1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kirimlioglu E, Oflamaz AO, Hidisoglu E, Ozen S, Yargicoglu P, Demir N. Short and long-term 2100 MHz radiofrequency radiation causes endoplasmic reticulum stress in rat testis. Histochem Cell Biol 2024; 162:311-321. [PMID: 38997526 PMCID: PMC11364557 DOI: 10.1007/s00418-024-02308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.
Collapse
Affiliation(s)
- Esma Kirimlioglu
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
| | - Asli Okan Oflamaz
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Bozok University, Yozgat, Turkey
| | - Enis Hidisoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Department of Drug Science, NIS Centre, University of Turin, Turin, Italy
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Necdet Demir
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
4
|
Katirci E, Kirimlioglu E, Oflamaz AO, Hidisoglu E, Cernomorcenco A, Yargıcoğlu P, Ozen S, Demir N. Expression levels of tam receptors and ligands in the testes of rats exposed to short and middle-term 2100 MHz radiofrequency radiation. Bioelectromagnetics 2024; 45:235-248. [PMID: 38725116 DOI: 10.1002/bem.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 06/18/2024]
Abstract
With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Esma Kirimlioglu
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Asli O Oflamaz
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
- Department of Biophysics, Faculty of Medicine, Izmir Bakircay University, Izmir, Turkey
- Department of Drug Science and Technology, Universityof Turin, Turin, Italy
| | - Alexandra Cernomorcenco
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Piraye Yargıcoğlu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University Faculty of Engineering, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
5
|
Shirbandi K, Khalafi M, J Bevelacqua J, Sadeghian N, Adiban S, Bahaeddini Zarandi F, Mortazavi SA, Mortazavi SH, Mortazavi SMJ, S Welsh J. Exposure to Low Levels of Radiofrequency Electromagnetic Fields Emitted from Cell-phones as a Promising Treatment of Alzheimer's Disease: A Scoping Review Study. J Biomed Phys Eng 2023; 13:3-16. [PMID: 36818013 PMCID: PMC9923247 DOI: 10.31661/jbpe.v0i0.2109-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 06/18/2023]
Abstract
Background Alzheimer's disease (AD) is one of the most significant public health concerns and tremendous economic challenges. Studies conducted over the past decades show that exposure to radiofrequency electromagnetic fields (RF-EMFs) may relieve AD symptoms. Objective To determine if exposure to RF-EMFs emitted by cellphones affect the risk of AD. Material and Methods In this review, all relevant published articles reporting an association of cell phone use with AD were studied. We systematically searched international datasets to identify relevant studies. Finally, 33 studies were included in the review. Our review discusses the effects of RF-EMFs on the amyloid β (Aβ), oxidative stress, apoptosis, reactive oxygen species (ROS), neuronal death, and astrocyte responses. Moreover, the role of exposure parameters, including the type of exposure, its duration, and specific absorption rate (SAR), are discussed. Results Progressive factors of AD such as Aβ, myelin basic protein (MBP), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and neurofilament light polypeptide (NFL) were decreased. While tau protein showed no change, factors affecting brain activity such as glial fibrillary acidic protein (GFAP), mitogen-activated protein kinases (MAPKs), cerebral blood flow (CBF), brain temperature, and neuronal activity were increased. Conclusion Exposure to low levels of RF-EMFs can reduce the risk of AD by increasing MAPK and GFAP and decreasing MBP. Considering the role of apoptosis in AD and the effect of RF-EMF on the progression of the process, this review indicates the positive effect of these exposures.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Department of International Affairs (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Khalafi
- Allied Health Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Najmeh Sadeghian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saina Adiban
- Biotechnology Student, Islamic Azad University, Tehran, Iran
| | | | | | | | | | - James S Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, USA
- Department of Radiation Oncology, Edward Hines Jr VA Hospital Hines, Illinois, USA
| |
Collapse
|
6
|
Er H, Tas GG, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci 2022; 29:1471-1485. [PMID: 35015292 DOI: 10.1007/s43032-022-00844-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Akdeniz University School of Medicine, Akdeniz University, Antalya, Turkey.,Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
7
|
Tripathi R, Banerjee SK, Nirala JP, Mathur R. Simultaneous exposure to electromagnetic field from mobile phone and unimpeded fructose drinking during pre-, peri-, and post-pubertal stages perturbs the hypothalamic and hepatic regulation of energy homeostasis by early adulthood: experimental evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7438-7451. [PMID: 34476698 DOI: 10.1007/s11356-021-15841-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The present-day children-adolescents ubiquitously use the mobile phones and unrestrictedly consume fructose-laden diet. Unfortunately, a rise in the incidence of insulin resistance and fatty liver syndrome in young adults has also been recorded. To delineate a possible correlate, the effect of exposure to electromagnetic field (EMF) from the mobile phone and unrestricted fructose intake during pre-, peri-, and post-pubertal stages of development on orexigenic and anorexigenic signals arising from the hypothalamus and liver of rats is investigated here. The study design included four arms, i.e., "Normal", "Exposure Only (ExpO)", "Fructose Only (FruO)", and "Exposure with Fructose (EF)", wherein weaned rats received either "normal chow and drinking water" or "normal chow and fructose (15%) drinking solution" in presence and absence of EMF exposure (2 h/day) for 8 weeks. The results indicate that the total calories consumed by the EF were higher by early adulthood than normal, possibly under the influence of the raised levels of the orexigenic hormone, i.e., ghrelin, and it reflected as raised rate of weight gain. At early adulthood, the EF recorded mitigated response and sensitivity of insulin. Despite EF being a "fed-state", both centrally and peripherally, the glycolysis was restrained, but the gluconeogenesis was raised. Additionally, the altered lipid profile and the glycogen levels indicate that the EF developed fatty liver. The energy homeostasis of the EF was compromised as evidenced by (a) reduced expression of the glucosensors-GLUT2 and glucokinase in the hypothalamus and liver and (b) reduced expression of the cellular energy regulator-AMPK, orexigenic peptide-NPY, and anorexigenic peptide-POMC in the hypothalamus. Taken together, the present study evidences that the exposure to EMFfrom the mobile phone and unrestricted fructose intake during childhood-adolescence impairs the central and peripheral pathways that mediate the glucosensing, glucoregulation, feeding, and satiety behavior by early adulthood.
Collapse
Affiliation(s)
- Ruchi Tripathi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| | - Sanjay Kumar Banerjee
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
- Current Address: Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India.
| |
Collapse
|
8
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
9
|
AYDIN F, AKŞİT E, HÜSEYİNOĞLU AYDIN A, TURGAY YILDIRIM Ö. The Effects of Heart-to-Mobile Phone Distance on the Circulatory System. KONURALP TIP DERGISI 2021. [DOI: 10.18521/ktd.835364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Kumar R, Deshmukh PS, Sharma S, Banerjee BD. Effect of mobile phone signal radiation on epigenetic modulation in the hippocampus of Wistar rat. ENVIRONMENTAL RESEARCH 2021; 192:110297. [PMID: 33035560 DOI: 10.1016/j.envres.2020.110297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Exponential increase in mobile phone uses, given rise to public concern regarding the alleged deleterious health hazards as a consequence of prolonged exposure. In 2018, the U.S. National toxicology program reported, two year toxicological studies for potential health hazards from exposure to cell phone radiations. Epigenetic modulations play a critical regulatory role in many cellular functions and pathological conditions. In this study, we assessed the dose-dependent and frequency-dependent epigenetic modulation (DNA and Histone methylation) in the hippocampus of Wistar rats. A Total of 96 male Wistar rats were segregated into 12 groups exposed to 900 MHz, 1800 MHz and 2450 MHz RF-MW at a specific absorption rate (SAR) of 5.84 × 10-4 W/kg, 5.94 × 10-4 W/kg and 6.4 × 10-4 W/kg respectively for 2 h per day for 1-month, 3-month and 6-month periods. At the end of the exposure duration, animals were sacrificed to collect the hippocampus. Global hippocampal DNA methylation and histone methylation were estimated by ELISA. However, DNA methylating enzymes, DNA methyltransferase1 (DNMT1) and histone methylating enzymes euchromatic histone methylthransferase1 (EHMT1) expression was evaluated by real-time PCR, as well as further validated with Western blot. Alteration in epigenetic modulation was observed in the hippocampus. Global DNA methylation was decreased and histone methylation was increased in the hippocampus. We observed that microwave exposure led to significant epigenetic modulations in the hippocampus with increasing frequency and duration of exposure. Microwave exposure with increasing frequency and exposure duration brings significant (p < 0.05) epigenetic modulations which alters gene expression in the hippocampus.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| | - Pravin S Deshmukh
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences & GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| | - Basu Dev Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
11
|
Er H, Basaranlar G, Ozen S, Demir N, Kantar D, Yargicoglu P, Derin N. The effects of acute and chronic exposure to 900 MHz radiofrequency radiation on auditory brainstem response in adult rats. Electromagn Biol Med 2020; 39:374-386. [PMID: 32865045 DOI: 10.1080/15368378.2020.1813159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the effects of short and long-term RFR exposure on ABR by evaluating lipid peroxidation and antioxidant status in adult rats. Sixty male albino Wistar rats were randomly divided into four groups. S1:1 week sham, S10:10 weeks sham, E1:1 week RFR, E10:10 weeks RFR. Experimental group rats were exposed to RFR 2 h/day, 5 days/week during the test period. Sham rats were kept in the same conditions without RFR. After the experiment, ABRs were recorded from the mastoids of rats using tone burst acoustic stimuli. Biochemical investigations in rat brain and ultrastructural analysis in temporal cortex were performed. ABR wave I latency prolonged in E1-group and shortened in E10-group compared to their shams. TBARS level increased in E1-group, decreased in E10-group, on the contrary, SOD and CAT activities and GSH level decreased in E1-group, increased in E10-group compared to their sham groups. Edema was present in the neuron and astrocyte cytoplasms and astrocyte end-feet in both E1 and E10 groups. Our results suggest that 900 MHz RFR may have negative effects on the auditory system in acute exposure and no adverse effects in chronic exposure without weekends.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey.,Electron Microscopy Image Analyzing Unit, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Goksun Basaranlar
- Department of Biophysics, Institute of Health Sciences, Akdeniz University , Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University , Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| |
Collapse
|
12
|
Effects of a Single Head Exposure to GSM-1800 MHz Signals on the Transcriptome Profile in the Rat Cerebral Cortex: Enhanced Gene Responses Under Proinflammatory Conditions. Neurotox Res 2020; 38:105-123. [PMID: 32200527 PMCID: PMC7223958 DOI: 10.1007/s12640-020-00191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Mobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1G93A rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS). Gene responses were assessed 24 h after the GSM head-only exposure in a motor area of the cerebral cortex (mCx) where the mean specific absorption rate (SAR) was estimated to be 3.22 W/kg. In LPS-treated rats, a genome-wide mRNA profiling was performed by RNA-seq analysis and revealed significant (adjusted p value < 0.05) but moderate (fold changes < 2) upregulations or downregulations affecting 2.7% of the expressed genes, including genes expressed predominantly in neuronal or in glial cell types and groups of genes involved in protein ubiquitination or dephosphorylation. Reverse transcription-quantitative PCR analyses confirmed gene modulations uncovered by RNA-seq data and showed that in a set of 15 PCR-assessed genes, significant gene responses to GSM-1800 MHz depended upon the acute neuroinflammatory state triggered in LPS-treated rats, because they were not observed in healthy or in hSOD1G93A rats. Together, our data specify the extent of cortical gene modulations triggered by GSM-EMF in the course of an acute neuroinflammation and indicate that GSM-induced gene responses can differ according to pathologies affecting the CNS.
Collapse
|
13
|
Hidisoglu E, Kantar-Gok D, Ozen S, Yargicoglu P. Short-term 2.1 GHz radiofrequency radiation treatment induces significant changes on the auditory evoked potentials in adult rats. Int J Radiat Biol 2018; 94:858-871. [DOI: 10.1080/09553002.2018.1492166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Enis Hidisoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar-Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Engineering Faculty, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J R Soc Interface 2017; 14:20170585. [PMID: 29212756 PMCID: PMC5746568 DOI: 10.1098/rsif.2017.0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100-109 Hz), millimetre waves (MMWs) or gigahertz (109-1011 Hz), and terahertz (1011-1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies.
Collapse
Affiliation(s)
- Sergii Romanenko
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Begley
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Vincent P Wallace
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Poulletier de Gannes F, Masuda H, Billaudel B, Poque-Haro E, Hurtier A, Lévêque P, Ruffié G, Taxile M, Veyret B, Lagroye I. Effects of GSM and UMTS mobile telephony signals on neuron degeneration and blood-brain barrier permeation in the rat brain. Sci Rep 2017; 7:15496. [PMID: 29138435 PMCID: PMC5686211 DOI: 10.1038/s41598-017-15690-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) permeation and neuron degeneration were assessed in the rat brain following exposure to mobile communication radiofrequency (RF) signals (GSM-1800 and UMTS-1950). Two protocols were used: (i) single 2 h exposure, with rats sacrificed immediately, and 1 h, 1, 7, or 50 days later, and (ii) repeated exposures (2 h/day, 5 days/week, for 4 weeks) with the effects assessed immediately and 50 days after the end of exposure. The rats' heads were exposed at brain-averaged specific absorption rates (BASAR) of 0.026, 0.26, 2.6, and 13 W/kg. No adverse impact in terms of BBB leakage or neuron degeneration was observed after single exposures or immediately after the end of repeated exposure, with the exception of a transient BBB leakage (UMTS, 0.26 W/kg). Fifty days after repeated exposure, the occurrence of degenerating neurons was unchanged on average. However, a significant increased albumin leakage was detected with both RF signals at 13 W/kg. In this work, the strongest, delayed effect was induced by GSM-1800 at 13 W/kg. Considering that 13 W/kg BASAR in the rat head is equivalent to 4 times as much in the human head, deleterious effects may occur following repeated human brain exposure above 50 W/kg.
Collapse
Affiliation(s)
| | - Hiroshi Masuda
- Kurume University School of Medicine, Department of Environmental Medicine, Kurume, Fukuoka, J-830-0011, Japan
| | - Bernard Billaudel
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | | | - Annabelle Hurtier
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Philippe Lévêque
- University of Limoges, CNRS, XLIM, UMR 7252, Limoges, F-87000, France
| | - Gilles Ruffié
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Murielle Taxile
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Bernard Veyret
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France
| | - Isabelle Lagroye
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France.
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France.
| |
Collapse
|
16
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
17
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
18
|
Ohtani S, Ushiyama A, Maeda M, Hattori K, Kunugita N, Wang J, Ishii K. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats. J Toxicol Sci 2016; 41:655-66. [DOI: 10.2131/jts.41.655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shin Ohtani
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health
| | - Machiko Maeda
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Kenji Hattori
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health
| | - Jianqing Wang
- Department of Computer Science and Engineering, Nagoya Institute of Technology
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| |
Collapse
|
19
|
Makale M, Kesari S. Cell Phones and Glioma Risk: An Update. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Wang LF, Tian DW, Li HJ, Gao YB, Wang CZ, Zhao L, Zuo HY, Dong J, Qiao SM, Zou Y, Xiong L, Zhou HM, Yang YF, Peng RY, Hu XJ. Identification of a Novel Rat NR2B Subunit Gene Promoter Region Variant and Its Association with Microwave-Induced Neuron Impairment. Mol Neurobiol 2015; 53:2100-11. [PMID: 25917873 DOI: 10.1007/s12035-015-9169-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.
Collapse
Affiliation(s)
- Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Da-Wei Tian
- Vestibular Laboratory, Institute of Aviation Medicine, 28 Fucheng Road, Beijing, 100142, China.,Department of Aerospace Medicine Aerospace Biodynamics, The Fourth Military Medical University, 169 Changlexi Road, Xian, 100032, China
| | - Hai-Juan Li
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ya-Bing Gao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Chang-Zhen Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Li Zhao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Hong-Yan Zuo
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ji Dong
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Si-Mo Qiao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Yong Zou
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Lu Xiong
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Hong-Mei Zhou
- Radiation Protection, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Yue-Feng Yang
- Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Rui-Yun Peng
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Xiang-Jun Hu
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
21
|
Court-Kowalski S, Finnie JW, Manavis J, Blumbergs PC, Helps SC, Vink R. Effect of long-term (2 years) exposure of mouse brains to global system for mobile communication (GSM) radiofrequency fields on astrocytic immunoreactivity. Bioelectromagnetics 2015; 36:245-50. [PMID: 25703451 DOI: 10.1002/bem.21891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/06/2014] [Indexed: 11/09/2022]
Abstract
This study was designed to determine whether long-term (2 years) brain exposure to mobile telephone radiofrequency (RF) fields produces any astrocytic activation as these glia react to a wide range of neural perturbations by astrogliosis. Using a purpose-designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate of 4 W/kg on five successive days per week for 104 weeks. Control mice were sham-exposed or freely mobile in a cage to control any stress caused by immobilization in the exposure module. Brains were perfusion-fixed with 4% paraformaldehyde and three coronal levels immunostained for glial fibrillary acidic protein (GFAP). These brain slices were then examined by light microscopy and the amount of this immunomarker quantified using a color deconvolution method. There was no change in astrocytic GFAP immunostaining in brains after long-term exposure to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice). It was concluded that long-term (2 years) exposure of murine brains to mobile telephone RF fields did not produce any astrocytic reaction (astrogliosis) detectable by GFAP immunostaining.
Collapse
Affiliation(s)
- Stefan Court-Kowalski
- Schools of Medical and Veterinary Science, University of Adelaide, Adelaide, SA, Australia; SA Pathology, Hanson Institute Centre for Neurological Diseases, Adelaide, SA, Australia; NH&MRC Australian Centre for Electromagnetic Bioeffects Research, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Glushkova OV, Khrenov MO, Novoselova TV, Lunin SM, Parfenyuk SB, Alekseev SI, Fesenko EE, Novoselova EG. The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low-intensity microwaves. Int J Radiat Biol 2015; 91:321-8. [DOI: 10.3109/09553002.2014.996261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Azadi Oskouyi E, Rajaei F, Safari Variani A, Sarokhani MR, Javadi A. Effects of microwaves (950 MHZ mobile phone) on morphometric and apoptotic changes of rabbit epididymis. Andrologia 2014; 47:700-5. [PMID: 25060044 DOI: 10.1111/and.12321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/01/2022] Open
Abstract
The effect of mobile phone radiation on human reproduction system is still a matter of debate. In this study, 18 male rabbits were randomly divided into two experimental groups and one control group. Experimental groups received simulated microwaves with the frequency of 950 MHz and the output power of 3 and 6 watts for 2 weeks, 2 h a day. After a week of rest, the microscopic slides from the quada of the excised epididymis were prepared. Then, the diameter of epididymis, the height of epithelium and the number of apoptotic cells in epithelium in study groups were determined. The data were compared using spss software and one-way anova test. The epithelial height and diameter of the epididymis in 3 watt and 6 watt groups had a significant decrease compared to the control group (P < 0.001), while the testosterone level only in 6 watt group was significantly decreased compared to control group. The rate of apoptosis in the epithelial cells of the epididymis had a significant increase only in 6 watt group compared to the control group (P < 0.001). This study showed that the microwaves with the frequency of 950 MHz can have negative impacts on morphometric and apoptotic changes of rabbit epididymis.
Collapse
Affiliation(s)
- E Azadi Oskouyi
- Department of Anatomy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Rajaei
- Department of Anatomy, Qazvin University of Medical Sciences, Qazvin, Iran.,Cell and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - A Safari Variani
- Department of Occupational Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - M R Sarokhani
- Department of Occupational Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - A Javadi
- Department of Statistics, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
24
|
Abu Khadra KM, Khalil AM, Abu Samak M, Aljaberi A. Evaluation of selected biochemical parameters in the saliva of young males using mobile phones. Electromagn Biol Med 2014; 34:72-6. [DOI: 10.3109/15368378.2014.881370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Leszczynski D. Effects of radiofrequency-modulated electromagnetic fields on proteome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:101-6. [PMID: 23378005 DOI: 10.1007/978-94-007-5896-4_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteomics, the science that examines the repertoire of proteins present in an organism using both high-throughput and low-throughput techniques, might give a better understanding of the functional processes ongoing in cells than genomics or transcriptomics, because proteins are the molecules that directly regulate physiological processes. Not all changes in gene expression are necessarily reflected in the proteome. Therefore, using proteomics approaches to study the effects of RF-EMF might provide information about potential biological and health effects. Especially that the RF-EMF used in wireless communication devices has very low energy and is unable to directly induce gene mutations.
Collapse
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, Helsinki, 00880, Finland.
| |
Collapse
|
26
|
Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP. Exposure to 2.45GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 2012; 88:371-8. [DOI: 10.1016/j.brainresbull.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
|
27
|
Bouji M, Lecomte A, Hode Y, de Seze R, Villégier AS. Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats. Exp Gerontol 2012; 47:444-51. [PMID: 22507567 DOI: 10.1016/j.exger.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 01/02/2023]
Abstract
The widespread use of mobile phones raises the question of the effects of electromagnetic fields (EMF, 900 MHz) on the brain. Previous studies reported increased levels of the glial fibrillary acidic protein (GFAP) in the rat's brain after a single exposure to 900 MHz global system for mobile (GSM) signal, suggesting a potential inflammatory process. While this result was obtained in adult rats, no data is currently available in older animals. Since the transition from middle-age to senescence is highly dependent on environment and lifestyle, we studied the reactivity of middle-aged brains to EMF exposure. We assessed the effects of a single 15 min GSM exposure (900 MHz; specific absorption rate (SAR)=6 W/kg) on GFAP expression in young adults (6 week-old) and middle-aged rats (12 month-old). Brain interleukin (IL)-1β and IL-6, plasmatic levels of corticosterone (CORT), and emotional memory were also assessed. Our data indicated that, in contrast to previously published work, acute GSM exposure did not induce astrocyte activation. Our results showed an IL-1β increase in the olfactory bulb and enhanced contextual emotional memory in GSM-exposed middle-aged rats, and increased plasmatic levels of CORT in GSM-exposed young adults. Altogether, our data showed an age dependency of reactivity to GSM exposure in neuro-immunity, stress and behavioral parameters. Reproducing these effects and studying their mechanisms may allow a better understanding of mobile phone EMF effects on neurobiological parameters.
Collapse
Affiliation(s)
- Marc Bouji
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques, Parc Technologique ALATA, BP no. 2, 60550 Verneuil-en-Halatte, France
| | | | | | | | | |
Collapse
|
28
|
Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT, Margaritis LH. Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med 2012; 31:250-74. [DOI: 10.3109/15368378.2011.631068] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Athina Samara
- Genetics and Gene Therapy Division, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | | | - Anta Xanthopoulou
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | - Aggeliki Papadopoulou
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | - Konstantinos Vougas
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | - Eugenia Koutsogiannopoulou
- Genetics and Gene Therapy Division, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | - Ema Anastasiadou
- Genetics and Gene Therapy Division, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | | | - George Th. Tsangaris
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens,
Athens, Greece
| | - Lukas H. Margaritis
- Department of Cell Biology and Biophysics, Athens University,
Athens, Greece
| |
Collapse
|
29
|
Sun W, Shen X, Lu D, Fu Y, Lu D, Chiang H. A 1.8-GHz radiofrequency radiation induces EGF receptor clustering and phosphorylation in cultured human amniotic (FL) cells. Int J Radiat Biol 2011; 88:239-44. [DOI: 10.3109/09553002.2011.634882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Jorge-Mora T, Misa-Agustiño MJ, Rodríguez-González JA, Jorge-Barreiro FJ, Ares-Pena FJ, López-Martín E. The effects of single and repeated exposure to 2.45 GHz radiofrequency fields on c-Fos protein expression in the paraventricular nucleus of rat hypothalamus. Neurochem Res 2011; 36:2322-32. [PMID: 21818659 DOI: 10.1007/s11064-011-0557-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.
Collapse
Affiliation(s)
- T Jorge-Mora
- Departamento de Ciencias Morfológicas, Facultad de Medicina, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Carballo-Quintás M, Martínez-Silva I, Cadarso-Suárez C, Álvarez-Figueiras M, Ares-Pena F, López-Martín E. A study of neurotoxic biomarkers, c-fos and GFAP after acute exposure to GSM radiation at 900MHz in the picrotoxin model of rat brains. Neurotoxicology 2011; 32:478-94. [DOI: 10.1016/j.neuro.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
32
|
Juutilainen J, Höytö A, Kumlin T, Naarala J. Review of possible modulation-dependent biological effects of radiofrequency fields. Bioelectromagnetics 2011; 32:511-34. [PMID: 21480304 DOI: 10.1002/bem.20652] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/04/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
33
|
Sakurai T, Kiyokawa T, Narita E, Suzuki Y, Taki M, Miyakoshi J. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. JOURNAL OF RADIATION RESEARCH 2011; 52:185-192. [PMID: 21343680 DOI: 10.1269/jrr.10116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The increasing use of mobile phones has aroused public concern regarding the potential health risks of radiofrequency (RF) fields. We investigated the effects of exposure to RF fields (2.45 GHz, continuous wave) at specific absorption rate (SAR) of 1, 5, and 10 W/kg for 1, 4, and 24 h on gene expression in a normal human glial cell line, SVGp12, using DNA microarray. Microarray analysis revealed 23 assigned gene spots and 5 non-assigned gene spots as prospective altered gene spots. Twenty-two genes out of the 23 assigned gene spots were further analyzed by reverse transcription-polymerase chain reaction to validate the results of microarray, and no significant alterations in gene expression were observed. Under the experimental conditions used in this study, we found no evidence that exposure to RF fields affected gene expression in SVGp12 cells.
Collapse
Affiliation(s)
- Tomonori Sakurai
- Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Effect of Exposure to 1,800 MHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats. Neurotox Res 2010; 20:109-19. [DOI: 10.1007/s12640-010-9225-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 09/29/2022]
|
35
|
Yang X, He G, Hao Y, Chen C, Li M, Wang Y, Zhang G, Yu Z. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J Neuroinflammation 2010; 7:54. [PMID: 20828402 PMCID: PMC2945324 DOI: 10.1186/1742-2094-7-54] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/09/2010] [Indexed: 01/05/2023] Open
Abstract
Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that the JAK2-STAT3 pathway may not mediate this initial microglial activation but does promote pro-inflammatory responses in EMF-stimulated microglial cells. Thus, the JAK2-STAT3 pathway might be a therapeutic target for reducing pro-inflammatory responses in EMF-activated microglia.
Collapse
Affiliation(s)
- Xuesen Yang
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R. GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol 2010; 86:367-75. [PMID: 20397841 DOI: 10.3109/09553000903567946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The rapid development and expansion of mobile communications contributes to the general debate on the effects of electromagnetic fields emitted by mobile phones on the nervous system. This study aims at measuring the glial fibrillary acidic protein (GFAP) expression in 48 rat brains to evaluate reactive astrocytosis, three and 10 days after long-term head-only sub-chronic exposure to a 900 MHz electromagnetic field (EMF) signal, in male rats. METHODS Sprague-Dawley rats were exposed for 45 min/day at a brain-averaged specific absorption rate (SAR) = 1.5 W/kg or 15 min/day at a SAR = 6 W/kg for five days per week during an eight-week period. GFAP expression was measured by the immunocytochemistry method in the following rat brain areas: Prefrontal cortex, cerebellar cortex, dentate gyrus of the hippocampus, lateral globus pallidus of the striatum, and the caudate putamen. RESULTS Compared to the sham-treated rats, those exposed to the sub-chronic GSM (Global System for mobile communications) signal at 1.5 or 6 W/kg showed an increase in GFAP levels in the different brain areas, three and ten days after treatment. CONCLUSION Our results show that sub-chronic exposures to a 900 MHz EMF signal for two months could adversely affect rat brain (sign of a potential gliosis).
Collapse
Affiliation(s)
- Mohamed Ammari
- National Institute of Industrial Environment and Risk (INERIS), Parc technologique ALATA, Verneuil-en-Halatte, France.
| | | | | | | | | | | |
Collapse
|
37
|
Ding GR, Wang XW, Li KC, Qiu LB, Xu SL, Tan J, Guo GZ. Comparison of Hsps expression after radio-frequency field exposure in three human glioma cell lines. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:374-380. [PMID: 20163061 DOI: 10.1016/s0895-3988(10)60014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). METHODS Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. RESULTS The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or Hsp70 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. CONCLUSION The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.
Collapse
Affiliation(s)
- Gui-Rong Ding
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi 'an 710032, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
38
|
McNamee JP, Chauhan V. Radiofrequency Radiation and Gene/Protein Expression: A Review. Radiat Res 2009; 172:265-87. [DOI: 10.1667/rr1726.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Masuda H, Ushiyama A, Takahashi M, Wang J, Fujiwara O, Hikage T, Nojima T, Fujita K, Kudo M, Ohkubo C. Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood-brain barrier and neurons in the rat brain. Radiat Res 2009; 172:66-73. [PMID: 19580508 DOI: 10.1667/rr1542.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was to determine whether albumin leakage and dark neurons were present in rat brains 14 and 50 days after a single 2-h exposure to a 915 MHz electromagnetic field, as reported by Salford et al. (Environ. Health Perspect. 111, 881-883, 203). Sixty-four male F344 rats (12 weeks old) were exposed to a 915 MHz electromagnetic field at whole-body average specific absorption rates of 0, 0.02, 0.2 and 2.0 W/kg in TEM cells for 2 h, following the protocol reported by Salford et al. The brains were examined histologically and immunohistochemically. No albumin immunoreactivity was observed in the exposed groups. In addition, dark neurons, assessed using hematoxylin and eosin staining, were rarely present, with no statistically significant difference between exposed and sham-exposed animals. This study thus failed to confirm the results of Salford et al.
Collapse
Affiliation(s)
- Hiroshi Masuda
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nocturnal urinary melatonin levels and urine biochemistry in microwave-irradiated rats. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0139-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Dasdag S, Akdag MZ, Aksen F, Bashan M, Buyukbayram H. Does 900 MHZ GSM Mobile Phone Exposure Affect Rat Brain? Electromagn Biol Med 2009. [DOI: 10.1081/jbc-200044231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Sanchez S, Masuda H, Ruffié G, De Gannes FP, Billaudel B, Haro E, Lévêque P, Lagroye I, Veyret B. Effect of GSM-900 and -1800 signals on the skin of hairless rats. III: Expression of heat shock proteins. Int J Radiat Biol 2009; 84:61-8. [PMID: 17852563 DOI: 10.1080/09553000701616098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE We previously reported the inability of Global System for Mobile communication (GSM) signals at 900 (GSM-900) and 1800 (GSM-1800) MegaHertz (MHz) to induce morphological and physiological changes in epidermis of Hairless rats. The present work aimed at investigating heat shock proteins (HSP) expression--as a cellular stress marker--in the skin of Hairless rats exposed to GSM-900 and -1800 signals. MATERIALS AND METHODS We studied the expression of the Heat-shock cognate (Hsc) 70, and the inducible forms of the Heat-shock proteins (Hsp) 25 and 70. Rat skin was locally exposed using loop antenna and restrain rockets to test several Specific Absorption Rates (SAR) and exposure durations: (i) single exposure: 2 hours at 0 and 5 W/kg; (ii) repeated exposure: 2 hours per day, 5 days per week, for 12 weeks, at 0, 2.5, and 5 W/kg. HSP expression was detected on skin slices using immunolabeling in the epidermal area. RESULTS Our data indicated that neither single nor repeated exposures altered HSP expression in rat skin, irrespective of the GSM signal or SAR considered. CONCLUSIONS Under our experimental conditions (local SAR < 5 W/kg), there was no evidence that GSM signals alter HSP expression in rat skin.
Collapse
Affiliation(s)
- Sandrine Sanchez
- University of Bordeaux 1, IMS, ENSCPB, Bioelectromagnetics Group, Pessac, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Galloni P, Lopresto V, Parazzini M, Pinto R, Piscitelli M, Ravazzani P, Marino C. No effects of UMTS exposure on the function of rat outer hair cells. Bioelectromagnetics 2009; 30:385-92. [DOI: 10.1002/bem.20483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
López-Martín E, Bregains J, Relova-Quinteiro JL, Cadarso-Suárez C, Jorge-Barreiro FJ, Ares-Pena FJ. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness. J Neurosci Res 2009; 87:1484-99. [PMID: 19115403 DOI: 10.1002/jnr.21951] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.
Collapse
Affiliation(s)
- E López-Martín
- Morphological Sciences Department, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Finnie JW, Chidlow G, Blumbergs PC, Manavis J, Cai Z. Heat shock protein induction in fetal mouse brain as a measure of stress after whole of gestation exposure to mobile telephony radiofrequency fields. Pathology 2009; 41:276-9. [DOI: 10.1080/00313020902756261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
In vitro testing of cellular response to ultra high frequency electromagnetic field radiation. Toxicol In Vitro 2008; 22:1344-8. [PMID: 18513921 DOI: 10.1016/j.tiv.2008.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate whether low-level, ultra high frequency (UHF) irradiation of 935 MHz influences the cell structure and growth of V79 cells. UHF field was generated inside a Gigahertz Transversal Electromagnetic Mode cell (GTEM-cell) with a Hewlett-Packard signal generator. The electric field strength was 8.2+/-0.3 V/cm and the average specific absorption rate (SAR) was calculated to be 0.12 W/kg. Cell samples were cultivated in a humidified atmosphere at 37 degrees C with 5% CO2. Prepared cell samples were exposed to a 935 MHz continuous wave frequency field for 1, 2, and 3 h. The structure of microtubule proteins has been determined using the immunocytochemical method. Cell growth was determined by cell counts for each hour of exposure during five post-exposure days. Negative- and positive-cell controls were included into the experimental procedure. In comparison with control cells, the microtubule structure clearly altered after 3h of irradiation (p<0.05). Significantly decreased growth was noted in cells exposed for 3h three days after irradiation (p<0.05). It seems that the 935 MHz, low-level UHF radiation affects microtubule proteins, which consequently may obstruct cell growth.
Collapse
|
47
|
Pavicic I, Trosic I. Impact of 864 MHz or 935 MHz radiofrequency microwave radiation on the basic growth parameters of V79 cell line. ACTA BIOLOGICA HUNGARICA 2008; 59:67-76. [PMID: 18401946 DOI: 10.1556/abiol.59.2008.1.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate and compare the influence of 864 MHz and 935 MHz radiofrequency/microwave (RF/MW) fields on the growth, colony-forming ability, and viability of V79 cells (continuous line). Cell samples with 1 x 10(4) V79 cells each, were exposed to continuous wave frequencies of 864 MHz and 935 MHz for 1, 2 and 3 hours. Exposed samples were matched with unexposed control samples. Specific absorption rate (SAR) was 0.08 W/kg for the 864 MHz or 0.12 W/kg for the 935 MHz field. Cell growth and viability were determined by counting cells every day for five days after exposure. Colony-forming ability was assessed by counting colonies seven days after exposure. The growth of the 864 MHz-irradiated cells was significant after two- and three-hour exposure 72 hours after irradiation (p < 0.05). The similar was observed 72 hours after exposure for cells exposed to 935 MHz microwaves for three hours (p <0.05). Colony-forming ability and cell viability in V79 cells exposed to 864 MHz or 935 MHz microwaves did not significantly differ from control cells. The two applied RF/MW fields showed similar effects on the growth, colony-forming ability and viability of V79 cells. Cell growth impact was time-dependent for both fields.
Collapse
Affiliation(s)
- I Pavicic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | |
Collapse
|
48
|
Inoue S, Motoda H, Koike Y, Kawamura K, Hiragami F, Kano Y. Microwave irradiation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci Lett 2008; 432:35-9. [DOI: 10.1016/j.neulet.2007.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/30/2007] [Accepted: 12/02/2007] [Indexed: 02/05/2023]
|
49
|
Lopez-Martin E, Bregains JC, Jorge-Barreiro FJ, Sebastián-Franco JL, Moreno-Piquero E, Ares-Pena FJ. AN EXPERIMENTAL SET-UP FOR MEASUREMENT OF THE POWER ABSORBED FROM 900 MHZ GSM STANDING WAVES BY SMALL ANIMALS, ILLUSTRATED BY APPLICATION TO PICROTOXIN-TREATED RATS. ACTA ACUST UNITED AC 2008. [DOI: 10.2528/pier08101307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Paparini A, Rossi P, Gianfranceschi G, Brugaletta V, Falsaperla R, De Luca P, Romano Spica V. No evidence of major transcriptional changes in the brain of mice exposed to 1800 MHz GSM signal. Bioelectromagnetics 2008; 29:312-23. [DOI: 10.1002/bem.20399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|