1
|
Rempel L, Sachdeva R, Krassioukov AV. Making the Invisible Visible: Understanding Autonomic Dysfunctions Following Spinal Cord Injury. Phys Med Rehabil Clin N Am 2025; 36:17-32. [PMID: 39567034 DOI: 10.1016/j.pmr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Autonomic dysfunctions are a major challenge to individuals following spinal cord injury. Despite this, these consequences receive far less attention compared with motor recovery. This review will highlight the major autonomic dysfunctions following SCI predominantly based on our present understanding of the anatomy and physiology of autonomic control and available clinical data.
Collapse
Affiliation(s)
- Lucas Rempel
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Chen RY, Chang HS, Huang HC, Hsueh YH, Tu YK, Lee KZ. Comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury in the rat. J Appl Physiol (1985) 2023; 135:1268-1283. [PMID: 37855033 DOI: 10.1152/japplphysiol.00473.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Cervical spinal cord injury interrupts supraspinal pathways innervating thoracic sympathetic preganglionic neurons and results in cardiovascular dysfunction. Both respiratory and locomotor functions were also impaired due to damages of motoneuron pools controlling respiratory and forelimb muscles, respectively. However, no study has investigated autonomic and somatic motor functions in the same animal model. The present study aimed to establish a cervical spinal cord injury model to evaluate cardiorespiratory response and locomotor activity in unanesthetized rats. Cardiovascular response and respiratory behavior following laminectomy or cervical spinal contusion were measured using noninvasive blood pressure analyzer and plethysmography systems, respectively. Locomotor activity was evaluated by an open-field test and a locomotor rating scale. The results demonstrated that mean arterial blood pressure and heart rate were significantly reduced in contused rats compared with uninjured rats at the acute injured stage. Tidal volume was also significantly reduced during the acute and subchronic stages. Moreover, locomotor function was severely impaired, evidenced by decreasing moving ability and locomotor rating scores from the acute to chronic injured stages. Retrograde neurotracer results revealed that cervical spinal cord injury caused a reduction in number of phrenic and triceps motoneurons. Immunofluorescence staining revealed a significant attenuation of serotonergic, noradrenergic, glutamatergic, and GABAergic fibers innervating the thoracic sympathetic preganglionic neurons in chronically contused rats. These results revealed the pathological mechanism underlying the comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury. We proposed that this animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.NEW & NOTEWORTHY The present study establishes a preclinical rodent model to comprehensively investigate physiological functions under unanesthetized condition following cervical spinal cord contusion. The results demonstrated that cervical spinal cord contusion is associated with impairments in cardiovascular, respiratory, and locomotor function. Respiratory and forelimb motoneurons and neurochemical innervations of sympathetic preganglionic neurons were damaged following injury. This animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Sen Chang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Sarafis ZK, Squair JW, Barak OF, Coombs GB, Soriano JE, Larkin-Kaiser KA, Lee AHX, Hansen A, Vodopic M, Romac R, Grant C, Charbonneau R, Mijacika T, Krassioukov AV, Ainslie PN, Dujic Z, Phillips AA. Common carotid artery responses to the cold-pressor test are impaired in individuals with cervical spinal cord injury. Am J Physiol Heart Circ Physiol 2022; 323:H1311-H1322. [PMID: 36367686 DOI: 10.1152/ajpheart.00261.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.
Collapse
Affiliation(s)
- Zoe K Sarafis
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jan Elaine Soriano
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kelly A Larkin-Kaiser
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Maro Vodopic
- Department of Neurology, General Hospital, Dubrovnik, Croatia
| | - Rinaldo Romac
- Department of Neurology, Clinical Hospital Center, Split, Croatia
| | - Christopher Grant
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Charbonneau
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,GF Strong Rehabilitation Centre, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Aaron A Phillips
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Fossey MPM, Balthazaar SJT, Squair JW, Williams AM, Poormasjedi-Meibod MS, Nightingale TE, Erskine E, Hayes B, Ahmadian M, Jackson GS, Hunter DV, Currie KD, Tsang TSM, Walter M, Little JP, Ramer MS, Krassioukov AV, West CR. Spinal cord injury impairs cardiac function due to impaired bulbospinal sympathetic control. Nat Commun 2022; 13:1382. [PMID: 35296681 PMCID: PMC8927412 DOI: 10.1038/s41467-022-29066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/20/2022] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury chronically alters cardiac structure and function and is associated with increased odds for cardiovascular disease. Here, we investigate the cardiac consequences of spinal cord injury on the acute-to-chronic continuum, and the contribution of altered bulbospinal sympathetic control to the decline in cardiac function following spinal cord injury. By combining experimental rat models of spinal cord injury with prospective clinical studies, we demonstrate that spinal cord injury causes a rapid and sustained reduction in left ventricular contractile function that precedes structural changes. In rodents, we experimentally demonstrate that this decline in left ventricular contractile function following spinal cord injury is underpinned by interrupted bulbospinal sympathetic control. In humans, we find that activation of the sympathetic circuitry below the level of spinal cord injury causes an immediate increase in systolic function. Our findings highlight the importance for early interventions to mitigate the cardiac functional decline following spinal cord injury. By combining experimental models with prospective clinical studies, the authors show that spinal cord injury causes a rapid reduction in cardiac function that precedes structural changes, and that the loss of descending sympathetic control is the major cause of reduced cardiac function following spinal cord injury.
Collapse
Affiliation(s)
- Mary P M Fossey
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shane J T Balthazaar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Alexandra M Williams
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Centre for Trauma Sciences Research, University of Birmingham, Edgabaston, Birmingham, UK
| | - Erin Erskine
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian Hayes
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Mehdi Ahmadian
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Garett S Jackson
- Faculty of Health and Social Development, University of British Columbia, Kelowna, BC, Canada
| | - Diana V Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Teresa S M Tsang
- Division of Cardiology, University of British Columbia, Vancouver General and University of British Columbia Hospital Echocardiography Department, Vancouver, BC, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Sarafis ZK, Monga AK, Phillips AA, Krassioukov AV. Is Technology for Orthostatic Hypotension Ready for Primetime? PM R 2019; 10:S249-S263. [PMID: 30269810 DOI: 10.1016/j.pmrj.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) often results in the devastating loss of motor, sensory, and autonomic function. After SCI, the interruption of descending sympathoexcitatory pathways disrupts supraspinal control of blood pressure (BP). A common clinical consequence of cardiovascular dysfunction after SCI is orthostatic hypotension (OH), a debilitating condition characterized by rapid profound decreases in BP when assuming an upright posture. OH can result in a diverse array of insidious and pernicious health consequences. Acute effects of OH include decreased cardiac filling, cerebral hypoperfusion, and associated presyncopal symptoms such as lightheadedness and dizziness. Over the long term, repetitive exposure to OH is associated with a drastically increased prevalence of heart attack and stroke, which are leading causes of death in those with SCI. Current recommendations for managing BP after SCI primarily include pharmacologic interventions with prolonged time to effect. Because most episodes of OH occur in less than 3 minutes, this delay in action often renders most pharmacologic interventions ineffective. New innovative technologies such as epidural and transcutaneous spinal cord stimulation are being explored to solve this problem. It might be possible to electrically stimulate sympathetic circuitry caudal to the injury and elicit rapid modulation of BP to manage OH. This review describes autonomic control of the cardiovascular system before injury, resulting cardiovascular consequences after SCI such as OH, and the clinical assessment tools for evaluating autonomic dysfunction after SCI. In addition, current approaches for clinically managing OH are outlined, and new promising interventions are described for managing this condition.
Collapse
Affiliation(s)
- Zoe K Sarafis
- ICORD-BSCC, University of British Columbia, Vancouver, BC, Canada(∗)
| | - Aaron K Monga
- ICORD-BSCC, University of British Columbia, Vancouver, BC, Canada(†)
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada(‡)
| | - Andrei V Krassioukov
- ICORD-BSCC; Experimental Medicine Program; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia; GF Strong Rehabilitation Center, Vancouver Coastal Health; 818 West 10th Avenue, Vancouver, BC, Canada, V5Z1M9(§).
| |
Collapse
|
6
|
Saleem S, Sarafis ZK, Lee AHX, Squair JW, Barak OF, Sober-Williams E, Suraj R, Coombs GB, Mijacika T, West CR, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA. Spinal Cord Disruption Is Associated with a Loss of Cushing-Like Blood Pressure Interactions. J Neurotrauma 2019; 36:1487-1490. [PMID: 30458117 DOI: 10.1089/neu.2018.5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) likely plays an important role in the prevention of stroke, which is three- to fourfold more common after spinal cord injury (SCI). Although the directional relationship between BP and cerebral blood flow (CBF) has traditionally been thought to travel solely from BP to CBF, a Cushing-like mechanism functioning in the inverse direction, in which changes in CBF influence BP, has recently been revealed using Granger causality analysis. Although both CBF buffering of BP and the Cushing-like mechanism are influenced by the sympathetic nervous system, we do not understand the impact of disruption of descending sympathetic pathways within the spinal cord, caused by cervical SCI on these regulatory systems. We hypothesized that people with cervical SCI would have greater BP to CBF transmission, as well as a reduced Cushing-like mechanism. The directional relationships between mean arterial BP (MAP; Finometer® PRO) and middle cerebral artery blood velocity (MCAv; transcranial Doppler) were assessed at rest in 14 cervical SCI subjects and 16 uninjured individuals using Granger causality analysis, while also accounting for end-tidal CO2 tension. Those with SCI exhibited 66% increased forward MAP→MCAv information transmission as compared with the uninjured group (p = 0.0003), indicating reduced cerebrovascular buffering of BP, and did not have a predominant backward Cushing-like MCAv→MAP phenotype. These results indicate that both forward and backward communication between BP and CBF are influenced by SCI, which may be associated with impaired cerebrovascular BP buffering after SCI as well as widespread BP instability.
Collapse
Affiliation(s)
- Saqib Saleem
- 1 Department of Electrical & Computer Engineering, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Zoe K Sarafis
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda H X Lee
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,5 MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Otto F Barak
- 6 Faculty of Medicine, University of Novi Sad, Novi Sad, Republic of Serbia.,7 Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Elin Sober-Williams
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Rejitha Suraj
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Geoff B Coombs
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Tanja Mijacika
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Christopher R West
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Yu-Chieh Tzeng
- 10 Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Aaron A Phillips
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| |
Collapse
|
7
|
Squair JW, Ruiz I, Phillips AA, Zheng MM, Sarafis ZK, Sachdeva R, Gopaul R, Liu J, Tetzlaff W, West CR, Krassioukov AV. Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. J Neurotrauma 2018; 35:2861-2871. [DOI: 10.1089/neu.2018.5703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Ruiz
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A. Phillips
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mei M.Z. Zheng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoe K. Sarafis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rayshad Gopaul
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Squair JW, Liu J, Tetzlaff W, Krassioukov AV, West CR. Spinal cord injury-induced cardiomyocyte atrophy and impaired cardiac function are severity dependent. Exp Physiol 2018; 103:179-189. [PMID: 29235182 DOI: 10.1113/ep086549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does the severity of spinal cord injury affect left ventricular mechanics, function and the underlying cardiomyocyte morphology? What is the main finding and its importance? Here, we show that severe, but not moderate, spinal cord injury causes cardiomyocyte atrophy, altered left ventricular mechanics and impaired cardiac function. The principal aim of the present study was to assess how the severity of spinal cord injury (SCI) affects left ventricular (LV) mechanics, function and underlying cardiomyocyte morphology. Here, we used different severities of T3 spinal cord contusions (MODERATE, 200 kdyn contusion; SEVERE, 400 kdyn contusion; SHAM) and combined standard echocardiography with speckle tracking analyses to investigate in vivo cardiac function and deformation (contractility) after experimental SCI in the Wistar rat. In addition, we investigated changes in the intrinsic structure of cardiac myocytes ex vivo. We demonstrate that SEVERE SCI induces a characteristic decline in LV chamber size and a reduction in in vivo LV deformation (i.e. radial strain) throughout the entire systolic portion of the cardiac cycle [25.6 ± 3.0 versus 44.5 ± 8.1% (Pre-injury); P = 0.0029]. SEVERE SCI also caused structural changes in cardiomyocytes, including decreased length [115.6 ± 7.63 versus 125.8 ± 6.75 μm (SHAM); P = 0.0458], decreased width [7.78 ± 0.71 versus 10.78 ± 1.08 μm (SHAM); P = 0.0015] and an increase in the length/width ratio [14.88 ± 0.66 versus 11.74 ± 0.89 (SHAM); P = 0.0018], which was significantly correlated with LV flow-generating capacity after SCI (i.e. stroke volume, R2 = 0.659; P = 0.0013). Rats with MODERATE SCI exhibited no changes in any metric versus SHAM. This is the first study to demonstrate that the severity of SCI determines the course of changes in the intrinsic structure of cardiomyocytes, which are directly related to contractile function of the LV.
Collapse
Affiliation(s)
- Jordan W Squair
- International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Wolfram Tetzlaff
- International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V Krassioukov
- International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada.,GF Strong Rehabilitation Centre, Vancouver Health Authority, University of British Columbia, Vancouver, BC, Canada
| | - Christopher R West
- International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Abstract
Over the past 10 years, our team has attended numerous Paralympic games and International Paralympic Committee (IPC)-sanctioned events where we have accumulated the largest data set to date from elite athletes with spinal cord injury (SCI). This empirical evidence has allowed us to address critical questions related to health and athletic performance in these incredibly medically complex individuals. Namely, does autonomic function influence performance? Can we account for this with the present sport classification? How can we prevent the doping practice of self-inducing life-threatening episodes of hypertension to improve performance (termed "boosting")? How does extremely high participation in routine upper-body wheelchair exercise impact cardiovascular and cerebrovascular disease risk? Is it possible to improve the sport classification to level the playing field between athletes with and without autonomic dysfunction? Herein, we will narratively address these questions, and provide our perspective on future directions and recommendations moving forward. Our extensive clinical experience and comprehensive dataset suggest preserved autonomic function is critical for elite performance. We will explore how an easy-to-execute test may be able to predict which individuals are most likely to develop autonomic dysfunctions that may negatively affect their health and performance. We also will evaluate the possibility that a level playing field may be even more difficult to establish than once thought, considering the importance of not only voluntary movement to performance, but also autonomic function. Finally, we also will discuss new changes in screening guidelines at Rio to assess the occurrence of boosting, which is a banned practice by the IPC.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,2 MD/PhD Training Program, University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,3 Department of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,4 GF Strong Rehabilitation Centre, Vancouver Health Authority, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Squair JW, Phillips AA, Currie KD, Gee C, Krassioukov AV. Autonomic testing for prediction of competition performance in Paralympic athletes. Scand J Med Sci Sports 2017; 28:311-318. [PMID: 28452146 DOI: 10.1111/sms.12900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/29/2022]
Abstract
While we now appreciate that autonomic dysfunction can impact wheelchair rugby performance, this is currently not being assessed during classification, largely due to lack of a standardized and evidence-based strategy to assess autonomic function. Our aim, therefore, was to establish the optimal autonomic testing protocol that best predicts cardiovascular capacity during competition by comprehensively examining autonomic function in elite wheelchair rugby athletes with cervical SCI and thereby enhance the standardized classification. Twenty-six individuals with cervical SCI (C4-C8; AIS A, B, C) participated in this study during the 2015 Parapan American Games in Toronto, Canada. Clinic autonomic testing included: sympathetic skin responses, baseline hemodynamics, orthostatic challenge test, and cold-pressor tests. Further, we completed standard motor/sensory assessments and obtained each participants' International Wheelchair Rugby Federation classification. These clinic metrics were correlated to in-competition heart rate monitoring obtained during competition. The current study provides novel evidence that the change in systolic blood pressure during an orthostatic challenge test predicts approximately 50% of the in-competition peak heart rate (P<.001). Conversely, International Wheelchair Rugby Federation classification was poorly associated with in-competition peak heart rate (R2 =.204; P<.05). Autonomic testing provides deep insight regarding preserved autonomic control after SCI that is associated with performance in elite wheelchair rugby athletes. As such, incorporating assessments of cardiovascular capacity in classification will help to ensure a level playing field and may obviate the need for practices such as boosting to gain an advantage due to poor cardiovascular control.
Collapse
Affiliation(s)
- J W Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.,MD/PhD Training Program, University of British Columbia, Vancouver, BC, Canada
| | - A A Phillips
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - K D Currie
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - C Gee
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - A V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada.,GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, BC, Canada
| |
Collapse
|
11
|
Squair JW, West CR, Popok D, Assinck P, Liu J, Tetzlaff W, Krassioukov AV. High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury. J Neurotrauma 2017; 34:671-684. [DOI: 10.1089/neu.2016.4518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Popok
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
West CR, Squair JW, McCracken L, Currie KD, Somvanshi R, Yuen V, Phillips AA, Kumar U, McNeill JH, Krassioukov AV. Cardiac Consequences of Autonomic Dysreflexia in Spinal Cord Injury. Hypertension 2016; 68:1281-1289. [PMID: 27698067 DOI: 10.1161/hypertensionaha.116.07919] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Autonomic dysreflexia (AD), which describes episodic hypertension, is highly prevalent in people with spinal cord injury (SCI). In non-SCI, primary hypertension depresses cardiac contractile reserve via β-adrenergic mechanisms. In this study, we investigated whether AD contributes to the impairment in cardiac contractile function that accompanies SCI. We induced SCI in rodents and stratified them into sham, SCI, or SCI plus repetitive induction of AD. At 6-week post-SCI, we assessed cardiac function using in vivo (speckle-tracking echocardiography), ex vivo (working heart), and molecular approaches (Western blot). We also provide unique translational insight by comparing the relationship between the number of daily AD events and cardiac function in 14 individuals with cervical SCI. We found SCI and SCI plus repetitive induction of AD exhibited a reduction in left ventricular dimensions at 6-week post-SCI versus preinjury (P<0.049). Compared with sham, SCI exhibited a reduction in peak radial strain along with a down and rightward shift in the Starling curve (P<0.037), both of which were further depressed in SCI plus repetitive induction of AD (P<0.042). In response to β-adrenergic stimulation, SCI plus repetitive induction of AD exhibited an attenuated increase in contractile indices (P<0.001), despite no differences in β-receptor expression within the left ventricle. Our clinical data confirm our experimental findings by demonstrating significant associations between the number of daily AD events and markers of systolic and diastolic function along with left ventricular mechanics. Here, we provide the first evidence from a translational perspective that AD exerts insidious effects on cardiac function in rodents and humans with SCI.
Collapse
Affiliation(s)
- Christopher R West
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Jordan W Squair
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Laura McCracken
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Katharine D Currie
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Rishi Somvanshi
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Violet Yuen
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Aaron A Phillips
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Ujendra Kumar
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - John H McNeill
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Andrei V Krassioukov
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K).
| |
Collapse
|
13
|
Abstract
Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
14
|
Jirjis MB, Vedantam A, Budde MD, Kalinosky B, Kurpad SN, Schmit BD. Severity of spinal cord injury influences diffusion tensor imaging of the brain. J Magn Reson Imaging 2015; 43:63-74. [DOI: 10.1002/jmri.24964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B. Jirjis
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Aditya Vedantam
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Matthew D. Budde
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Benjamin Kalinosky
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Shekar N. Kurpad
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Brian D. Schmit
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| |
Collapse
|
15
|
Squair JW, West CR, Krassioukov AV. Neuroprotection, Plasticity Manipulation, and Regenerative Strategies to Improve Cardiovascular Function following Spinal Cord Injury. J Neurotrauma 2015; 32:609-21. [PMID: 25582334 DOI: 10.1089/neu.2014.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Damage to the central nervous system, as in the case of spinal cord injury (SCI), results in disrupted supraspinal sympathetic influence and subsequent cardiovascular control impairments. Consequently, people with SCI suffer from disordered basal hemodynamics and devastating fluctuations in blood pressure, as in the case of autonomic dysreflexia (AD), which likely contribute to this population's leading cause of mortality: cardiovascular disease. The development of AD is related, at least in part, to neuroanatomical changes that include disrupted descending supraspinal sympathetic control, changes in propriospinal circuitry, and inappropriate afferent sprouting in the dorsal horn. These anatomical mechanisms may thus be targeted by neural regenerative and protective therapies to improve cardiovascular control and reduce AD. Here, we discuss the relationship between abnormal cardiovascular control and its underlying neuroanatomy. We then review current studies investigating biochemical strategies to reduce the severity of AD through: 1) reducing aberrant calcitonin gene-related peptide immunoreactive afferent sprouting; 2) inhibiting inflammatory processes; and 3) re-establishing descending supraspinal sympathetic control. Finally, we discuss why additional biochemical agents and combinational approaches may be needed to completely ameliorate this condition.
Collapse
Affiliation(s)
- Jordan W Squair
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Hou S, Lu P, Blesch A. Characterization of supraspinal vasomotor pathways and autonomic dysreflexia after spinal cord injury in F344 rats. Auton Neurosci 2013; 176:54-63. [DOI: 10.1016/j.autneu.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/03/2013] [Accepted: 02/01/2013] [Indexed: 12/26/2022]
|
17
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
18
|
West CR, AlYahya A, Laher I, Krassioukov A. Peripheral vascular function in spinal cord injury: a systematic review. Spinal Cord 2012. [DOI: 10.1038/sc.2012.136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Alan N, Ramer LM, Inskip JA, Golbidi S, Ramer MS, Laher I, Krassioukov AV. Recurrent autonomic dysreflexia exacerbates vascular dysfunction after spinal cord injury. Spine J 2010; 10:1108-17. [PMID: 21094471 DOI: 10.1016/j.spinee.2010.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 08/18/2010] [Accepted: 09/30/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Individuals with high spinal cord injury (SCI) are prone to significant fluctuation in blood pressure with episodes of very high and low blood pressure during autonomic dysreflexia (AD) and orthostatic hypotension, respectively. We do not know how such blood pressure lability affects the vasculature. PURPOSE We used a well-characterized animal model of AD to determine whether increasing the frequency of AD during recovery from SCI would exacerbate injury-induced dysfunction in resistance vessels. STUDY DESIGN/SETTING Experimental animal study. International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Canada. METHODS Complete transection of the T3 spinal cord was performed in male Wistar rats. For 14 days after injury, AD was induced via colorectal distension (CRD; 30 minutes per day) in the experimental group (SCI-CRD). One month after SCI, baseline cardiovascular parameters and severity of CRD-induced AD were assessed in SCI-CRD animals and SCI-only controls. Mesenteric arteries were harvested for in vitro myography to characterize vasoactive responses to phenylephrine (PE) and acetylcholine (ACh). RESULTS Mesenteric arteries from SCI-CRD animals exhibited larger maximal responses to PE than arteries from SCI-only controls. Hyperresponsiveness to PE was not a product of endothelial dysfunction because mesenteric arteries from both groups had similar vasodilator responses to ACh. Both SCI-only controls and SCI-CRD animals exhibited CRD-evoked AD 1 month after SCI; however, CRD-induced hypertension was less pronounced in animals that were previously exposed to CRD. CONCLUSIONS Injury-induced changes within the vasculature may contribute to the development of AD after SCI. Here, we provide evidence that AD itself has significant and long-lasting effects on vascular function. This finding has implications for the medical management of AD and provides an impetus for maintaining stable blood pressure.
Collapse
Affiliation(s)
- Nima Alan
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 2009; 169:157-64. [PMID: 19682607 DOI: 10.1016/j.resp.2009.08.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/14/2009] [Accepted: 08/05/2009] [Indexed: 12/30/2022]
Abstract
Spinal cord injury (SCI) is commonly associated with devastating paralysis. However, this condition also results in a variety of autonomic dysfunctions, primarily: cardiovascular, broncho-pulmonary, urinary, gastrointestinal, sexual, and thermoregulatory. SCI and the resultant unstable autonomic control are responsible for increased mortality from cardiovascular and respiratory disease among individuals with SCI. Injury level and severity directly correlate to the severity of autonomic dysfunctions following SCI. Following high cervical SCI, parasympathetic (vagal) control will remain intact, while the spinal sympathetic circuits will lose their tonic supraspinal autonomic control. On the other hand, in individuals with injury below the 5th thoracic segment, both the sympathetic and parasympathetic control of the heart and broncho-pulmonary tree are intact. As a result of injury level, individuals with quadriplegia versus those with paraplegia will have very different cardiovascular and respiratory responses. Furthermore, similar relationships can exist between the level of SCI and function of other organs that are under autonomic control (bladder, bowel, sweat glands, etc.). It is also important to appreciate that high cervical injuries result in significant respiratory dysfunctions due to the involvement of the diaphragm and a larger portion of the accessory respiratory muscles. Early recognition and timely management of autonomic dysfunctions in individuals with SCI are crucial for the long term health outcomes in this population.
Collapse
Affiliation(s)
- Andrei Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver V5Z 1M9, BC, Canada.
| |
Collapse
|
21
|
Holman AJ. Assessing patients with fibromyalgia from a rheumatologist’s perspective: a three-step methodology for differential diagnosis. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/ijr.09.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Inskip JA, Ramer LM, Ramer MS, Krassioukov AV. Autonomic assessment of animals with spinal cord injury: tools, techniques and translation. Spinal Cord 2008; 47:2-35. [DOI: 10.1038/sc.2008.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Positional cervical spinal cord compression and fibromyalgia: a novel comorbidity with important diagnostic and treatment implications. THE JOURNAL OF PAIN 2008; 9:613-22. [PMID: 18499527 DOI: 10.1016/j.jpain.2008.01.339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 02/07/2023]
Abstract
UNLABELLED The variable presentation and treatment response of fibromyalgia (FM) may be related to comorbidities, including positional cervical cord compression (PC3). Prevalence of PC3 among routine referrals for rheumatology consultation was assessed over 2 random months (January and February 2006) from a 4-year experience of 1100 patients. PC3 was defined as cord abutment, compression or flattening with a spinal canal diameter of <10 mm by magnetic resonance sagittal flexion, neutral, and extension images. Of 107 referrals, 53 had FM, 32 had a connective tissue disease (CTD) without FM, and 22 had chronic widespread pain (CWP) without FM criteria. The dynamic cervical spine images were obtained in 70 patients: 49 of 53 with FM, 20 of 22 with CWP and 1 of 32 with CTD, based on history and examination. Among those who received magnetic resonance imaging [MRI], 52 patients met PC3 criteria (71% of FM group [35/49], 85% of CWP group [17/20]). Two patients had a Chiari malformation (FM), 1 had multiple sclerosis (CWP), and 1 had multiple myeloma (CWP). Extension views were required for diagnosis for 37 of these 52 (71%) subjects, as well as for 8 patients who also had cervical spinal cord flattening. The pilot data suggest that further evaluation of PC3 in a controlled trial is warranted among patients with FM and CWP. PERSPECTIVE Fibromyalgia is complex and poorly understood. Recognition of unsuspected, comorbid cervical cord compression may provide new insight into its variable presentation, leading to novel treatment considerations. Also, dissemination of this dynamic MRI protocol may promote further study of this emerging concept of cervical cord irritation.
Collapse
|
24
|
Garstang SV, Miller-Smith SA. Autonomic Nervous System Dysfunction After Spinal Cord Injury. Phys Med Rehabil Clin N Am 2007; 18:275-96, vi-vii. [PMID: 17543773 DOI: 10.1016/j.pmr.2007.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The autonomic nervous system (ANS) plays a key role in the regulation of many physiologic processes, mediated by supraspinal control from centers in the central nervous system. The role of autonomic dysfunction in persons with spinal cord injuries is crucial to understand because many aspects of the altered physiology seen in these individuals are directly caused by ANS dysregulation.
Collapse
Affiliation(s)
- Susan V Garstang
- Department of Physical Medicine and Rehabilitation, UMNDJ-New Jersey Medical School, 30 Bergen Street, ADMC 101, Newark, NJ 07039, USA.
| | | |
Collapse
|
25
|
Tuli S, Tuli J, Coleman WP, Geisler FH, Krassioukov A. Hemodynamic parameters and timing of surgical decompression in acute cervical spinal cord injury. J Spinal Cord Med 2007; 30:482-90. [PMID: 18092565 PMCID: PMC2141731 DOI: 10.1080/10790268.2007.11754582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 04/17/2007] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES To evaluate the relationship between the severity of cervical spinal cord injury (SCI) (American Spinal Injury Association [ASIA] grade), presence of neurogenic shock, and timing of surgical intervention. This is a post-hoc analysis from the Sygen multicenter randomized controlled trial. METHODS Blood pressure (BP) and heart rate (HR) data were collected when patients were first assessed in the emergency room (Time A) and at the time of randomization (Time B). Individuals were subdivided by ASIA grade and by the level of the systolic BP (SBP). RESULTS Only individuals with cervical SCI from the Sygen trial (n = 577) were evaluated. Severe complete SCI (ASIA grade = A) was established in 57% of these patients. A total of 74 (13%) patients with neurogenic shock (SBP < 90 mmHg) at Time A were identified. The SBP increased significantly from Time A to Time B (P < 0.0001). The median time from SCI to surgical intervention, for ASIA A, was 80.9 hours for patients with initial SBP < 90 mmHg and 58 hours for patients with initial SBP > or = 90 mmHg (P = 0.025). Multivariable analysis after adjusting for confounders revealed a statistically significant difference in the time to surgical intervention based on SBP for ASIA A (P = 0.026), yet not for ASIA B or C/D. CONCLUSIONS The presence of neurogenic shock was associated with a delay in the timing of surgical intervention in patients with cervical SCI. Detailed evaluation of autonomic dysfunctions following SCI including cardiovascular instability could improve our understanding of the complexities of clinical presentations and possible neurological outcomes.
Collapse
Affiliation(s)
- Sagun Tuli
- ICORD, University of British Columbia, Vancouver, BC, Canada
| | - Jayshree Tuli
- ICORD, University of British Columbia, Vancouver, BC, Canada
| | | | - Fred H Geisler
- ICORD, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
26
|
Aslan SC, Randall DC, Donohue KD, Knapp CF, Patwardhan AR, McDowell SM, Taylor RF, Evans JM. Blood pressure regulation in neurally intact human vs. acutely injured paraplegic and tetraplegic patients during passive tilt. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1146-57. [PMID: 17082357 DOI: 10.1152/ajpregu.00225.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated autonomic control of cardiovascular function in able-bodied (AB), paraplegic (PARA), and tetraplegic (TETRA) subjects in response to head-up tilt following spinal cord injury. We evaluated spectral power of blood pressure (BP), baroreflex sensitivity (BRS), baroreflex effectiveness index (BEI), occurrence of systolic blood pressure (SBP) ramps, baroreflex sequences, and cross-correlation of SBP with heart rate (HR) in low (0.04-0.15 Hz)- and high (0.15-0.4 Hz)-frequency regions. During tilt, AB and PARA effectively regulated BP and HR, but TETRA did not. The numbers of SBP ramps and percentages of heartbeats involved in SBP ramps and baroreflex sequences increased in AB, were unchanged in PARA, and declined in TETRA. BRS was lowest in PARA and declined with tilt in all groups. BEI was greatest in AB and declined with tilt in all groups. Low-frequency power of BP and the peak of the SBP/HR cross-correlation magnitude were greatest in AB, increased during tilt in AB, remained unchanged in PARA, and declined in TETRA. The peak cross-correlation magnitude in HF decreased with tilt in all groups. Our data indicate that spinal cord injury results in decreased stimulation of arterial baroreceptors and less engagement of feedback control as demonstrated by lower 1) spectral power of BP, 2) number (and percentages) of SBP ramps and barosequences, 3) cross-correlation magnitude of SBP/HR, 4) BEI, and 5) changes in delay between SBP/HR. Diminished vasomotion and impaired baroreflex regulation may be major contributors to decreased orthostatic tolerance following injury.
Collapse
Affiliation(s)
- Sevda C Aslan
- Center for Biomedical Engineering, Wenner-Gren Research Laboratory, University of Kentucky, Lexington, KY 40506-0070, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 2005; 44:341-51. [PMID: 16304564 DOI: 10.1038/sj.sc.3101855] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Motor and sensory deficits are well-known consequences of spinal cord injury (SCI). During the last decade, a significant number of experimental and clinical studies have focused on the investigation of autonomic dysfunction and cardiovascular control following SCI. Numerous clinical reports have suggested that unstable blood pressure control in individuals with SCI could be responsible for their increased cardiovascular mortality. The aim of this review is to outline the incidence and pathophysiological mechanisms underlying the orthostatic hypotension that commonly occurs following SCI. We describe the clinical abnormalities of blood pressure control following SCI, with particular emphasis upon orthostatic hypotension. Possible mechanisms underlying orthostatic hypotension in SCI, such as changes in sympathetic activity, altered baroreflex function, the lack of skeletal muscle pumping activity, cardiovascular deconditioning and altered salt and water balance will be discussed. Possible alterations in cerebral autoregulation following SCI, and the impact of these changes upon cerebral perfusion are also examined. Finally, the management of orthostatic hypotension will be considered.
Collapse
Affiliation(s)
- V E Claydon
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
28
|
Furlan JC, Fehlings MG, Halliday W, Krassioukov AV. Autonomic dysreflexia associated with intramedullary astrocytoma of the spinal cord. Lancet Oncol 2003; 4:574-5. [PMID: 12965279 DOI: 10.1016/s1470-2045(03)01197-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Julio C Furlan
- Department of Surgery, Division of Neurosurgery, University of Toronto, Canada
| | | | | | | |
Collapse
|
29
|
Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. J Neurotrauma 2003; 20:707-16. [PMID: 12965050 DOI: 10.1089/089771503767869944] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While autonomic dysreflexia (AD) is well recognized in the chronic stage of spinal cord injury (SCI) this potentially life-threatening complication has been only rarely documented in the acute phase (1 month) after SCI. Based on our clinical experience we hypothesized that AD is under-recognized in the acute phase of SCI. This study was undertaken to determine the incidence and clinical associations of early AD in our center. We reviewed the charts of patients with acute traumatic SCI admitted to the Toronto Western Hospital Spinal Program between 1998 and 2000. Among 58 patients with acute traumatic SCI (15F, 43M; ages 17-89 years, mean of 55.4), all three individuals who developed evidence of early AD had complete cervical tetraplegia (1F, 2M; ages 31-42 years, mean of 38.3). The incidence of early AD was 5.2% (3 of 58), whereas the adjusted incidence for the population at risk (SCI at T6 or above) was 5.7% (3 of 53). A significant number of patients in this series (87.9%, or 51 of 58) had a cervical SCI. While the mean resting systolic arterial blood pressure among these three individuals was 105.7+/-3 mm Hg, the mean systolic blood pressure at the time of early AD was 173.3+/-14.8 mm Hg (increase in systolic blood pressure over baseline ranged from 35.5% to 95%). The earliest episode of AD occurred on the 4(th) post-injury day. The trigger mechanisms for AD were somatic pain, fecal impaction, and abdominal distention. Although numerous reports emphasize AD as a potential complication of chronic SCI, our study demonstrates that AD occurs in 5.7% of patients with acute SCI above T6. Patients with severe cervical SCI are particularly susceptible to the early onset of AD. Clinicians need to be aware and highly vigilant of the potential development of AD in the acute phase of SCI.
Collapse
Affiliation(s)
- Andrei V Krassioukov
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Kim ES, Kim GM, Lu X, Hsu CY, Xu XM. Neural circuitry of the adult rat central nervous system after spinal cord injury: a study using fast blue and the Bartha strain of pseudorabies virus. J Neurotrauma 2002; 19:787-800. [PMID: 12165138 DOI: 10.1089/08977150260139156] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The distribution of retrogradely and transneuronally labeled neurons in the adult rat brain and spinal cord after contusive mid-thoracic spinal cord injury (SCI) was studied using Fast Blue (FB) and the Bartha strain of pseudorabies virus (PRV), respectively. When FB was injected into the distal spinal cord at 2 days after graded SCI at the 10th vertebral level, labeled neurons were consistently found 7 days later in supraspinal areas that normally project to the spinal cord. The number of FB-labeled neurons decreased as the injury severity increased. An inverse correlation between the number of FB-labeled neurons and injury severity was seen in most investigated brain nuclei with coefficient of correlations (r) ranging from -0.84 in the red nucleus to -0.92 in the raphe nuclei. The coefficient of correlation was relatively poor in the motor cortex (r = -0.63), where a mild injury (6.25 g.cm) resulted in a 99% damage of the corticospinal tract. Such a prominent difference between the corticospinal tract and other descending pathways can be related to the difference in location of these pathways within the adult rat spinal cord. When PRV was injected into the right sciatic nerve one month after the injury, labeled cells were consistently identified 5 days later in the spinal cord rostral to the injury and in certain supraspinal regions that regulate autonomic outflow. In these nuclei, the distribution and number of PRV-labeled neurons markedly decreased after SCI as compared to the control group. In contrast, PRV-labeled neurons were inconsistently found in the supraspinal nuclei that contribute to somatic motor outflow in normal controls and no labeling was observed in these nuclei after injury. These results demonstrate that (1) a proportion of neural network across the injured spinal cord has been spared after acute contusive SCI, (2) the proportion of spared axons of a particular pathway is closely correlated to the injury severity and the position of that pathway, and (3) the transneuronal labeling method using PRV may provide a unique approach to investigate multi-synaptic neural circuitry of the central autonomic control after SCI, but its application to the somatic motor system is limited.
Collapse
Affiliation(s)
- Eun-Sang Kim
- Department of Anatomy and Neurobiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
31
|
Mayorov DN, Adams MA, Krassioukov AV. Telemetric blood pressure monitoring in conscious rats before and after compression injury of spinal cord. J Neurotrauma 2001; 18:727-36. [PMID: 11497098 DOI: 10.1089/089771501750357663] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abnormal cardiovascular control after spinal cord injury (SCI) results in hypotension soon after injury. Later, paroxysmal hypertension and bradycardia in response to sensory stimulation below the level of injury develop in most people with SCI. In this study, we used a radiotelemetry system, in rats (n = 7), to investigate the effect of a clinically relevant compression model of SCI at T5 spinal segment on mean arterial pressure (MAP) and heart rate (HR) at rest and in response to colorectal distension. The transducers were implanted 1 month before clip compression (50-g) injury and continuous recording of MAP and HR was established for a period of 2.5 months. SCI was associated with hypotension (86+/-3 mm Hg) at 1 day after injury. In the following 2 days, MAP gradually returned to preinjury levels. By contrast, HR increased at 1 day after SCI and remained unchanged thereafter. Three days after SCI, colorectal distension caused an increase in MAP of 8+/-2 mm Hg accompanied by bradycardia (-18 bpm). One week after SCI, colorectal distension induced an increase in MAP of 9+/-2 mm Hg and bradycardia (-41 bpm). In the following days, the magnitude of reflex hypertension gradually increased, reaching 21+/-4 mm Hg at 1.5 months after SCI. In summary, our data show that resting MAP rapidly returns to control values after SCI. Episodic hypertension associated with autonomic dysreflexia can develop in rats within 1 month after incomplete SCI.
Collapse
Affiliation(s)
- D N Mayorov
- The John P. Robarts Research Institute and The Department of Physiology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
32
|
Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 2001; 94:245-56. [PMID: 11302627 DOI: 10.3171/spi.2001.94.2.0245] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Persistent activation of voltage-sensitive Na+ channels is associated with cellular toxicity and may contribute to the degeneration of neural tissue following traumatic brain and spinal cord injury (SCI). Pharmacological blockade of these channels can attenuate secondary pathophysiology and reduce functional deficits acutely. METHODS To determine the therapeutic effects of Na+ channel blockers on long-term tissue sparing and functional neurological recovery after traumatic SCI, the authors injected Wistar rats intraperitoneally with riluzole (5 mg/kg), phenytoin (30 mg/kg), CNS5546A, a novel Na+ channel blocker (15 mg/kg), or vehicle (2-HP3CD; 5 mg/kg) 15 minutes after induction of compressive SCI at C7-T1. Functional neurological recovery of coordinated hindlimb function and strength, assessed 1 week postinjury and weekly thereafter for 6 weeks, was significantly enhanced in animals treated with riluzole compared with the other treatment groups. Seven weeks postinjury the preservation of residual tissue and integrity of descending axons were determined with digital morphometrical and fluorescent histochemical analysis. All three Na+ channel blockers significantly enhanced residual tissue area at the injury epicenter compared with control. Riluzole significantly reduced tissue loss in rostrocaudal regions surrounding the epicenter, with overall sparing of gray matter and selective sparing of white matter. Also, counts of red nuclei neurons retrogradely labeled with fluorogold introduced caudal to the injury site were significantly increased in the riluzole group. CONCLUSIONS Systemic Na+ channel blockers, in particular riluzole, can confer significant neuroprotection after in vivo SCI and result in behavioral recovery and sparing of both gray and white matter.
Collapse
Affiliation(s)
- G Schwartz
- Division of Cell and Molecular Biology, The Toronto Western Research Institute, Ontario, Canada
| | | |
Collapse
|