn(II) complex. In vitro magnetic resonance images confirm that Zn(II) concentrations as low as 100 microM can be detected by using this contrast agent.
Collapse
Affiliation(s)
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), Fiorgen Pharmacogenomic Foundation, and Department of Agricultural Biotechnology, University of Florence, Via Luigi Sacconi, 6, 50019 Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), Fiorgen Pharmacogenomic Foundation, and Department of Agricultural Biotechnology, University of Florence, Via Luigi Sacconi, 6, 50019 Florence, Italy
| | - Thomas J. Meade
- Departments of *Chemistry
- Biochemistry and Molecular and Cell Biology
- Neurobiology and Physiology, and
- Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Roy P, Dhara K, Manassero M, Ratha J, Banerjee P. Selective Fluorescence Zinc Ion Sensing and Binding Behavior of 4-Methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol: Biological Application. Inorg Chem 2007; 46:6405-12. [PMID: 17616182 DOI: 10.1021/ic700420w] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc ion fluorescence sensing and the binding properties of 4-methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol (HL) have been investigated. It displays high selectivity for Zn2+ and can be used as zinc ion-selective luminescent probe for biological application under physiological conditions. The increase in emission in the presence of Zn2+ is accounted for by the formation of hexanuclear complex [Zn6(L)2(OH)2(CH3COO)8] characterized by X-ray crystallography. An approximately 6-fold Zn2+-selective chelation-enhanced fluorescence response in HEPES buffer (pH 7.4) is attributed due to the strong coordination of Zn(II) that would impose rigidity and hence decrease the nonradiative decay of the excited state. By incubation of cultured living cells (B16F10 mouse melanoma and A375 human melanoma) with HL, intracellular Zn2+ concentration could be monitored.
Collapse
Affiliation(s)
- Partha Roy
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | | | |
Collapse
|
49
|
Datki ZL, Hunya A, Penke B. A novel and simple fluorescence method for the measurement of presynaptic vesicular zinc release in acute hippocampal slices with a fluorescence plate reader. Brain Res Bull 2007; 74:183-7. [PMID: 17683806 DOI: 10.1016/j.brainresbull.2007.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
The synaptic vesicles in the hippocampal neuronal terminals are abundantly supplied with zinc ions (Zn2+), which can be released into the synaptic cleft. In the glutamatergic systems (e.g. the hippocampus and the amygdala), the vesicular Zn2+ is co-localized with glutamate (Glu). Glu functions as a neurotransmitter, and Zn2+ as a neuromodulator (effecting basic synaptic functions). Electrical stimulation or chemical treatment (e.g. KCl) of hippocampal slices evokes the release of presynaptic vesicular Zn2+ into the synapse, together with Glu. This paper reports on the development of a rapid and simple method with which to assess the vesicular Zn2+ release and the effects of Zn2+-binding chelators in rat acute hippocampal slices. This method uses a 96-well fluorescence plate reader and the well-known zinc-sensitive fluorescence dye, FluoZin-3, which is cell-impermeable. This dye forms a stable complex with Zn2+ (Kd = 15 nM at pH 7.4); the amount of Zn2+ can be measured by fluorometry (lambda ex. 480-485 nm, em. 520-535 nm). Using 96-well plates, we could measure the Zn2+ release with high sensitivity, in at most 10 slices with a 15-s cycle time. This novel method can readily be used for the ex vivo modelling of the stress-evoked neuronal presynaptic Zn2+ release characteristic of neurodegenerative processes (e.g. Alzheimer's disease), or for the testing of Zn2+ chelators including putative drug candidates. This novel fluorescence plate reader method offers a simple, rapid and cost-effective technique for the measurement of vesicular Zn2+ release. It permits the simultaneous measurement of all mechanically undamaged hippocampal slices, regardless of size, thereby reducing the number of rats required experimentally.
Collapse
Affiliation(s)
- Zsolt L Datki
- Supramolecular and Nanostructured Materials Research Group, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
50
|
Liu Y, Zhang N, Chen Y, Wang LH. Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-beta-cyclodextrin to Zn2+. Org Lett 2007; 9:315-8. [PMID: 17217293 DOI: 10.1021/ol062816w] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A water-soluble fluorescent zinc sensor which binds strongly to Zn2+ (log K = 12.4) was successfully synthesized under physiological conditions. This sensor exhibits a good fluorescence response to Zn2+ over a wide pH range in water. Under the same conditions, several metal ions commonly present in a physiological environment, such as Na+, K+, Ca2+, Mg2+, Mn2+, Fe2+, and Co2+, showed little interference to the fluorescence response to Zn2+. [structure: see text]
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|