1
|
Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex. J Neurosci 2017; 37:10125-10138. [PMID: 28924011 DOI: 10.1523/jneurosci.1484-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Indexed: 01/16/2023] Open
Abstract
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system.SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits.
Collapse
|
2
|
Huang JY, Wang C, Dreher B. Silencing "Top-Down" Cortical Signals Affects Spike-Responses of Neurons in Cat's "Intermediate" Visual Cortex. Front Neural Circuits 2017; 11:27. [PMID: 28487637 PMCID: PMC5404610 DOI: 10.3389/fncir.2017.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of reversible inactivation of a higher-order, pattern/form-processing, postero-temporal visual (PTV) cortex on the background activities and spike-responses of single neurons in the ipsilateral cytoarchitectonic area 19 (putative area V3) of anesthetized domestic cats. Very occasionally (2/28), silencing recurrent “feedback” signals from PTV, resulted in significant and reversible reduction in background activity of area 19 neurons. By contrast, in large proportions of area 19 neurons, PTV inactivation resulted in: (i) significant reversible changes in the peak magnitude of their responses to visual stimuli (35.5%; 10/28); (ii) substantial reversible changes in direction selectivity indices (DSIs; 43%; 12/28); and (iii) reversible, upward shifts in preferred stimulus velocities (37%; 7/19). Substantial (≥20°) shifts in preferred orientation and/or substantial (≥20°) changes in width of orientation-tuning curves of area 19 neurons were however less common (26.5%; 4/15). In a series of experiments conducted earlier, inactivation of PTV also induced upward shifts in the preferred velocities of the ipsilateral cytoarchitectonic area 17 (V1) neurons responding optimally at low velocities. These upward shifts in preferred velocities of areas 19 and 17 neurons were often accompanied by substantial increases in DSIs. Thus, in both the primary visual cortex and the “intermediate” visual cortex (area 19), feedback from PTV plays a modulatory role in relation to stimulus velocity preferences and/or direction selectivity, that is, the properties which are usually believed to be determined by the inputs from the dorsal thalamus and/or feedforward inputs from the primary visual cortices. The apparent specialization of area 19 for processing information about stationary/slowly moving visual stimuli is at least partially determined, by the feedback from the higher-order pattern-processing visual area. Overall, the recurrent signals from the higher-order, pattern/form-processing visual cortex appear to play an important role in determining the magnitude of spike-responses and some “motion-related” receptive field properties of a substantial proportion of neurons in the intermediate form-processing visual area—area 19.
Collapse
Affiliation(s)
- Jin Y Huang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,Discipline of Biomedical Science, School of Medical Sciences, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| |
Collapse
|
3
|
Connolly JD, Hashemi-Nezhad M, Lyon DC. Parallel feedback pathways in visual cortex of cats revealed through a modified rabies virus. J Comp Neurol 2012; 520:988-1004. [PMID: 21826663 DOI: 10.1002/cne.22748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The visual cortex of cats is highly evolved. Analogously to the brains of primates, large numbers of visual areas are arranged hierarchically and can be parsed into separate dorsal and ventral streams for object recognition and visuospatial representation. Within early primate visual areas, V1 and V2, and to a lesser extent V3, the two streams are relatively segregated and relayed in parallel to higher order cortex, although there is some evidence suggesting an alignment of V2 and V3 to one stream over the other. For cats, there is no evidence of anatomical segregation in areas 18 and 19, the analogs to V2 and V3. However, previous work was only qualitative in nature. Here we re-examined the feedback connectivity patterns of areas 18/19 in quantitative detail. To accomplish this, we used a genetically modified rabies virus that acts as a retrograde tracer and fills neurons with fluorescent protein. After injections into area 19, many more neurons were labeled in putative ventral stream area 21a than in putative dorsal stream region posterolateral suprasylvian complex of areas (PLS), and the dendrites of neurons in 21a were significantly more complex. Conversely, area 18 injections labeled more neurons in PLS, and these were more complex than neurons in 21a. We infer from our results that area 19 in cat is more aligned to the ventral stream and area 18 to the dorsal stream. Based on the success of our approach, we suggest that this method could be applied to resolve similar issues related to primate V3.
Collapse
Affiliation(s)
- Jason D Connolly
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
4
|
Berényi A, Gombköto P, Farkas A, Paróczy Z, Márkus Z, Averkin RG, Benedek G, Nagy A. How moving visual stimuli modulate the activity of the substantia nigra pars reticulata. Neuroscience 2009; 163:1316-26. [PMID: 19628024 DOI: 10.1016/j.neuroscience.2009.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
The orientation of spatial attention via saccades is modulated by a pathway from the substantia nigra pars reticularis (SNr) to the superior colliculus, which enhances the ability to respond to novel stimuli. However, the algorithm whereby the SNr translates visual input to saccade-related information is still unknown. We recorded extracellular single-unit responses of 343 SNr cells to visual stimuli in anesthetized cats. Depending on the size, velocity and direction of the visual stimulus, SNr neurons responded by either increasing or decreasing their firing rate. Using artificial neuronal networks, visual SNr neurons could be classified into distinct groups. Some of the units showed a clear preference for one specific combination of direction and velocity (simple neurons), while other SNr neurons were sensitive to the direction (direction-tuned neurons) or the velocity (velocity-tuned neurons) of the movement. Furthermore, a subset of SNr neurons exhibited a narrow inhibitory/excitatory domain in the velocity/direction plane with an opposing surround (concentric neurons). According to our results, spatiotemporally represented visual information may determine the discharge pattern of the SNr. We suggest that the SNr utilizes spatiotemporal properties of the visual information to generate vector-based commands, which could modulate the activity of the superior colliculus and enhance or inhibit the reflexive initiation of complex and accurate saccades.
Collapse
Affiliation(s)
- A Berényi
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Márkus Z, Berényi A, Paróczy Z, Wypych M, Waleszczyk WJ, Benedek G, Nagy A. Spatial and temporal visual properties of the neurons in the intermediate layers of the superior colliculus. Neurosci Lett 2009; 454:76-80. [DOI: 10.1016/j.neulet.2009.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 11/26/2022]
|
6
|
Nagy A, Paróczy Z, Márkus Z, Berényi A, Wypych M, Waleszczyk WJ, Benedek G. Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus. Eur J Neurosci 2008; 27:1801-8. [PMID: 18371085 DOI: 10.1111/j.1460-9568.2008.06137.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the caudate nucleus (CN) in motor control has been widely studied. Less attention has been paid to the dynamics of visual feedback in motor actions, which is a relevant function of the basal ganglia during the control of eye and body movements. We therefore set out to analyse the visual information processing of neurons in the feline CN. Extracellular single-unit recordings were performed in the CN, where the neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The responses of the CN neurons were modulated by the temporal frequency of the grating. The CN units responded optimally to gratings of low spatial frequencies and exhibited low spatial resolution and fine spatial frequency tuning. By contrast, the CN neurons preferred high temporal frequencies, and exhibited high temporal resolution and fine temporal frequency tuning. The spatial and temporal visual properties of the CN neurons enable them to act as spatiotemporal filters. These properties are similar to those observed in certain feline extrageniculate visual structures, i.e. in the superior colliculus, the suprageniculate nucleus and the anterior ectosylvian cortex, but differ strongly from those of the primary visual cortex and the lateral geniculate nucleus. Accordingly, our results suggest a functional relationship of the CN to the extrageniculate tecto-thalamo-cortical system. This system of the mammalian brain may be involved in motion detection, especially in velocity analysis of moving objects, facilitating the detection of changes during the animal's movement.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Physiology, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
7
|
Robitaille N, Lepore F, Bacon BA, Ellemberg D, Guillemot JP. Receptive field properties and sensitivity to edges defined by motion in the postero-lateral lateral suprasylvian (PLLS) area of the cat. Brain Res 2007; 1187:82-94. [PMID: 18005943 DOI: 10.1016/j.brainres.2007.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/06/2007] [Accepted: 10/10/2007] [Indexed: 11/30/2022]
Abstract
The present study investigated the spatial properties of cells in the postero-lateral lateral suprasylvian (PLLS) area of the cat and assessed their sensitivity to edges defined by motion. A total of one hundred and seventeen (117) single units were isolated. First, drifting sinusoidal gratings were used to assess the spatial properties of the cells' receptive fields and to determine their spatial frequency tuning functions. Second, random-dot kinematograms were used to create illusory edges by drifting textured stimuli (i.e. a horizontal bar) against a similarly textured but static background. Almost all the cells recorded in PLLS (96.0%) were binocular, and a substantial majority of receptive fields (79.2%) were end-stopped. Most units (81.0%) had band-pass spatial frequency tuning functions and responded optimally to low spatial frequencies (mean spatial frequency: 0.08 c./degree). The remaining units (19.0%) were low-pass. All the recorded cells responded vigorously to edges defined by motion. The vast majority (96.0%) of cells responded optimally to large texture elements; approximately half the cells (57.3%) also responded to finer texture elements. Moreover, 38.5% of the cells were selective to the width of the bar (i.e., the distance between the leading and the trailing edges). Finally, some (9.0%) cells responded in a transient fashion to leading and to trailing edges. In conclusion, cells in the PLLS area are low spatial frequency analyzers that are sensitive to texture and to the distance between edges defined by motion.
Collapse
Affiliation(s)
- N Robitaille
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
8
|
Waleszczyk WJ, Nagy A, Wypych M, Berényi A, Paróczy Z, Eördegh G, Ghazaryan A, Benedek G. Spectral receptive field properties of neurons in the feline superior colliculus. Exp Brain Res 2007; 181:87-98. [PMID: 17431601 DOI: 10.1007/s00221-007-0908-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The spatio-temporal frequency response profiles of 73 neurons located in the superficial, retino-recipient layers of the feline superior colliculus (SC) were investigated. The majority of the SC cells responded optimally to very low spatial frequencies with a mean of 0.1 cycles/degree (c/deg). The spatial resolution was also low with a mean of 0.31 c/deg. The spatial frequency tuning functions were either low-pass or band-pass with a mean spatial frequency bandwidth of 1.84 octaves. The cells responded optimally to a range of temporal frequencies between 0.74 cycles/s (c/s) and 26.41 c/s with a mean of 6.84 c/s. The majority (68%) of the SC cells showed band-pass temporal frequency tuning with a mean temporal frequency bandwidth of 2.4 octaves, while smaller proportions of the SC units displayed high-pass (19%), low-pass (8%) or broad-band (5%) temporal tuning. Most of the SC units exhibited simple spectral tuning with a single maximum in the spatio-temporal frequency domain, while some neurons were tuned for spatial or temporal frequencies or speed tuned. Further, we found cells excited by gratings moving at high temporal and low spatial frequencies and cells whose activity was suppressed by high velocity movement. The spatio-temporal filter properties of the SC neurons show close similarities to those of their retinal Y and W inputs as well as those of their inputs from the cortical visual motion detector areas, suggesting their common role in motion analysis and related behavioral actions.
Collapse
Affiliation(s)
- Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Paróczy Z, Nagy A, Márkus Z, Waleszczyk WJ, Wypych M, Benedek G. Spatial and temporal visual properties of single neurons in the suprageniculate nucleus of the thalamus. Neuroscience 2006; 137:1397-404. [PMID: 16359815 DOI: 10.1016/j.neuroscience.2005.10.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
The spatial and temporal visual sensitivity to drifting sinusoidal gratings was studied in 105 neurons of the suprageniculate nucleus of the feline thalamus. Extracellular single-unit recordings were performed in halothane-anesthetized, immobilized, artificially ventilated cats. Most suprageniculate nucleus cells were strongly sensitive to the direction of drifting gratings. The suprageniculate nucleus units had a clear preference for very low spatial frequencies with a mean of 0.05 cycle/deg. The spatial resolution was also very low with a mean of 0.16 cycle/deg. Most of the cells displayed low-pass spatial tuning characteristics, while the remainder of the units were band-pass tuned. The suprageniculate nucleus units were extremely narrowly tuned, to spatial frequencies with a mean spatial bandwidth of 1.07 octaves. A majority of the units responded optimally to high temporal frequencies, with a mean of 8.53 Hz. The temporal frequency tuning functions predominantly revealed a band-pass character, with a mean temporal bandwidth of 1.66 octaves. These results demonstrate that the neurons in the suprageniculate nucleus display particular spatial and temporal characteristics. The spatial and temporal tuning properties of the suprageniculate nucleus neurons are very similar to those of the superior colliculus and the anterior ectosylvian cortex, structures that provide the main visual afferentation toward the suprageniculate nucleus. This suggests their common function in motion perception, and especially in the recording of movements of the visual environment relative to the body, and the related behavioral action.
Collapse
Affiliation(s)
- Z Paróczy
- Department of Physiology, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Dóm tér 10., H-6720 Szeged, P.O. 427, Hungary
| | | | | | | | | | | |
Collapse
|
10
|
Mimeault D, Paquet V, Molotchnikoff S, Lepore F, Guillemot JP. Disparity sensitivity in the superior colliculus of the cat. Brain Res 2004; 1010:87-94. [PMID: 15126121 DOI: 10.1016/j.brainres.2004.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
The present study aims at evaluating the spatial disparity response profiles of binocular cells in the superficial layers of the superior colliculus of the cat using drifting light bars and phase-shifted spatial frequency gratings. Results show that a total of 64% of the cells were sensitive to phase disparities and had large tuning profiles. Similarly, a large proportion (75%) of those tested with position offsets showed one of the four classic disparity profiles, those of the tuned cells being rather coarse. When tested with both position and phase disparities, 54% of the cells showed sensitivity profiles to the two types of stimuli. The overall results suggest that the superior colliculus is involved in the analysis of coarse stereopsis and/or the planning and initiation of saccades during vergence eye movements and/or the control of fine adjustments to maintain fixation as the stimulus moves in depth.
Collapse
Affiliation(s)
- Daniel Mimeault
- Université de Montréal, Groupe de Recherche en Neuropsychologie et Cognition, C.P. 6128, Succ. Centre-Ville, Montréal, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
11
|
Saint-Amour D, Lepore F, Guillemot JP. Binocular fusion/suppression to spatial frequency differences at the border of areas 17/18 of the cat. Neuroscience 2004; 124:121-36. [PMID: 14960345 DOI: 10.1016/j.neuroscience.2003.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2003] [Indexed: 11/19/2022]
Abstract
As shown by various human psychophysical studies, interocular spatial frequency disparities can yield a variety of percepts. In order to examine how binocular fusion is affected by spatial frequency differences, we have recorded cells in the border region of areas 17/18 of anesthetized cats. The optic axes of the eyes were deviated onto cathode-ray screens, and the optimal spatial frequency of each eye was assessed by monocular stimulations using drifting sinusoidal gratings. The optimal relative phase using identical spatial frequencies in both eyes was first determined. Spatial frequency differences were then introduced by keeping the optimal spatial frequency constant in one eye and varying the spatial frequency in the other. Results indicate that cells (39%) responded with an increased firing rate (facilitation) to similar spatial frequencies in each eye and with a gradual attenuation (occlusion or suppression) when spatial frequency differences were increased. However, binocular facilitation did not always occur to the presentation of identical stimuli. For 16% of the cells, maximal responses were observed when lower spatial frequencies than the optimal one were presented in one eye while higher spatial frequencies produced suppression. The opposite pattern was observed only for two cells. These findings are discussed in terms of binocular fusion and suppression.
Collapse
Affiliation(s)
- D Saint-Amour
- Université de Montréal, Département de Psychologie, Groupe de Recherche en Neuropsychologie et Cognition, CP 6128, Succ Centre-Ville, Montréal, Québec, Canada, H3C 3J7
| | | | | |
Collapse
|
12
|
Mimeault D, Paquet V, Lepore F, Guillemot JP. Phase-disparity coding in extrastriate area 19 of the cat. J Physiol 2002; 545:987-96. [PMID: 12482901 PMCID: PMC2290711 DOI: 10.1113/jphysiol.2002.025726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Binocular interactions were investigated in area 19 of the anaesthetized cat using dichoptically presented phase-shifted static spatial frequency gratings that flickered at a fixed temporal rate. More than two-thirds of the binocular cells showed phase specificity to static phase disparities leading to either summation or facilitation interactions. This proportion of spatial disparity selectivity was higher than that shown for the same area (one-third of the units) when drifting light bars or drifting spatial frequencies were used to create disparities. The range of phase disparities encoded by binocular cells in area 19 is inversely related to the optimal spatial frequency of the dominant eye. Thus, cells in this area are tuned to coarse spatial disparities which, as supported by behavioural studies, could reflect its involvement in the analysis of stereoscopic pattern having gross disparities but devoid of motion cues. Because of the nature of its interconnections with numerous visual cortical areas, area 19 could serve as a way station where stereoscopic information could be first analysed and sent to other higher order areas for a complete representation of three-dimensional objects.
Collapse
Affiliation(s)
- Daniel Mimeault
- Université de Montréal, Groupe de Recherche en Neuropsychologie Expérimentale,Département de Psychologie, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada
| | | | | | | |
Collapse
|
13
|
Mimeault D, Lepore F, Guillemot JP. Phase- and position-disparity coding in the posteromedial lateral suprasylvian area of the cat. Neuroscience 2002; 110:59-72. [PMID: 11882373 DOI: 10.1016/s0306-4522(01)00542-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The posteromedial lateral suprasylvian area of the cat is known to be involved in the analysis of motion and motion in depth. However, it remains unclear whether binocular cells in the posteromedial lateral suprasylvian area rely upon phase or positional offsets between their receptive fields in order to code binocular disparity. The present study aims at clarifying more precisely the neural mechanisms underlying stereoperception with two objectives in mind. First, to determine whether cells in the posteromedial lateral suprasylvian area code phase disparities. Secondly, to examine whether the cells sensitive to phase disparity are the same as those which code for position disparities or whether each group represent a different sub-population of disparity-sensitive neurons. We investigated this by testing both types of disparities on single neurons in this area. The results show that the vast majority of cells (74%), in the posteromedial lateral suprasylvian area, are sensitive to relative interocular phase disparities. These cells showed mostly facilitation (95%) and a few (5%) summation interactions. Moreover, most cells (81%) were sensitive to both position and phase disparities. The results of this study show that most binocular cells in the posteromedial lateral suprasylvian area are sensitive to both positional and phase offsets which demonstrate the importance of this area in stereopsis.
Collapse
Affiliation(s)
- D Mimeault
- Groupe de Recherche en Neuropsychologie Expérimentale, Département de Psychologie, Université de Montreal, C.P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada, H3C 3J7
| | | | | |
Collapse
|
14
|
Abstract
Binocular cells in area 19 are tuned to positional disparities. In effect, up to one-third of the cells respond preferentially to small incongruities between the optimal bar stimuli presented within the receptive fields of each eye. The aim of the present study was to determine whether cells in area 19 are also sensitive to phase disparities. Both types of disparities have been proposed as mechanisms through which stereoperception is achieved. Results indicate that phase disparities produced coherent interactions in 38% of the binocular cells, resulting in facilitation or summation. The remaining cells were phase insensitive. The overall results suggest that cells in area 19 code phase disparities in a proportion comparable to stimulus disparities, confirming that this area is implicated in binocular integration, albeit in a relatively smaller proportion than some of the other visual areas.
Collapse
Affiliation(s)
- Daniel Mimeault
- Université de Montréal, Groupe de Recherche en Neuropsychologie Expérimentale, Département de Psychologie, C.P. 6128, Succ. Centre-Ville, Montréal H3C 3J7, Canada
| | | | | |
Collapse
|
15
|
Tardif E, Lepore F, Guillemot JP. Spatial properties and direction selectivity of single neurons in area 21b of the cat. Neuroscience 2000; 97:625-34. [PMID: 10842007 DOI: 10.1016/s0306-4522(00)00061-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The receptive field properties of single units were assessed in area 21b of the cat visual cortex. Visual cells in this area were binocular and showed relatively large receptive fields. Most cells were strongly sensitive to the direction of drifting gratings. The mean value of the half-widths of the direction tuning curves (32 degrees ) suggests broader direction tunings than are typically found in other visual areas. The spatial frequency tuning functions were either band-pass or low-pass. Cells responded optimally to low spatial frequencies (mean =0.08c/deg) and also showed low spatial resolution (mean =0.29c/deg.). The estimated values of spatial bandwidths (mean=2.2 octaves) suggest that area 21b cells act as relatively good spatial filters. Although some cells exhibited a low contrast threshold, most cells began to respond at intermediate or high contrast values (mean threshold =15.5%). Temporal frequency tuning functions were mostly band-pass and usually broad (mean temporal bandwidth=3.3 octaves). Cells were found that responded optimally to various temporal frequencies (mean optimal temporal frequency=3.2Hz), although the majority preferred a temporal frequency below 4Hz.These results suggest that visual properties (receptive fields sizes, spatial resolution and orientation/direction selectivity) of cells in area 21b differ from those of cells previously observed in the adjoining area 21a. These differences provide evidence in support of functional distinction between these two visual areas.
Collapse
Affiliation(s)
- E Tardif
- Groupe de Recherche en Neuropsychologie Expérimentale, Centre-Ville, Québec, H3C 3J7, Montréal, Canada
| | | | | |
Collapse
|
16
|
Khayat PS, Saint-Amour D, Molotchnikoff S, Lepore F, Guillemot JP. Cellular response to texture and form defined by motion in area 19 of the cat. Eur J Neurosci 2000; 12:1727-38. [PMID: 10792450 DOI: 10.1046/j.1460-9568.2000.00046.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined the neuronal sensitivity in area 19 of the cat to a motion-defined bar and to texture. Sensitivity was tested in normal, lesioned (areas 17-18) and split-chiasm cats using a kinematogram, as well as a textured bar drifting on a uniform light background and a light bar drifting on a stationary textured background. Texture density was varied. The results indicate that almost all cells of area 19 recorded in the three groups of cats responded to a motion-defined bar or to its edges. Texture density influenced the responses in that the discharge rate increased as density decreased. However, the majority of cells were sensitive to the highest texture density kinematogram. Moreover, the neural responses of all cats were either independent of the density of the textured bar or background, or were modulated by it. These results show that cells in area 19 can signal the presence of a kinetic bar and that the density of either the textured bar, the background or both can influence figure-ground detection. The results are interpreted with respect to how various inputs influence the function of area 19.
Collapse
Affiliation(s)
- P S Khayat
- Groupe de Recherche en Neuropsychologie Expérimentale, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|