1
|
Beignon F, Notais M, Diochot S, Baron A, Fajloun Z, Tricoire-Leignel H, Lenaers G, Mattei C. Neurotoxins Acting on TRPV1-Building a Molecular Template for the Study of Pain and Thermal Dysfunctions. Toxins (Basel) 2025; 17:64. [PMID: 39998081 PMCID: PMC11861614 DOI: 10.3390/toxins17020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are ubiquitous proteins involved in a wide range of physiological functions. Some of them are expressed in nociceptors and play a major role in the transduction of painful stimuli of mechanical, thermal, or chemical origin. They have been described in both human and rodent systems. Among them, TRPV1 is a polymodal channel permeable to cations, with a highly conserved sequence throughout species and a homotetrameric structure. It is sensitive to temperature above 43 °C and to pH below 6 and involved in various functions such as thermoregulation, metabolism, and inflammatory pain. Several TRPV1 mutations have been associated with human channelopathies related to pain sensitivity or thermoregulation. TRPV1 is expressed in a large part of the peripheral and central nervous system, most notably in sensory C and Aδ fibers innervating the skin and internal organs. In this review, we discuss how the transduction of nociceptive messages is activated or impaired by natural compounds and peptides targeting TRPV1. From a pharmacological point of view, capsaicin-the spicy ingredient of chilli pepper-was the first agonist described to activate TRPV1, followed by numerous other natural molecules such as neurotoxins present in plants, microorganisms, and venomous animals. Paralleling their adaptive protective benefit and allowing venomous species to cause acute pain to repel or neutralize opponents, these toxins are very useful for characterizing sensory functions. They also provide crucial tools for understanding TRPV1 functions from a structural and pharmacological point of view as this channel has emerged as a potential therapeutic target in pain management. Therefore, the pharmacological characterization of TRPV1 using natural toxins is of key importance in the field of pain physiology and thermal regulation.
Collapse
Affiliation(s)
- Florian Beignon
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Margaux Notais
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Sylvie Diochot
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Anne Baron
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Guy Lenaers
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
- Service de Neurologie, CHU d’Angers, F-49000 Angers, France
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| |
Collapse
|
2
|
Lu HJ, Wu XB, Wei QQ. Ion channels in cancer-induced bone pain: from molecular mechanisms to clinical applications. Front Mol Neurosci 2023; 16:1239599. [PMID: 37664239 PMCID: PMC10469682 DOI: 10.3389/fnmol.2023.1239599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
3
|
Roa-Coria JE, Pineda-Farias JB, Barragán-Iglesias P, Quiñonez-Bastidas GN, Zúñiga-Romero Á, Huerta-Cruz JC, Reyes-García JG, Flores-Murrieta FJ, Granados-Soto V, Rocha-González HI. Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats. BMC Neurosci 2019; 20:1. [PMID: 30602386 PMCID: PMC6317195 DOI: 10.1186/s12868-018-0483-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. RESULTS Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3-100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3-3 µg/paw), HC-030031 (100-316 µg/paw) and SKF-96365 (10-30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3-30 µg/paw), HC-030031 (100-1000 µg/paw) and SKF-96365 (10-100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-β-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. CONCLUSIONS Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- José Eduardo Roa-Coria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 Ciudad de México, Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 Ciudad de México, Mexico
| | - Geovanna Nallely Quiñonez-Bastidas
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Ángel Zúñiga-Romero
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Secretaría de Salud, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, 14080 Ciudad de México, Mexico
| | - Juan Gerardo Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Francisco Javier Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Secretaría de Salud, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, 14080 Ciudad de México, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 Ciudad de México, Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| |
Collapse
|
4
|
Srebro D, Vučković S, Prostran M. Participation of peripheral TRPV1, TRPV4, TRPA1 and ASIC in a magnesium sulfate-induced local pain model in rat. Neuroscience 2016; 339:1-11. [PMID: 27687800 DOI: 10.1016/j.neuroscience.2016.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
We previously showed that magnesium sulfate (MS) has systemic antinociceptive and local peripheral pronociceptive effects. The role of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in the mechanism of action of MS has not been investigated in detail. The aim of this study was to explore the participation of TRP channels in the pronociceptive action of MS in rats after its intraplantar injection. The paw withdrawal threshold (PWT) to mechanical stimuli was measured by the electronic von Frey test. Drugs that were tested were either co-administered with an isotonic pH-unadjusted or pH-adjusted solution of MS intraplantarily, or to the contralateral paw to exclude systemic effects. We found that the subcutaneous administration of both pH-adjusted (7.4) and pH-unadjusted (about 6.0) isotonic (6.2% w/v in water) solutions of MS induce the pain at the injection site. The pH-unadjusted MS solution-induced mechanical hyperalgesia decreased in a dose-dependent manner as a consequence of co-injection of capsazepine, a selective TRPV1 antagonist (20, 100 and 500pmol/paw), RN-1734, a selective TRPV4 antagonist (1.55, 3.1 and 6.2μmol/paw), HC-030031, a selective TRPA1 antagonist (5.6, 28.1 and 140nmol/paw), and amiloride hydrochloride, a non-selective ASIC inhibitor (0.83, 2.5 and 7.55μmol/paw). In pH-adjusted MS-induced hyperalgesia, the highest doses of TRPV1, TRPV4 and TRPA1 antagonists displayed effects that were, respectively, either similar, less pronounced or delayed in comparison to the effect induced by administration of the pH-unadjusted MS solution; the ASIC antagonist did not have any effect. These results suggest that the MS-induced local peripheral mechanical hyperalgesia is mediated via modulation of the activity of peripheral TRPV1, TRPV4, TRPA1 and ASICs. Specific local inhibition of TRP channels represents a novel approach to treating local injection-related pain.
Collapse
Affiliation(s)
- Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia.
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
5
|
Chibli LA, Rodrigues KCM, Gasparetto CM, Pinto NCC, Fabri RL, Scio E, Alves MS, Del-Vechio-Vieira G, Sousa OV. Anti-inflammatory effects of Bryophyllum pinnatum (Lam.) Oken ethanol extract in acute and chronic cutaneous inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:330-338. [PMID: 24727190 DOI: 10.1016/j.jep.2014.03.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bryophyllum pinnatum (Lam.) Oken (Crassulaceae), popularly known in Brazil as "folha-da-fortuna", is a plant species used in folk medicine for the external and internal treatment of inflammation, infection, wound, burn, boil, ulcers and gastritis, and several other diseases. The present study aimed to perform the chemical characterization and the evaluation of the topical anti-inflammatory effect of the ethanol extract of Bryophyllum pinnatum leaves (EEBP) in acute and chronic mice ear edema models induced by different irritant agents. MATERIALS AND METHODS The EEBP chemical characterization was performed by HPLC-UV DAD. Ear edema on Swiss mice was induced by the topical application of Croton oil (single and multiple applications), arachidonic acid, phenol, capsaicin and ethyl phenylpropiolate (EPP). The topical anti-inflammatory effect of EEBP was evaluated by measuring the ear weight (acute inflammation models) and thickness (chronic inflammation model). Histopathological analyses of ear tissue samples sensitized with Croton oil (single and multiple applications) were also performed. RESULTS The flavonoids rutin, quercetin, luteolin and luteolin7-O-β-d-glucoside were detected in EEBP. Topical application of EEBP significantly (P<0.001) inhibited the ear edema induced by Croton oil single application (inhibition of 57%), arachidonic acid (inhibition of 67%), phenol (inhibition of 80%), capsaicin (inhibition of 72%), EPP (inhibition of 75%) and Croton oil multiple application (55% after 9 days). Histopathological analyses confirmed the topical anti-inflammatory effect of EEBP since it was observed reduction of edema, epidermal hyperplasia, inflammatory cells infiltration and vasodilation. CONCLUSIONS The results suggest that EEBP is effective as a topical anti-inflammatory agent in acute and chronic inflammatory processes possibly due to inhibition of arachidonic acid pathway, which justify the traditional use of Bryophyllum pinnatum as a remedy for skin disorders.
Collapse
Affiliation(s)
- Lucas A Chibli
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Kamilla C M Rodrigues
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Carolina M Gasparetto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Nícolas C C Pinto
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Rodrigo L Fabri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Elita Scio
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Maria S Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Glauciemar Del-Vechio-Vieira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| | - Orlando V Sousa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, São Pedro, CEP 36036-330, Juiz de Fora, MG, Brazil.
| |
Collapse
|
6
|
TRP Channels Involved in Spontaneous L-Glutamate Release Enhancement in the Adult Rat Spinal Substantia Gelatinosa. Cells 2014; 3:331-62. [PMID: 24785347 PMCID: PMC4092856 DOI: 10.3390/cells3020331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
The spinal substantia gelatinosa (SG) plays a pivotal role in modulating nociceptive transmission through dorsal root ganglion (DRG) neurons from the periphery. TRP channels such as TRPV1 and TRPA1 channels expressed in the SG are involved in the regulation of the nociceptive transmission. On the other hand, the TRP channels located in the peripheral terminals of the DRG neurons are activated by nociceptive stimuli given to the periphery and also by plant-derived chemicals, which generates a membrane depolarization. The chemicals also activate the TRP channels in the SG. In this review, we introduce how synaptic transmissions in the SG neurons are affected by various plant-derived chemicals and suggest that the peripheral and central TRP channels may differ in property from each other.
Collapse
|
7
|
Zhi L, Dong L, Kong D, Sun B, Sun Q, Grundy D, Zhang G, Rong W. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil 2013; 25:e429-40. [PMID: 23638900 DOI: 10.1111/nmo.12145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/28/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND An antinociceptive effect has been reported for curcumin in animal models and in humans, but the molecular mechanisms of curcumin's effect remain undefined. In this study, we explored the possibility that curcumin inhibit visceral nociception via antagonizing the transient receptor potential vanilloid-1 (TRPV1) receptor. METHODS The effects of curcumin were explored using two experimental models: viscero-motor response (VMR) to colorectal distension (CRD) in rats and jejunal afferent firing in the ex vivo mouse jejunum preparations [TRPV1 knockout (KO) and wild-type mice, naive and trinitrobenzene sulfonic acid (TNBS)-treated Kunming mice]. In addition, capsaicin-induced calcium transients and whole-cell currents were examined in acutely dissociated dorsal root ganglia (DRG) neurons. KEY RESULTS In the anesthetized rat, curcumin (4 mg kg(-1) min(-1) for 3 min) caused a marked and rapidly reversible inhibition of CRD-induced VMRs. In the mouse jejunum, the mesenteric afferent nerve response to ramp distension was attenuated by curcumin (3, 10 μmol L(-1) ), an effect that was significantly reduced in TRPV1 KO mice compared with wild-type (WT) controls. Moreover, in WT mice, curcumin (1-30 μmol L(-1) ) was found to inhibit the afferent responses to capsaicin in a concentration-dependent manner. Trinitrobenzene sulfonic acid-induced hypersensitivity of jejunal afferents was also attenuated by curcumin. Curcumin potently inhibited capsaicin-induced rise in intracellular calcium and inward currents in mouse or rat DRG neurons. CONCLUSIONS & INFERENCES Our results provide strong evidence that curcumin inhibit visceral nociception via antagonizing TRPV1 and may be a promising lead for the treatment of functional gastrointestinal diseases.
Collapse
Affiliation(s)
- L Zhi
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakagawa H, Hiura A. Comparison of the transport of QX-314 through TRPA1, TRPM8, and TRPV1 channels. J Pain Res 2013; 6:223-30. [PMID: 23525210 PMCID: PMC3604974 DOI: 10.2147/jpr.s41614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background It has been demonstrated that N-ethyl-lidocaine (QX-314) can target the transient receptor protein vanilloid 1 (TRPV1) nociceptors when coadministered with capsaicin, resulting in a selective block of the nociceptors. Capsaicin is problematic in therapeutic use because it induces firing of nociceptors. The present study aimed to search for substitutes for capsaicin. We also examined the transportability of QX-314 into nociceptive neurons, through the pores of transient receptor potential ankyrin 1 (TRPA1), transient receptor potential melastatin-8 (TRPM8), and TRPV1. Methods To investigate the effect on TRPA1, injections of a vehicle, allyl isothiocyanate (AITC), QX-314, or AITC/QX-314 were made into the hind paws of rats. The effects of menthol and capsaicin on the opening of TRPM8 and TRPV1 were also examined and compared with the potency of QX-314. To examine inhibition of the antinociceptive effect by capsaicin/ QX-314, capsazepine (50 μg/mL; 10 μL) was injected 30 minutes prior to capsaicin/QX-314 (10 μL) injection. Thermal sensitivity was investigated by the Hargreaves method. 5(6)-carboxyfluorescein (FAM)-conjugated QX-314 was used as a tracer to examine how many and which kind of dorsal root ganglia accumulate this molecule. QX-314-FAM, capsaicin/QX-314-FAM, AITC/QX-314-FAM, and menthol/QX-314-FAM were injected into the paw. Two weeks after injections, dorsal root ganglia were removed and sectioned with a cryostat. Results The capsaicin/QX-314 group induced longer withdrawal-response latency at 60 to 300 minutes after injection than the control. Both menthol only and menthol/QX-314 injections showed analgesia 10 to 60 minutes after injection. No significant difference was seen between the capsazepine/capsaicin/QX-314 group and the vehicle group. The fluorescence in small- and medium-sized neurons was conspicuous in only the dorsal root ganglia injected with capsaicin/ QX-314-FAM. Conclusion These results indicate that TRPA1 and TRPM8 are ineffective in the transport of QX-314 compared with TRPV1.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Dentistry for Persons with Disability, Tokushima University Hospital, Tokushima, Japan
| | | |
Collapse
|
9
|
Vay L, Gu C, McNaughton PA. The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol 2012; 165:787-801. [PMID: 21797839 PMCID: PMC3312478 DOI: 10.1111/j.1476-5381.2011.01601.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 04/13/2011] [Accepted: 05/01/2011] [Indexed: 01/09/2023] Open
Abstract
The thermo-transient receptor potentials (TRPs), a recently discovered family of ion channels activated by temperature, are expressed in primary sensory nerve terminals where they provide information about thermal changes in the environment. Six thermo-TRPs have been characterised to date: TRP vanilloid (TRPV) 1 and 2 are activated by painful levels of heat, TRPV3 and 4 respond to non-painful warmth, TRP melastatin 8 is activated by non-painful cool temperatures, while TRP ankyrin (TRPA) 1 is activated by painful cold. The thermal thresholds of many thermo-TRPs are known to be modulated by extracellular mediators, released by tissue damage or inflammation, such as bradykinin, PG and growth factors. There have been intensive efforts recently to develop antagonists of thermo-TRP channels, particularly of the noxious thermal sensors TRPV1 and TRPA1. Blockers of these channels are likely to have therapeutic uses as novel analgesics, but may also cause unacceptable side effects. Controlling the modulation of thermo-TRPs by inflammatory mediators may be a useful alternative strategy in developing novel analgesics.
Collapse
Affiliation(s)
- Laura Vay
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
10
|
Idris AI, Landao-Bassonga E, Ralston SH. The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 2010; 46:1089-99. [PMID: 20096813 DOI: 10.1016/j.bone.2010.01.368] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 12/31/2022]
Abstract
The vanilloid type 1 ion channel (TRPV1) is known to play an important role in the regulation of pain and inflammation. Pharmacological ligands of TRPV1 regulate human osteoclast formation in vitro, but the effects of these agents on osteoblast function have not been studied and their effects on bone loss in vivo are unknown. Here we examined the effects of the TRPV1 ion channel antagonist capsazepine on mouse osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Capsazepine inhibited osteoclast formation and bone resorption in a dose dependent manner in bone marrow-osteoblast co-cultures and RANKL generated osteoclast cultures, whereas the TRPV1 agonist capsaicin enhanced RANKL and M-CSF stimulated osteoclast formation. Capsazepine also suppressed RANKL induced IkappaB and ERK1/2 phosphorylation and caused apoptosis of mature osteoclasts and also inhibited alkaline phosphatase activity and bone nodule formation in calvarial osteoblast cultures. Studies in vivo showed that capsazepine (1mg/kg/day) inhibited ovariectomy induced bone loss in mice and histomorphometric analysis showed inhibitory effects on indices of bone resorption and bone formation. We conclude that pharmacological blockade of TRPV1 ion channels by capsazepine inhibits osteoclastic bone resorption and protects against ovariectomy induced bone loss in mice, but also inhibits osteoblast activity and bone formation.
Collapse
Affiliation(s)
- Aymen I Idris
- Bone Research Group, Institute of Genetic and Molecular Medicine, Molecular Medicine Centre, University of Edinburgh, General Western Hospital, Edinburgh, EH4 2XU, UK.
| | | | | |
Collapse
|
11
|
Schumacher MA. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 2010; 10:185-200. [PMID: 20230457 DOI: 10.1111/j.1533-2500.2010.00358.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (transient receptor potential cation channel, subfamily V, member 1 [TRPV1]), the search for "new" analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this "paradoxical" action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion, and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation, including bradykinin, H+, adenosine triphosphate, fatty acid derivatives, nerve growth factor, and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 has been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin, another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally administered high-affinity TRPV1 antagonists holds promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRP cation channel, subfamily A, member 1, additional opportunities are emerging in the development of safe and effective analgesics.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0427, USA.
| |
Collapse
|
12
|
Kanai Y, Hara T, Imai A. Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin. J Pharm Pharmacol 2010; 58:489-93. [PMID: 16597366 DOI: 10.1211/jpp.58.4.0008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The involvement of spinal transient receptor potential vanilloid 1 (TRPV1) in formalin-evoked pain has remained unclear, because investigation of this kind of pain with selective antagonists has not been conducted. The purpose of this study is to investigate the participation of spinal TRPV1 in formalin-evoked pain with iodo-resiniferatoxin (I-RTX), a potent TRPV1-selective antagonist. I-RTX given intrathecally dose-dependently and significantly decreased the number of flinching responses in the formalin-evoked 1st and 2nd phase with ID50 values (drug dose producing 50% inhibition of response) of 1.0 and 3.8 μg, respectively, and concentration-dependently suppressed capsaicin-evoked calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) release from rat spinal cord slices with an IC50 value (drug concentration producing 50% inhibition of response) of 86 nm. Capsazepine, a classical non-selective TRPV1 antagonist, given intrathecally also inhibited formalin-evoked flinching in both the 1st and 2nd phase with ID50s of 420 and 200 μg, respectively, and CGRP-LI release from rat spinal cord slices with an IC50 of 7.8 μm. Ratios of in-vivo analgesic potencies of I-RTX and capsazepine well reflected their intrinsic in-vitro activity. These findings suggest that spinal TRPV1 participates in the transduction system of formalin-evoked pain.
Collapse
Affiliation(s)
- Yoshihito Kanai
- Discovery Biology Research, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Inc., 5-2 Taketoyo, Aichi, 470-2393, Japan.
| | | | | |
Collapse
|
13
|
Costa B, Bettoni I, Petrosino S, Comelli F, Giagnoni G, Di Marzo V. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol Res 2010; 61:537-46. [PMID: 20138997 DOI: 10.1016/j.phrs.2010.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/18/2010] [Accepted: 02/01/2010] [Indexed: 01/08/2023]
Abstract
Given that the pharmacological or genetic inactivation of fatty acid amide hydrolase (FAAH) counteracts pain and inflammation, and on the basis of the established involvement of transient receptor potential vanilloid type-1 (TRPV1) channels in inflammatory pain, we tested the capability of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT), to relieve oedema and pain in a model of acute inflammation, and compared its efficacy with that of a single FAAH inhibitor (URB597) or TRPV1 antagonist (capsazepine). Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice and the anti-inflammatory and anti-nociceptive actions of AA-5-HT were assessed at different doses, time points and treatment schedule. In addition, endocannabinoid levels were measured in paw skin and spinal cord. Systemic administration of AA-5-HT elicited dose-dependent anti-oedemigen and anti-nociceptive effects, whereas it was devoid of efficacy when given locally. When tested in a therapeutic regimen, the compound retained comparable anti-inflammatory effects. TRPV1 receptor mediated the anti-inflammatory property of AA-5-HT, whereas both CB(1) and TRPV1 receptors were involved in its anti-hyperalgesic activity. These effects were accompanied by an increase of the levels of the endocannabinoid anandamide (AEA) in both inflamed paw and spinal cord. AA-5-HT was more potent than capsazepine as anti-oedemigen and anti-hyperalgesic drug, whereas it shows an anti-oedemigen property similar to URB597, which was, however, devoid of the anti-nociceptive effect. AA-5-HT did not induce unwanted effects on locomotion and body temperature. In conclusion AA-5-HT has both anti-inflammatory and anti-hyperalgesic properties and its employment offers advantages, in terms of efficacy and lack of adverse effects, deriving from its dual activity.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Yoo S, Han S, Park YS, Lee JH, Oh U, Hwang SW. Lipoxygenase inhibitors suppressed carrageenan-induced Fos-expression and inflammatory pain responses in the rat. Mol Cells 2009; 27:417-22. [PMID: 19390822 DOI: 10.1007/s10059-009-0059-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/14/2009] [Accepted: 03/04/2009] [Indexed: 10/20/2022] Open
Abstract
Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreatment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, indicating that the LO pathway is a possible target for modulating inflammatory pain.
Collapse
Affiliation(s)
- Sungjae Yoo
- Korea University Graduate School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Cortright DN, Szallasi A. The Role of the Vanilloid and Related Receptors in Nociceptor Function and Neuroimmune Regulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1567-7443(08)10405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Pethő G, Reeh PW. Effects of Bradykinin on Nociceptors. NEUROGENIC INFLAMMATION IN HEALTH AND DISEASE 2009. [DOI: 10.1016/s1567-7443(08)10407-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Honda K, Kitagawa J, Sessle BJ, Kondo M, Tsuboi Y, Yonehara Y, Iwata K. Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment. Mol Pain 2008; 4:59. [PMID: 19019214 PMCID: PMC2661045 DOI: 10.1186/1744-8069-4-59] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats. RESULTS Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t.) injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI) cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats. CONCLUSION The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.
Collapse
Affiliation(s)
- Kuniya Honda
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Brown BS, Keddy R, Zheng GZ, Schmidt RG, Koenig JR, McDonald HA, Bianchi BR, Honore P, Jarvis MF, Surowy CS, Polakowski JS, Marsh KC, Faltynek CR, Lee CH. Tetrahydropyridine-4-carboxamides as novel, potent transient receptor potential vanilloid 1 (TRPV1) antagonists. Bioorg Med Chem 2008; 16:8516-25. [DOI: 10.1016/j.bmc.2008.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
19
|
Gharat L, Szallasi A. Medicinal chemistry of the vanilloid (Capsaicin) TRPV1 receptor: current knowledge and future perspectives. Drug Dev Res 2008. [DOI: 10.1002/ddr.20218] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Lin Q, Li D, Xu X, Zou X, Fang L. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin. Mol Pain 2007; 3:30. [PMID: 17961222 PMCID: PMC2174436 DOI: 10.1186/1744-8069-3-30] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 10/25/2007] [Indexed: 05/25/2023] Open
Abstract
Background Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors initiates neurogenic inflammation via triggering DRRs. Results Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1 receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger reduction in the capsaicin-initiated inflammation was produced. Conclusion Our data suggest that 1) the generation of DRRs is critical for driving the release of neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV1 receptors in primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released CGRP and SP participate in neurogenic inflammation.
Collapse
Affiliation(s)
- Qing Lin
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.
| | | | | | | | | |
Collapse
|
21
|
Urtado MB, Gameiro GH, Tambeli CH, Fischer L, Urtado CB, de Arruda Veiga MCF. Involvement of peripheral TRPV1 in TMJ hyperalgesia induced by ethanol withdrawal. Life Sci 2007; 81:1622-6. [PMID: 17977563 DOI: 10.1016/j.lfs.2007.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/25/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Ethanol withdrawal increases nociception after the injection of formalin into the rat's temporomandibular joint (TMJ). Little is known about the neurological basis for hyperalgesia induced by ethanol withdrawal, but it has been reported that ethanol can potentiate the response of transient receptor potential vanilloid receptor-1 (TRPV1) in superficial tissues. The present study was designed to test the hypothesis that peripheral TRPV1 could be involved on nociceptive behavioral responses induced by the injection of formalin into the TMJ region of rats exposed to chronic ethanol administration and ethanol withdrawal. Behavioral hyperalgesia was verified 12 h after ethanol withdrawal in rats that drank an ethanol solution (6.5%) for 10 days. In another group submitted to the same ethanol regimen, the selective vanilloid receptor antagonist capsazepine (300, 600 or 1200 microg/25 microl) or an equal volume of vehicle were injected into the TMJ regions 30 min before the TMJ formalin test. The local injections of capsazepine reduced the increased nociceptive responses induced by ethanol withdrawal. The effect of capsazepine on rats that did not drink ethanol was not significant. These results indicate that the peripheral TRPV1 can contribute to the hyperalgesia induced by ethanol withdrawal on deep pain conditions.
Collapse
Affiliation(s)
- Marília Bertoldo Urtado
- Laboratory of Orofacial Pain, Division of Oral Physiology, Piracicaba Dental School, University of Campinas-Unicamp, Av. Limeira 901 C.P. 52, CEP 13414-900, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Pei L, Lin CY, Dai JP, Yin GF. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull 2007; 23:92-100. [PMID: 17592531 PMCID: PMC5550592 DOI: 10.1007/s12264-007-0013-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To investigate the involvement of transient receptor potential vanilloid receptor 1 (TRPV1) in the facial inflammatory pain in relation to thermal hyperalgesia and cold pain sensation. METHODS Facial inflammatory pain model was developed by subcutaneous injection of turpentine oil (TO) into rat facial area. Head withdrawal thermal latency (HWTL) and head withdrawal cold latency (HWCL) were measured once a day for 21 d after TO treatment using thermal and cold measurement apparatus. The immunohistochemical staining, cell-size frequency analysis and the survey of average optical density (OD) value were used to observe the changes of TRPV1 expression in the neurons of the trigeminal ganglion (TG), peripheral nerve fibers in the vibrissal pad, and central projection processes in the trigeminal sensory nuclei caudalis (Vc) on day 3, 5, 7, 14, and 21 after TO injection. RESULTS HWTL and HWCL decreased significantly from day 1 to day 14 after TO injection with the lowest value on day 5 and day 3, respectively, and both recovered on day 21. The number of TRPV1-labeled neurons increased remarkably from day 1 to day 14 with a peak on day 7, and returned back to the normal level on day 21. In control rats, only small and medium-sized TG neurons were immunoreactive (IR) to TRPV1, and the TRPV1-IR terminals were abundant in both the vibrissal pad and the Vc. Within 2 weeks of inflammation, the expression of TRPV1 in small and medium-sized TG neurons increased obviously. Also the TRPV1 stained terminals and fibers appeared more frequent and denser in both the vibrissal pad skin and throughout laminae I and the outer zone of laminae II (IIo) of Vc. CONCLUSION Facial inflammatory pain could induce hyperalgesia to noxious heat and cold stimuli, and result in increase of the numbers of TRPV1 positive TG neurons and the peripheral and central terminals of TG. These results suggest that the phenotypic changes of TRPV1 expression in small and medium-sized TG neurons and terminals might play an important role in the development and maintenance of TO-induced inflammatory thermal hyperalgesia and cold pain sensation.
Collapse
Affiliation(s)
- Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chuan-You Lin
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia-Pei Dai
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Guang-Fu Yin
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
23
|
Martelli L, Ragazzi E, di Mario F, Martelli M, Castagliuolo I, Dal Maschio M, Palù G, Maschietto M, Scorzeto M, Vassanelli S, Brun P. A potential role for the vanilloid receptor TRPV1 in the therapeutic effect of curcumin in dinitrobenzene sulphonic acid-induced colitis in mice. Neurogastroenterol Motil 2007; 19:668-74. [PMID: 17640182 DOI: 10.1111/j.1365-2982.2007.00928.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A protective role of the transient potential vanilloid receptor 1 (TRPV1) in intestinal inflammation induced by dinitrobenzene sulphonic acid (DNBS) has been recently demonstrated. Curcumin, the major active component of turmeric, is also able to prevent and ameliorate the severity of the damage in DNBS-induced colitis. We evaluated the possibility that curcumin (45 mg kg(-1) day p.o. for 2 days before and 5 days after the induction of colitis) was able to reduce DNBS-induced colitis in mice, by acting as a TRPV1 agonist. Macroscopic damage score, histological damage score and colonic myeloperoxidase (MPO) activity were significantly lower (by 71%, 65% and 73%, respectively; P < 0.01), in animals treated with curcumin compared with untreated animals. Capsazepine (30 mg kg(-1), i.p.), a TRPV1 receptor antagonist, completely abolished the protective effects of curcumin. To extend these data in vitro, Xenopus oocytes expressing rat TRPV1 were examined. Capsaicin-evoked currents (3.3 micromol L(-1)) disappeared subsequent either to removal of the agonist or subsequent to the addition of capsazepine. However, curcumin (30 micromol L(-1)) was ineffective both as regard direct modification of cell membrane currents and as regard interference with capsaicin-mediated effects. As sensitization of the TRPV1 receptor by mediators of inflammation in damaged tissues has been shown previously, our results suggest that in inflamed, but not in normal tissue, curcumin can interact with the TRPV1 receptor to mediate its protective action in DNBS-induced colitis.
Collapse
Affiliation(s)
- L Martelli
- Department of Pharmacology and Anaesthesiology, Universitá di Padova, 2 Largo Menenghetti, I-35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kanai Y, Hara T, Imai A, Sakakibara A. Differential involvement of TRPV1 receptors at the central and peripheral nerves in CFA-induced mechanical and thermal hyperalgesia. J Pharm Pharmacol 2007; 59:733-8. [PMID: 17524240 DOI: 10.1211/jpp.59.5.0015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) antagonists are known to attenuate two typical symptoms of inflammatory hyperalgesia: thermal and mechanical. However, it is not clear whether the sites of participation of TRPV1 for each symptom are different. In this study, we clarified the difference between the site of TRPV1 involvement in both symptoms by analysing the anti-hyperalgesic activity of two kinds of TRPV1 antagonists given locally (i.e. intraplantarly and intrathecally) in rats with CFA (complete Freund's adjuvant)-induced inflammation. TRPV1 antagonists BCTC (N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide, 1-300 microg) and SB-366791 (N-(3-methoxyphenyl)-4-chlorocinnamide, 30-300 microg) administered intraplantarly in a dose-dependent manner inhibited CFA-induced thermal hyperalgesia. In addition, CFA-induced thermal hyperalgesia was significantly reversed by intrathecal administration of 1-100 microg of BCTC and SB-366791. While intraplantar BCTC (1-300 microg) and SB-366791 (30-300 microg) did not reverse CFA-induced mechanical hyperalgesia, 1-100 microg of intrathecally administered BCTC and SB-366791 dose-dependently reduced mechanical hyperalgesia. Regression analysis showed that a correlation exists between the inhibitory effects on thermal hyperalgesia and mechanical hyperalgesia after intrathecal administration (correlation factor = 0.6521), but not after intraplantar administration (correlation factor = 0.0215). These data suggest that TRPV1 in the peripheral endings of the primary afferents plays a key role in thermal hyperalgesia, but it makes only a minor contribution in CFA-induced mechanical hyperalgesia. Furthermore, it is suggested that the spinal TRPV1 is critical in the development of both types of hyperalgesia.
Collapse
Affiliation(s)
- Yoshihito Kanai
- Discovery Biology Research, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Inc., 5-2 Taketoyo, Aichi, 470-2393, Japan.
| | | | | | | |
Collapse
|
25
|
Borsani E, Labanca M, Bianchi R, Rodella LF. AM404 decreases Fos-immunoreactivity in the spinal cord in a model of inflammatory pain. Brain Res 2007; 1152:87-94. [PMID: 17459353 DOI: 10.1016/j.brainres.2007.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Cannabinoids, such as anandamide, are involved in pain transmission. We evaluated the effects of AM404 (N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide), an anandamide reuptake inhibitor, monitoring the expression of c-fos, a marker of activated neurons and the pain-related behaviours using formalin test. The study was carried out in an experimental model of inflammatory pain made by a single injection of formalin in rat hind paws. Formalin test showed that the antinociceptive effect of AM404 was evident in phase I. We found that Fos-positive neurons in dorsal superficial and deep laminae of the lumbar spinal cord increased in formalin-injected animals and that AM404 significantly reduced Fos induction. Co-administration of cannabinoid CB(1) receptor antagonist (AM251), cannabinoid CB(2) receptor antagonist (AM630) and transient receptor potential vanilloid type 1 (TRPV-1) antagonist (capsazepine), attenuate the inhibitory effect of AM404 and this effect was higher using cannabinoid CB(2) and vanilloid TRPV-1 receptor antagonists. These results suggest that AM404 could be a useful drug to reduce inflammatory pain in our experimental model and that cannabinoid CB(2) receptor and vanilloid TRPV-1 receptor, and to a lesser extent, the cannabinoid CB(1) receptor are involved.
Collapse
Affiliation(s)
- Elisa Borsani
- Department of Biomedical Sciences and Biotechnologies, Division of Human Anatomy, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | |
Collapse
|
26
|
Cortright DN, Krause JE, Broom DC. TRP channels and pain. Biochim Biophys Acta Mol Basis Dis 2007; 1772:978-88. [PMID: 17467247 DOI: 10.1016/j.bbadis.2007.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 11/20/2022]
Abstract
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.
Collapse
|
27
|
Liddle RA. The role of Transient Receptor Potential Vanilloid 1 (TRPV1) channels in pancreatitis. Biochim Biophys Acta Mol Basis Dis 2007; 1772:869-78. [PMID: 17428642 PMCID: PMC1995747 DOI: 10.1016/j.bbadis.2007.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 01/14/2023]
Abstract
Premature activation of digestive enzymes within the pancreas which leads to autodigestion of the gland is an early step in the pathogenesis of pancreatitis. Pancreatic injury is followed by other manifestations of inflammation including plasma extravasation, edema, and neutrophil infiltration which constitute the features of pancreatitis. Recent studies indicate that neural innervation of the pancreas may play an important role in the initiation and maintenance of the inflammatory response to injury. The pancreas is innervated by vagal, sympathetic and parasympathetic neurons, as well as sensory neurons. Activation of pancreatic primary sensory neurons causes the release of inflammatory neuropeptides both in the spinal cord to signal pain and in the pancreas itself where they produce plasma extravasation and neutrophil infiltration. Recent studies indicate that primary sensory neurons of the pancreas express transient receptor potential V1 (TRPV1) channels whose activation induces pancreatic inflammation. Moreover, blockade of these TRP channels significantly ameliorates experimental pancreatitis. This review describes our current understanding of the role of TRPV1 channels in pancreatitis and illustrates how this mechanism might be used to direct future treatments of pancreatic diseases.
Collapse
Affiliation(s)
- Rodger A Liddle
- Department of Medicine, Box 3913, Duke University and Durham VA Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Gao ZG, Lee MK, Oh U, Suh YG, Kim CK. DETERMINATION OF CAPSAZEPINE IN RAT PLASMA BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100100458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zhong -Gao Gao
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
| | - Mi -Kyung Lee
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
| | - Uhtaek Oh
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
- b Sensory Research Group (CRI), College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
| | - Young -Ger Suh
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
| | - Chong -Kook Kim
- c Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , San 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
| |
Collapse
|
29
|
Chen HS, He X, Wang Y, Wen WW, You HJ, Arendt-Nielsen L. Roles of capsaicin-sensitive primary afferents in differential rat models of inflammatory pain: a systematic comparative study in conscious rats. Exp Neurol 2006; 204:244-51. [PMID: 17188267 DOI: 10.1016/j.expneurol.2006.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/26/2006] [Accepted: 10/31/2006] [Indexed: 11/20/2022]
Abstract
To characterize the role of capsaicin-sensitive primary afferents in inflammatory pain, the effects of subcutaneous (s.c.) injection of 0.15% capsaicin on different chemical irritants-induced pathological nociception including persistent spontaneous nociception, primary thermal and mechanical hyperalgesia, and inflammatory response were systematically investigated in unanesthetized conscious rats. Four different animal models of inflammatory pain: the bee venom (BV) test, the formalin test, the carrageenan model, and the complete Freund's adjuvant (CFA) model, were employed and compared. Local pre-treatment with capsaicin produced a significant inhibition on the s.c. BV and formalin induced long-lasting persistent spontaneous nociception. However, this capsaicin-induced inhibitory effect on spontaneous nociception in the BV test was only found within the late phase (tonic nociception; 11-60 min), but not the early phase (acute nociception; 0-10 min). A complete preventing effect of capsaicin on the decreased thermal paw withdrawal latency was found in the BV, carrageenan, and CFA models. Nevertheless, pre-treatment with capsaicin only produced complete blocking effects on the decreased mechanical paw withdrawal threshold in the BV and carrageenan models, but not in the CFA model. For inflammatory response, a significant inhibition of the BV-elicited paw swelling was found following capsaicin treatment. In marked contrast, capsaicin did not produce any effects on the paw inflammation during exposure to carrageenan, CFA, and formalin. These data suggest that capsaicin-sensitive primary afferents may play differential roles in the induction and development of pathological nociception in differential inflammatory pain models. In contrast to other chemical irritants, BV-induced long-term spontaneous nociception, facilitated nociceptive behavior, and inflammation are modulated by peripheral capsaicin-sensitive afferents.
Collapse
Affiliation(s)
- Hui-Sheng Chen
- Department of Neurology, General Hospital of Shen-Yang Military Region, Shen Yang 110016, PR China.
| | | | | | | | | | | |
Collapse
|
30
|
Guindon J, LoVerme J, De Léan A, Piomelli D, Beaulieu P. Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: a role for endogenous fatty-acid ethanolamides? Eur J Pharmacol 2006; 550:68-77. [PMID: 17027744 DOI: 10.1016/j.ejphar.2006.08.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 11/17/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit fatty-acid amide hydrolase (FAAH), the enzyme responsible for the metabolism of anandamide, an endocannabinoid. It has been suggested that the mechanisms of action of NSAIDs could be due to inhibition of cyclooxygenase (COX) and also to an increase in endocannabinoid concentrations. In a previous study we have demonstrated that the local analgesic interaction between anandamide and ibuprofen (a non-specific COX inhibitor) was synergistic for the acute and inflammatory phases of the formalin test. To test this hypothesis further, we repeated similar experiments with rofecoxib (a selective COX-2 inhibitor) and also measured the local concentrations of anandamide, and of two fatty-acid amides, oleoylethanolamide and palmitoylethanolamide. We established the ED(50) for anandamide (34.52 pmol+/-17.26) and rofecoxib (381.72 pmol+/-190.86) and showed that the analgesic effect of the combination was synergistic. We also found that paw tissue levels of anandamide, oleoylethanolamide and palmitoylethanolamide were significantly higher when anandamide was combined with NSAIDs and that this effect was greater with rofecoxib. In conclusion, local injection of anandamide or rofecoxib was antinociceptive in a test of acute and inflammatory pain and the combination of anandamide with rofecoxib was synergistic. Finally, locally injected anandamide with either NSAID (ibuprofen or rofecoxib) generates higher amount of fatty-acid ethanolamides. The exact comprehension of the mechanisms involved needs further investigation.
Collapse
Affiliation(s)
- Josée Guindon
- Department of Pharmacology, Faculty of Medicine, Université de Montréal - C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada H2W 1T8
| | | | | | | | | |
Collapse
|
31
|
Wick EC, Hoge SG, Grahn SW, Kim E, Divino LA, Grady EF, Bunnett NW, Kirkwood KS. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G959-69. [PMID: 16399878 DOI: 10.1152/ajpgi.00154.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.
Collapse
Affiliation(s)
- Elizabeth C Wick
- Departments of Surgery and Physiology, Univ. of California-San Francisco, 521 Parnassus Avenue, Rm C341, San Francisco, CA 94143-0790, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bianchi BR, Lee CH, Jarvis MF, El Kouhen R, Moreland RB, Faltynek CR, Puttfarcken PS. Modulation of human TRPV1 receptor activity by extracellular protons and host cell expression system. Eur J Pharmacol 2006; 537:20-30. [PMID: 16630609 DOI: 10.1016/j.ejphar.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/28/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a ligand-gated cation channel that can be activated by capsaicin, heat, protons and cytosolic lipids. We compared activation of recombinant human TRPV1 receptors stably expressed in human 293 cells, derived from kidney embryonic cells, and in human 1321N1 cells, derived from brain astrocytes. Cellular influx of calcium was measured in response to acid, endovanilloids (N-arachidonoyl-dopamine, N-oleoyl-dopamine and anandamide), capsaicin and other traditional vanilloid agonists under normal (pH 7.4) and acidic (pH 6.7 and 6.0) assay conditions. The host cell expression system altered the agonist profile of endogenous TRPV1 receptor agonists without affecting the pharmacological profile of either exogenous TRPV1 receptor agonists or antagonists. Our data signify that the host cell expression system plays a modulatory role in TRPV1 receptor activity, and suggests that activation of native human TRPV1 receptors in vivo will be dependent on cell-specific regulatory factors/pathways.
Collapse
Affiliation(s)
- Bruce R Bianchi
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim S, Kang C, Shin CY, Hwang SW, Yang YD, Shim WS, Park MY, Kim E, Kim M, Kim BM, Cho H, Shin Y, Oh U. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1. J Neurosci 2006; 26:2403-12. [PMID: 16510717 PMCID: PMC6793661 DOI: 10.1523/jneurosci.4691-05.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.
Collapse
MESH Headings
- Acids/pharmacology
- Adaptor Proteins, Signal Transducing/metabolism
- Analysis of Variance
- Animals
- Animals, Newborn
- Apoptosis Regulatory Proteins
- Biotinylation/methods
- Blotting, Western/methods
- Blotting, Western/statistics & numerical data
- Capsaicin/pharmacology
- Cells, Cultured
- Cloning, Molecular/methods
- Dose-Response Relationship, Drug
- Electric Stimulation/methods
- Ganglia, Spinal/cytology
- Gene Expression Regulation/drug effects
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Membrane Potentials/drug effects
- Membrane Potentials/radiation effects
- Mutation
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Patch-Clamp Techniques/methods
- Protein Structure, Tertiary/physiology
- RNA, Small Interfering/pharmacology
- Radioligand Assay/methods
- Rats
- Reverse Transcriptase Polymerase Chain Reaction/methods
- TRPV Cation Channels/physiology
- Temperature
- Transfection/methods
- Ubiquitin/metabolism
Collapse
|
34
|
Mattos WM, Ferreira J, Richetti GP, Niero R, Yunes RA, Calixto JB. Antinociceptive properties produced by the pregnane compound velutinol A isolated from Mandevilla velutina. Neuropeptides 2006; 40:125-32. [PMID: 16494941 DOI: 10.1016/j.npep.2005.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/22/2005] [Accepted: 12/28/2005] [Indexed: 11/22/2022]
Abstract
Velutinol A is a pregnane compound isolated from the rhizomes of the Brazilian plant Mandevilla velutina that interferes with kinin actions and possesses anti-inflammatory action. Here, we investigate the effect produced by velutinol A in different models of inflammatory nociception. The nociceptive effect caused by the intraplantar injection of phorbol myristate acetate (PMA, 50 pmol/paw) in mice was practically abolished by coadministration of velutinol A (1-10 nmol/paw). In contrast, the coadministration of velutinol A (10 nmol/paw) failed to affect the nociceptive response elicited by either bradykinin (BK, 10 nmol/paw) or prostaglandin E(2) (PGE(2), 10 nmol/paw). Of note, velutinol A (10 nmol/paw) partially inhibited the nociceptive response caused by capsaicin (1 nmol/paw). However, velutinol A (10 microM) did not significantly interfere with the specific binding sites of [(3)H]resiniferatoxin or [(3)H]BK in vitro. Our data also suggest that these effects are related with its ability to interact with kinin B(1) receptor-mediated mechanisms, as the cotreatment of mice with velutinol A (10 nmol/paw) consistently blocked the nociceptive response induced by the selective B(1) receptor agonist des-Arg(9)-BK. Finally, the persistent hyperalgesia produced by intraplantar injection of carrageenan (300 microg/paw) was completely reversed by the coadministration of velutinol A (10 nmol/paw). Collectively, the present results show that the pregnane compound velutinol A produces peripheral antinociceptive action in some models of acute and persistent inflammatory pain by interacting with kinin B(1)-receptor mediated effects. Thus, velutinol A or its derivatives could constitute an attractive molecule of interest for the development of new analgesic drugs. Additional studies are now in progress in order to further explore its precise mechanism of action on B(1) receptor pathways.
Collapse
Affiliation(s)
- Wilian M Mattos
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Bloco D-CCB - Cx., Postal: 476, CEP: 88049-900 Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Huang SM, Walker JM. Enhancement of Spontaneous and Heat-Evoked Activity in Spinal Nociceptive Neurons by the Endovanilloid/Endocannabinoid N-Arachidonoyldopamine (NADA). J Neurophysiol 2006; 95:1207-12. [PMID: 16267120 DOI: 10.1152/jn.00395.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-arachidonoyldopamine (NADA) is an endogenous molecule found in the nervous system that is capable of acting as a vanilloid agonist via the TRPV1 receptor and as a cannabinoid agonist via the CB1 receptor. Using anesthetized rats, we investigated the neural correlates of behavioral thermal hyperalgesia produced by NADA. Extracellular single cell electrophysiology was conducted to assess the effects of peripheral administration of NADA (i.pl.) on nociceptive neurons in the dorsal horn of the spinal cord. Injection of NADA in the hindpaw caused increased spontaneous discharge of spinal nociceptive neurons compared with injection of vehicle. The neurons also displayed magnified responses to application of thermal stimuli ranging from 34 to 52°C. NADA-induced neural hypersensitivity was dose dependent (EC50 = 1.55 μg) and TRPV1 dependent, as the effect was abolished by co-administration of the TRPV1 antagonist 5′-iodoresiniferatoxin (I-RTX). In contrast, co-administration of the CB1 antagonist SR 141716A did not attenuate this effect. These results suggest that the enhanced responses of spinal nociceptive neurons likely underlie the behavioral thermal hyperalgesia and implicate a possible pain-sensitizing role of endogenous NADA mediated by TRPV1 in the periphery.
Collapse
Affiliation(s)
- Susan M Huang
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
36
|
Chen YN, Li KC, Li Z, Shang GW, Liu DN, Lu ZM, Zhang JW, Ji YH, Gao GD, Chen J. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience 2006; 138:631-40. [PMID: 16446039 DOI: 10.1016/j.neuroscience.2005.11.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022]
Abstract
To identify the active components of honeybee venom in production of inflammation and pain-related behaviors, five major peptidergic subfractions were separated, purified and identified from the whole honeybee venom. Among them, four active peptidergic components were characterized as apamin, mast-cell degranulating peptide (MCDP), phospholipase A(2) (PLA(2))-related peptide and melittin, respectively. All five subfractions were effective in production of local inflammatory responses (paw edema) in rats although the efficacies were different. Among the five identified subfractions, only MCDP, PLA(2)-related peptide and melittin were able to produce ongoing pain-related behaviors shown as paw flinches, while only apamin and melittin were potent to produce both thermal and mechanical hypersensitivity. As shown in our previous report, melittin was the most potent polypeptide in production of local inflammation as well as ongoing pain and hypersensitivity. To further explore the peripheral mechanisms underlying melittin-induced nociception and hypersensitivity, a single dose of capsazepine, a blocker of thermal nociceptor transient receptor potential vanilloid receptor 1, was treated s.c. prior to or after melittin administration. The results showed that both pre- and post-treatment of capsazepine could significantly prevent and suppress the melittin-induced ongoing nociceptive responses and thermal hypersensitivity, but were without influencing mechanical hypersensitivity. The present results suggest that the naturally occurring peptidergic substances of the whole honeybee venom have various pharmacological potencies to produce local inflammation, nociception and pain hypersensitivity in mammals, and among the five identified reverse-phase high pressure liquid chromatography subfractions (four polypeptides), melittin, a polypeptide occupying over 50% of the whole honeybee venom, plays a central role in production of local inflammation, nociception and hyperalgesia or allodynia following the experimental honeybee's sting. Peripheral transient receptor potential vanilloid receptor 1 is likely to be involved in melittin-produced ongoing pain and heat hyperalgesia, but not mechanical hyperalgesia, in rats.
Collapse
Affiliation(s)
- Y-N Chen
- Institute for Functional Brain Disorders and Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Baqiao, Xi'an 710038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Maione S, Starowicz K, Palazzo E, Rossi F, Di Marzo V. The endocannabinoid and endovanilloid systems and their interactions in neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20098] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Oh U. Chapter 5 Nociceptive Signals to TRPV1 and its Clinical Potential. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Menéndez L, Juárez L, García E, García-Suárez O, Hidalgo A, Baamonde A. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci Lett 2005; 393:70-3. [PMID: 16243435 DOI: 10.1016/j.neulet.2005.09.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/16/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
In the present paper, we describe the analgesic effects induced by the transient receptor potential vanilloid type 1 (TRPV1) antagonist, capsazepine, and the TRPV1 agonist, resiniferatoxin, on the thermal hyperalgesia induced by the presence of a tibial osteosarcoma or an inflammatory process in mice. The administration of capsazepine abolished the osteosarcoma-induced hyperalgesia at a dose range (3-10 mg/kg; s.c.) ineffective to inhibit the hyperalgesia elicited by the intraplantar administration of complete Freund's adjuvant (CFA). In contrast, the administration of resiniferatoxin (0.01-0.1 mg/kg; s.c.) inhibited both the osteosarcoma- and the CFA-induced hyperalgesia. Remarkably, a single dose of resiniferatoxin abolished the osteosarcoma-induced hyperalgesia for several days and completely prevented the instauration of thermal hyperalgesia when administered at the initial stages of osteosarcoma development. The potential of drugs acting through TRPV1 for the management of some types of bone cancer pain is proposed.
Collapse
Affiliation(s)
- Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, IUOPA, Universidad de Oviedo, C/ Julián Clavería 6, 33006 Oviedo, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Singh Tahim A, Sántha P, Nagy I. Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 2005; 136:539-48. [PMID: 16198486 DOI: 10.1016/j.neuroscience.2005.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/29/2005] [Accepted: 08/01/2005] [Indexed: 01/04/2023]
Abstract
The endogenous ligand, anandamide activates at least two receptors on nociceptors; the excitatory vanilloid type 1 transient receptor potential receptor, the activity of which is indispensable for the development and maintenance of inflammatory heat hyperalgesia, and the inhibitory cannabinoid 1 receptor, the activity of which reduces that pathological pain sensation. Recent data are equivocal on whether increasing anandamide levels at the peripheral terminals of nociceptors in pathological conditions increases or decreases inflammatory heat hyperalgesia. Here, by using the cobalt-uptake technique we examined whether vanilloid type 1 transient receptor potential receptor activity evoked by 10 nM-100 microM anandamide is increased or decreased in inflammatory conditions. An inflammatory milieu for cultured rat primary sensory neurons was established by incubating the cells in the presence of the inflammatory mediators, bradykinin and prostaglandin E2. Anandamide, similarly to the archetypical vanilloid type 1 transient receptor potential receptor agonist, capsaicin induced concentration-dependent cobalt-uptake in a proportion of neurons. However, the potency of anandamide was significantly lower than that of capsaicin. While pre-incubation of cultures with bradykinin and prostaglandin E2 alone did not evoke cobalt-entry, the inflammatory mediators potentiated the effect of both capsaicin and anandamide. Application of the competitive vanilloid type 1 transient receptor potential receptor antagonist, capsazepine, or inhibitors of protein kinase A, protein kinase C or phospholipase C inhibited the anandamide-evoked cobalt-uptake both in the presence and absence of bradykinin and prostaglandin E2. These findings show that inflammatory mediators significantly increase the excitatory potency and efficacy of anandamide on vanilloid type 1 transient receptor potential receptor, thus, increasing the anandamide concentration in, or around the peripheral terminals of nociceptors might rather evoke than decrease inflammatory heat hyperalgesia.
Collapse
Affiliation(s)
- A Singh Tahim
- Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | | | | |
Collapse
|
41
|
Jhaveri MD, Elmes SJR, Kendall DA, Chapman V. Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats. Eur J Neurosci 2005; 22:361-70. [PMID: 16045489 DOI: 10.1111/j.1460-9568.2005.04227.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The vanilloid TRPV1 receptor, present on primary afferent fibres, is activated by noxious heat, low pH and endogenous vanilloids. Changes in the function or distribution of TRPV1 receptors may play an important role in pain induced by inflammation or neuropathy. The aim of the present study was to evaluate the role of peripheral TRPV1 receptors in thermal nociception in rat models of inflammatory and neuropathic pain. Here, we have determined the effects of peripheral administration of the potent TRPV1 receptor antagonist iodoresiniferatoxin (IRTX) on noxious heat (45 degrees C)-evoked responses of spinal wide dynamic range (WDR) neurons in naïve, carrageenan-inflamed, sham-operated and L5/6 spinal nerve-ligated (SNL) anaesthetized rats in vivo. In addition, effects of peripheral administration of IRTX on mechanically evoked responses of WDR neurons were determined in sham-operated and SNL rats. Carrageenan inflammation significantly (P<0.05) increased the 45 degrees C-evoked responses of WDR neurons. Intraplantar injection of the lower dose of IRTX (0.004 microg) inhibited (P<0.05) 45 degrees C-evoked responses of WDR neurons in carrageenan-inflamed, but not in naïve, rats. The higher dose of IRTX (0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked responses in both inflamed and naïve rats. In sham-operated and SNL rats, IRTX (0.004 and 0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked, but had no effect on mechanically evoked responses of WDR neurons. These data support the role of peripheral TRPV1 receptors in noxious thermal transmission in naïve, inflamed and neuropathic rats, and suggest that there is an increased functional contribution of peripheral TRPV1 receptors following acute inflammation.
Collapse
Affiliation(s)
- Maulik D Jhaveri
- Institute of Neuroscience, School of Biomedical Sciences, E Floor, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
42
|
Takeda M, Tanimoto T, Ito M, Nasu M, Matsumoto S. Role of capsaicin-sensitive primary afferent inputs from the masseter muscle in the C1 spinal neurons responding to tooth-pulp stimulation in rats. Exp Brain Res 2005; 160:107-17. [PMID: 15289965 DOI: 10.1007/s00221-004-1990-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to demonstrate the convergence of inputs from masseter muscle (MM) and tooth pulp (TP) onto C1 spinal neurons and to determine whether the afferent fibers express the functional vanilloid receptor (VR1). Extracellular single-unit recordings were made from 61 C1 units responding to TP electrical stimulation with a constant temporal relationship to a digastric electromyogram signal in pentobarbital anesthetized rats. Eighty-four percent of C1 neurons responding to TP stimulation also responded to the ipsilateral MM stimulation. Of these neurons, 61% were considered to be afferent inputs from Adelta-fibers and the remaining units (39%) were C-fibers, based on calculation of the nerve conduction velocity. Intramuscular injection of capsaicin (0.05 and 0.1%) produced a reduction in a MM-induced C1 neuronal activity in a dose-dependent manner and this effect was antagonized by pretreatment with an antagonist of VR1, capsazepine. Some of these units were also excited by noxious heat stimulation (> 43 degrees C). The trigeminal root ganglion (TRG) neurons that innervated the MM were retrogradely labeled with Fluorogold (FG) and the small-diameter FG-labeled TRG neurons expressed the immunoreactivity for VR1. After intramuscular mustard oil injection (noxious chemical stimulation), the C1 neuronal activity induced by both touch and pinch stimuli was enhanced and their receptive field sizes were significantly expanded. These changes were reversed within 15-20 min. These results suggest that there may be the convergence of noxious afferents inputs from the MM and TP afferents on the same C1 neurons in rats, and that the afferent fibers expressing the functional VR1 may contribute to the hyperalgesia and/or referred pain associated with temporomandibular joint disorder.
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, 102-8159 Tokyo, Japan.
| | | | | | | | | |
Collapse
|
43
|
Baamonde A, Lastra A, Juarez L, Hidalgo A, Menéndez L. TRPV1 desensitisation and endogenous vanilloid involvement in the enhanced analgesia induced by capsaicin in inflamed tissues. Brain Res Bull 2005; 67:476-81. [PMID: 16216696 DOI: 10.1016/j.brainresbull.2005.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/05/2005] [Indexed: 11/17/2022]
Abstract
The intra-plantar acute administration of 10 microg of capsaicin to mice which had received complete Freund's adjuvant (CFA) 1 week before inhibits the thermal inflammatory hyperalgesia it induces and even produces a long-lasting analgesia for at least 2 weeks. In this study, we show that the administration of capsaicin (10 microg) also reduces the immediate licking behavior evoked by the intra-plantar administration of a lower dose of capsaicin (0.1 microg), the duration of this inhibitory effect being greater in CFA-inflamed mice (at least 2 weeks) than in non-inflamed animals (less than 4 days). Since this reduction of capsaicin-induced licking behavior may be interpreted as a consequence of the transient receptor potential vanilloid 1 receptor (TRPV1) unresponsiveness, we conclude that the administration of 10 microg of capsaicin into inflamed tissues can render the TRPV1 desensitised. We next explored whether endogenous vanilloids released during inflammation contribute to maintain the analgesia triggered by exogenous capsaicin. The acute administration of capsazepine (10 microg; intra-plantarly (i.pl.)) abolished the analgesic effect induced by the injection of capsaicin 1 week before in inflamed mice. From these results, it may be proposed that the maintenance by endovanilloids of the TRPV1 desensitisation induced by capsaicin could contribute to prolonging the analgesic effect induced by this agonist in inflamed tissues.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| | | | | | | | | |
Collapse
|
44
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Hutter MM, Wick EC, Day AL, Maa J, Zerega EC, Richmond AC, Jordan TH, Grady EF, Mulvihill SJ, Bunnett NW, Kirkwood KS. Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 2005; 30:260-5. [PMID: 15782105 DOI: 10.1097/01.mpa.0000153616.63384.24] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The transient receptor potential vanilloid 1 (TRPV-1) is an ion channel found on primary sensory afferent neurons. Activation of TRPV-1 leads to the release of the proinflammatory neuropeptide substance P (SP). SP then binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and promotes extravasation of plasma and proteins into the interstitial tissue and neutrophil infiltration, a process called neurogenic inflammation. We tested 2 hypotheses: (1) activation of TRPV-1 in the pancreas leads to interstitial edema and neutrophil infiltration and (2) TRPV-1-induced plasma extravasation is mediated by the release of SP and activation of the NK1-R in the rat. METHODS We measured extravasation of the intravascular tracer Evans blue as an index of plasma extravasation and quantified pancreas tissue myeloperoxidase activity (MPO) as a marker of neutrophil infiltration. The severity of inflammation following intravenous infusion of the secretagogue cerulein (10 microg/kg/h x 4 hours) was assessed using a histologic scoring system. RESULTS Intravenous injection of the TRPV-1 agonist capsaicin induced a dose-dependent increase in Evans blue accumulation in the rat pancreas (P < 0.05 vs. vehicle control). This effect was blocked by pretreatment with the TRPV-1 antagonist capsazepine (1.8 mg/kg), or the NK1-R antagonist CP 96,345 (1 mg/kg). Capsazepine also reduced cerulein-induced Evans blue, MPO, and histologic severity of inflammation in the pancreas but had no effect on serum amylase. CONCLUSION Activation of TRPV-1 induces SP-mediated plasma extravasation in the rat pancreas via activation of the NK1-R. TRPV-1 mediates neurogenic inflammation in cerulein-induced pancreatitis in the rat.
Collapse
Affiliation(s)
- Matthew M Hutter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garle MJ, Fry JR. Sensory nerves, neurogenic inflammation and pain: missing components of alternative irritation strategies? A review and a potential strategy. Altern Lab Anim 2005; 31:295-316. [PMID: 15612874 DOI: 10.1177/026119290303100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eyes and skin are highly innervated by sensory nerves; stimulation of these nerves by irritants may give rise to neurogenic inflammation, leading to sensory irritation and pain. Few in vitro models of neurogenic inflammation have been described in conjunction with alternative skin and eye irritation methods, despite the fact that the sensory innervation of these organs is well-documented. To date, alternative approaches to the Draize skin and eye irritation tests have proved largely successful at classifying severe irritants, but are generally poor at discriminating between agents with mild to moderate irritant potential. We propose that the development of in vitro models for the prediction of sensory stimulation will assist in the re-classification of the irritant potential of agents that are under-predicted by current in vitro strategies. This review describes the range of xenobiotics known to cause inflammation and pain through the stimulation of sensory nerves, as well as the endogenous mediators and receptor types that are involved. In particular, it focuses on the vanilloid receptor, its activators and its regulation, as these receptors function as integrators of responses to numerous noxious stimuli. Cell culture models and ex vivo preparations that have the potential to serve as predictors of sensory irritation are also described. In addition, as readily available sensory neuron cell line models are few in number, stem cell lines (with the capacity to differentiate into sensory neurons) are explored. Finally, a preliminary strategy to enable assessment of whether incorporation of a sensory component will enhance the predictive power of current in vitro eye and skin testing strategies is proposed.
Collapse
Affiliation(s)
- Michael J Garle
- Division of Gastroenterology, School of Medical and Surgical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
47
|
The TRPV1 Vanilloid Receptor: A Target for Therapeutic Intervention. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
48
|
Lee SY, Hong Y, Oh U. Decreased pain sensitivity of Capsaicin-treated rats results from decreased VR1 expression. Arch Pharm Res 2004; 27:1154-60. [PMID: 15595420 DOI: 10.1007/bf02975122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the neurotoxic effects of capsaicin (CAP) on pain sensitivity and on the expression of capsaicin receptor, the vanilloid receptor (VR1), in rats. High-dose application of CAP has been known to degenerate a large fraction of the sensory neurons. Although the neurotoxic effects of CAP are well documented, the effects of CAP on the vanilloid receptor (VR1) are not yet known. In this paper, we investigated the effects of high-dose application of CAP on the expression of VR1 in rats. Thermal and mechanical pain sensitivity was reduced when neonatal rats were treated with a high dose of CAP. This reduction of pain sensitivity was significantly decreased after initiating carrageenan-induced inflammation. The expression of VR1 in dorsal root ganglia (DRG) isolated from the CAP-treated rats was reduced compared to that from the vehicle-treated rats. Therefore, we can conclude that the neurotoxic effect of CAP is related to the decrease of VR1 expression.
Collapse
Affiliation(s)
- Soon-Youl Lee
- Department of Genomic Engineering, Genetic Informatics Center, GRRC Hankyong National University, Kyonggi 456-749, Korea.
| | | | | |
Collapse
|
49
|
Dogan MD, Patel S, Rudaya AY, Steiner AA, Székely M, Romanovsky AA. Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor. Br J Pharmacol 2004; 143:1023-32. [PMID: 15492017 PMCID: PMC1575955 DOI: 10.1038/sj.bjp.0705977] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As pretreatment with intraperitoneal capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP), an agonist of the vanilloid receptor known as VR1 or transient receptor potential channel-vanilloid receptor subtype 1 (TRPV-1), has been shown to block the first phase of lipopolysaccharide (LPS) fever in rats, this phase is thought to depend on the TRPV-1-bearing sensory nerve fibers originating in the abdominal cavity. However, our recent studies suggest that CAP blocks the first phase via a non-neural mechanism. In the present work, we studied whether this mechanism involves the TRPV-1. Adult Long-Evans rats implanted with chronic jugular catheters were used. Pretreatment with CAP (5 mg kg(-1), i.p.) 10 days before administration of LPS (10 microg kg(-1), i.v.) resulted in the loss of the entire first phase and a part of the second phase of LPS fever. Pretreatment with the ultrapotent TRPV-1 agonist resiniferatoxin (RTX; 2, 20, or 200 microg kg(-1), i.p.) 10 days before administration of LPS had no effect on the first and second phases of LPS fever, but it exaggerated the third phase at the highest dose. The latter effect was presumably due to the known ability of high doses of TRPV-1 agonists to cause a loss of warm sensitivity, thus leading to uncontrolled, hyperpyretic responses. Pretreatment with the selective competitive TRPV-1 antagonist capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamidem, CPZ; 40 mg kg(-1), i.p.) 90 min before administration of LPS (10 microg kg(-1), i.v.) or CAP (1 mg kg(-1), i.p.) did not affect LPS fever, but blocked the immediate hypothermic response to acute administration of CAP. It is concluded that LPS fever is initiated via a non-neural mechanism, which is CAP-sensitive but RTX- and CPZ-insensitive. The action of CAP on this mechanism is likely TRPV-1-independent. It is speculated that this mechanism may be the production of prostaglandin E(2) by macrophages in LPS-processing organs.
Collapse
Affiliation(s)
- M Devrim Dogan
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Shreya Patel
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Alla Y Rudaya
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Alexandre A Steiner
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Miklós Székely
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, U.S.A
- Author for correspondence:
| |
Collapse
|
50
|
Luo H, Cheng J, Han JS, Wan Y. Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund's adjuvant in rats. Neuroreport 2004; 15:655-8. [PMID: 15094470 DOI: 10.1097/00001756-200403220-00016] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study aimed to systematically observe the change of vanilloid receptor 1 (VR1) during inflammatory nociception induced by intraplantar injection of complete Freund's adjuvant (CFA) into the left hind paw in rats. Hot plate latency (HPL) was used to evaluate resulting thermal hyperalgesia and immunohistochemistry to observe VR1 expression in dorsal root ganglion and spinal cord dorsal horn. Results showed that HPL decreased from day 1 to day 28 after CFA injection, with shortest at day 14. VR1 expression correspondingly increased from day 1 to day 21 with peak at day 14, and returning to the control level at day 28. A shift of VRI expression from small to medium DRG neurons over the observation period was seen. These results suggest that VR1 could play an important role in the early stage, but not the late stage, of CFA inflammatory nociception.
Collapse
Affiliation(s)
- Hao Luo
- Neuroscience Research Institute, Peking University, Ministry of Education, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | | | |
Collapse
|