1
|
Hao Y, Shabanpoor A, Metz GA. Stress and corticosterone alter synaptic plasticity in a rat model of Parkinson's disease. Neurosci Lett 2017; 651:79-87. [PMID: 28473257 PMCID: PMC5534221 DOI: 10.1016/j.neulet.2017.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
As a major influence on neuronal function and plasticity, chronic stress can affect the progression and symptoms of neurodegenerative conditions, such as Parkinson's disease (PD). Here we investigated the influence of unilateral dopamine depletion and stress on dopamine-related hallmarks of stress response and neuronal plasticity in a rat model of PD. Animals received either restraint stress or a combination of adrenalectomy and corticosterone (CORT) supplementation to clamp circulating glucocorticoid levels for three weeks prior to unilateral nigrostriatal dopamine depletion. Rats were tested in skilled and non-skilled motor function up to three weeks post-lesion. Midbrain mRNA expression assessments included markers of dopamine function and neuroplasticity, such as tyrosine hydroxylase (TH), synaptophysin (SYN), calcyon, and glucocorticoid receptor (GR). Along with impaired motor performance, stress and clamped CORT partially preserved TH expression in both substantia nigra (SN) and ventral tegmental area (VTA), but differentially modulated the expression of SYN, calcyon, and GR mRNA in midbrain and cortical areas. Stress reduced synaptophysin mRNA expression in SN/VTA, and elevated calcyon mRNA optical density in both non-lesion and lesion hemispheres. Stress and CORT increased GR mRNA in the non-lesion SN/VTA, while in the lesion hemisphere GR mRNA was only elevated by CORT. In the motor cortex and striatum, however, GR was higher in both hemispheres under both experimental conditions. These findings suggest that stress and stress hormones differentially affect dopaminergic function and neuroplasticity in a rat model of PD. The findings suggest a role for stress in motor and non-motor symptoms of PD and stress response.
Collapse
Affiliation(s)
- YongXin Hao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Aref Shabanpoor
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Gerlinde A Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
2
|
Changes in the expression of genes encoding for mGlu4 and mGlu5 receptors and other regulators of the indirect pathway in acute mouse models of drug-induced parkinsonism. Neuropharmacology 2015; 95:50-8. [DOI: 10.1016/j.neuropharm.2015.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
|
3
|
Morin N, Morissette M, Grégoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T. Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 2013; 73:216-31. [PMID: 23756168 DOI: 10.1016/j.neuropharm.2013.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Metabotropic glutamate 5 (mGlu5) receptor antagonists reduce L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LID) in Parkinson's disease (PD). The aim of this study was to investigate the long-term effect of the prototypal mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) on glutamate receptors known to be involved in the development of LID in the de novo chronic treatment of monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP monkeys were treated for one month with L-DOPA and developed dyskinesias while those treated with L-DOPA and MPEP (10 mg/kg) developed significantly less. Normal control and saline-treated MPTP monkeys were also included. All MPTP monkeys were extensively and similarly denervated. The basal ganglia [(3)H]ABP688 specific binding (mGlu5 receptors) was elevated in L-DOPA-treated MPTP monkeys compared to controls but not in those treated with L-DOPA and MPEP; dyskinesia scores of these monkeys correlated positively with their [(3)H]ABP688 specific binding. Striatal density (B(max)) of [(3)H]ABP688 specific binding increased in L-DOPA-treated MPTP monkeys compared to other groups and affinity (Kd) remained unchanged. Striatal mGlu5 receptor mRNA remained unchanged following treatments. Elevated basal ganglia specific binding of [(3)H]Ro 25-6981 (NMDA NR1/NR2B receptors), [(3)H]Ro 48-8587 (AMPA receptors) but not [(3)H]CGP-39653 (NMDA NR1/NR2A receptors) was observed only in L-DOPA-treated MPTP monkeys; dyskinesias scores correlated with binding. By contrast, basal ganglia [(3)H]LY341495 specific binding (mGlu2/3 receptors) decreased in L-DOPA-treated MPTP monkeys compared to controls, saline and L-DOPA + MPEP treated MPTP monkeys; dyskinesias scores correlated negatively with this binding. Hence, chronic MPEP treatment reduces the development of LID and is associated with a normalization of glutamate neurotransmission.
Collapse
Affiliation(s)
- Nicolas Morin
- Neuroscience Research Unit, Laval University Medical Center (CHUQ), Quebec, QC, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T. Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 2010; 113:715-24. [PMID: 20132464 DOI: 10.1111/j.1471-4159.2010.06635.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioral investigations of selective and potent metabotropic glutamate receptor type 5 (mGluR5) antagonists in animal models suggest involvement of mGluR5 in compensatory mechanisms of the basal ganglia circuitry in Parkinson's disease and levodopa (L-Dopa) induced motor complications. This study investigated mGluR5 changes in MPTP lesioned monkeys. The effect of a chronic 1 month treatment with L-Dopa on mGluR5-specific binding and mRNA levels was investigated in MPTP monkeys killed 4 or 24 h after their last L-Dopa administration. [(3)H]ABP688 specific binding in the putamen was elevated in L-Dopa-treated MPTP monkeys killed 24 h but not 4 h after their last L-Dopa dose compared with vehicle-treated MPTP monkeys. Caudate nucleus [(3)H]ABP688-specific binding was elevated in both groups of L-Dopa treated compared with vehicle-treated MPTP monkeys. In contrast, caudate nucleus and putamen mGluR5 mRNA levels were elevated only in L-Dopa-treated MPTP monkeys killed 4 h after their last L-Dopa administration. MPTP monkeys killed 4 h after their last L-Dopa treatment showed higher caudate nucleus and putamen L-Dopa concentrations compared with those killed after 24 h. Hence, mGluR5 in the putamen are sensitive to presence of L-Dopa leading to a rapid decrease of [(3)H]ABP688-specific binding possibly involving a direct mGluR5/dopamine receptors interaction.
Collapse
Affiliation(s)
- Bazoumana Ouattara
- Molecular Endocrinology and Genomic Research Center, Laval University Medical Center (CHUL), Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Ismayilova N, Verkhratsky A, Dascombe MJ. Changes in mGlu5 receptor expression in the basal ganglia of reserpinised rats. Eur J Pharmacol 2006; 545:134-41. [PMID: 16890937 DOI: 10.1016/j.ejphar.2006.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
Dopamine depletion in Parkinson's disease results in a series of pathophysiological changes in the basal ganglia circuitry. Increased release of glutamate plays an important role in this motor disorder, therefore, agents interacting with glutamatergic transmission may have therapeutic potential. In this study we investigated changes in both mRNA expression and the number of binding sites of the mGlu5 receptor in a reserpinised rat model of Parkinson's disease. The in situ hybridisation demonstrated that acute reserpine treatment caused a significant decrease in the expression of mGlu5 receptor mRNA in the rostral and caudal parts of the rat striatum. At the same time, tritium-labelled 2-ethyl-6-(phenylethynyl)-pyridine ([(3)H]MPEP) ligand binding experiments detected a significant increase in the total number of mGlu5 receptors in the same region of the motor loop. These apparently contradictory data can be explained by mGlu5 receptor turnover being down-regulated in reserpinised rats, due possibly to an imbalance in the rates of synthesis/insertion and internalisation/degradation of the receptor. These findings suggest that changes such as these affecting mGlu5 receptors may be involved in the pathophysiological consequences of dopamine depletion in the brain.
Collapse
Affiliation(s)
- Naila Ismayilova
- The University of Manchester, Faculty of Life Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
6
|
Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L. Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease. Eur J Neurosci 2004; 20:1255-66. [PMID: 15341597 DOI: 10.1111/j.1460-9568.2004.03591.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is growing experimental evidence for the implication of glutamate-mediated mechanisms both in the pathophysiology of Parkinson's disease and in the development of dyskinesias with long-term administration of L-3,4-dihydroxyphenylalanine (L-DOPA). However, the impact of this treatment on glutamate transmission in the basal ganglia has been poorly investigated. In this study, we examined the effects of 6-hydroxydopamine-induced lesion of nigral dopamine neurons with or without subsequent chronic L-DOPA treatment on several parameters of glutamate system function in the rat striatum and substantia nigra pars reticulata. All the lesioned animals treated with L-DOPA developed severe dyskinesias. Extracellular glutamate levels, measured by microdialysis in freely moving conditions, and gene expression of the glial glutamate transporter GLT1, assessed by in situ hybridization, were unaffected by dopamine lesion or L-DOPA treatment alone, but were both markedly increased on the lesion side of rats with subsequent L-DOPA treatment. No change in the expression of the vesicular glutamate transporters vGluT1 and vGluT2 was measured in striatum. These data show that chronic L-DOPA treatment leading to dyskinesias increases basal levels of glutamate function in basal ganglia. The L-DOPA-induced overexpression of GLT1 may represent a compensatory mechanism involving astrocytes to limit glutamate overactivity and subsequent toxic processes.
Collapse
Affiliation(s)
- S Robelet
- Interactions Cellulaires, Neurodégénérescence et Neuroplasticité, UMR 6186, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
7
|
Ojeda V, Fuentealba JA, Galleguillos D, Andrés ME. Rapid increase of Nurr1 expression in the substantia nigra after 6-hydroxydopamine lesion in the striatum of the rat. J Neurosci Res 2003; 73:686-97. [PMID: 12929136 DOI: 10.1002/jnr.10705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nurr1 is a transcription factor essential for the genesis of ventral dopaminergic neurons. In this study, we investigated the expression of Nurr1 protein and mRNA in the adult rat brain by using immunohistochemistry and in situ hybridization, respectively. Another aim of our study was to investigate Nurr1 expression in substantia nigra after dopamine depletion induced by the injection of 6-hydroxydopamine in the striatum. We observed that Nurr1 mRNA and protein are expressed in several brain regions, including cortex, hippocampus, substantia nigra, and ventral tegmental area, in agreement with previous reports using in situ hybridization. Additionally, we found that Nurr1 is expressed in brain regions that have not been previously reported, such as striatum, septum, and superior colliculus. Highest levels of expression were found in cortex, medial septum, dentate gyrus, some hypothalamic nuclei, and substantia nigra. Interestingly, we observed that, in the superior colliculus, Nurr1 protein is localized in the cytoplasm of cells, whereas, in other regions, it was localized mainly in the nuclei, suggesting that Nurr1 subcellular localization is regulated and may have functional implications. Dopamine depletion induced by an injection of 6-hydroxydopamine into the striatum produced an increase in the number of cells expressing Nurr1 mRNA and protein in both substantia nigra compacta and substantia nigra reticulata, ipsilateral and contralateral to the lesioned side, measured 24 hr after the 6-hydroxydopamine injection. These results suggest that Nurr1 may be involved in many neuronal functions in the adult central nervous system and, in particular, might be related to the compensation processes that take place in dopaminergic cells in order to normalize extracellular dopamine levels in the striatum.
Collapse
Affiliation(s)
- Viviana Ojeda
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
8
|
Fragioudaki K, Kouvelas ED, Mitsacos A. Differential effect of dopamine deficiency on the expression of NMDA receptor subunits in the weaver mouse brain. Eur J Neurosci 2003; 17:2056-64. [PMID: 12786972 DOI: 10.1046/j.1460-9568.2003.02650.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The weaver mutant mouse is characterized by degeneration of the dopaminergic mesencephalic neurons. The role of the dopaminergic system in the regulation of N-methyl-d-aspartate (NMDA) receptor subunit expression was addressed in the present study. In situ hybridization experiments were conducted to determine the expression levels of the NMDA receptor subunit mRNAs, z1, epsilon1 and epsilon2, in striatum, nucleus accumbens, olfactory tubercle and cerebral cortical regions of 26-day-, 3- and 6-month-old weaver mice. Data indicated statistically significant increases in z1 and epsilon2 mRNA levels in 6-month-old weaver striatum, whereas at the same age epsilon1 mRNA expression was decreased in all striatal regions, as well as in the cortex. In the 26-day-old weaver striatum and nucleus accumbens, statistically significant increases were observed in epsilon1 mRNA levels, whereas no changes were observed in the other two subunits. In the somatosensory cortex of 26-day-old weaver brain an increased expression of all three subunits was observed. The upregulation of NMDA receptor subunit expression observed in the somatosensory cortex can be attributed to a decreased activity of the glutamatergic thalamocortical pathway, following the degeneration of the nigrostriatal dopaminergic fibres. In the striatum, the present results demonstrate a differential control on the expression of z1 and epsilon2 subunits on the one hand, and epsilon1 subunit on the other. It is suggested that dopamine exerts a negative control on the expression of z1 and epsilon2 subunits, through a downregulation of transcription factors associated with the AP1 regulatory site, which is mediated by the activation of striatal dopamine D2 receptors.
Collapse
Affiliation(s)
- K Fragioudaki
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Patras, Greece
| | | | | |
Collapse
|
9
|
Marti M, Paganini F, Stocchi S, Mela F, Beani L, Bianchi C, Morari M. Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: opposite changes at group-II metabotropic and NMDA receptors. J Neurochem 2003; 84:792-802. [PMID: 12562523 DOI: 10.1046/j.1471-4159.2003.01569.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate whether adaptive changes of glutamatergic transmission underlie dysfunction of the cholinergic system in experimental parkinsonism, the effects of group-II metabotropic glutamate and NMDA receptor ligands on acetylcholine release was studied in striatal slices and synaptosomes obtained from naive rats, 6-hydroxydopamine hemi-lesioned rats and 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa (L-DOPA) plus benserazide (non-dyskinetic). Group-II metabotropic glutamate receptor agonists LY354740, DCG-IV and L-CCG-I inhibited the electrically-evoked endogenous acetylcholine release from slices, while NMDA facilitated it. LY354740 also inhibited K+-evoked acetylcholine release from synaptosomes. LY354740-induced inhibition was prevented by the group-II metabotropic glutamate receptor antagonist LY341495. In hemi-parkinsonian rats, sensitivity towards LY354740 was reduced while that to NMDA was enhanced in the lesioned (denervated) compared with unlesioned striatum. Moreover, dizocilpine inhibited acetylcholine release in the lesioned compared with unlesioned striatum. Chronic treatment with L-DOPA normalized sensitivity towards glutamatergic agonists. We conclude that striatal dopamine denervation results in plastic changes at group-II metabotropic glutamate and NMDA receptors that may shift glutamatergic control of acetylcholine release towards facilitation. From a clinical perspective, L-DOPA and NMDA antagonists appear effective in counteracting overactivity of striatal cholinergic interneurones associated with Parkinson's disease.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamaguchi M, Suzuki T, Abe S, Hori T, Kurita H, Asada T, Okado N, Arai H. Repeated cocaine administration differentially affects NMDA receptor subunit (NR1, NR2A-C) mRNAs in rat brain. Synapse 2002; 46:157-69. [PMID: 12325043 DOI: 10.1002/syn.10132] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the effects of intermittent intraperitoneal (i.p.) injections of cocaine (20 mg/kg) on subunit mRNAs of N-methyl-D-aspartate (NMDA) receptors (NR1/NR2A-2C) in the rat brain by in situ hybridization using phosphor screen analysis. The level of NR1 subunit mRNA significantly increased in hippocampal complexes 1 h after a single i.p. injection of cocaine. After repeated cocaine injection, the mean scores of stereotyped behavior were increased with the number of injections. The level of NR1 subunit mRNA was obviously decreased in the striatum and cortices 24 h (early withdrawal) after a final injection following 14 days of subchronic administration. During the early withdrawal period, the amount of the NR1 subunit decreased in the nucleus accumbens, globus pallidus, and subiculum. In the dentate gyrus, the NR1 mRNA level significantly increased during early withdrawal in rats subchronically treated with cocaine. Levels of NR2B subunit mRNA were reduced in the cortices and striatum. During late withdrawal from cocaine, the level of NR2C subunit mRNA in the cerebellum was also reduced. These findings suggest that the disruption of NR1, NR2B, and NR2C subunits in the discrete brain regions occurs under the cocaine-related behavioral abnormalities and would be closely implicated in the initiation and expression of behavioral sensitization induced by repeated cocaine administration. Further studies on the changes in non-NMDA receptors are required to elucidate the biological significance of glutamate receptors for the mechanisms underlying the development of behavioral sensitization.
Collapse
Affiliation(s)
- Mika Yamaguchi
- Department of Psychiatry, Juntendo Koshigaya Hospital, Juntendo University, School of Medicine, Koshigaya, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Messenger MJ, Dawson LG, Duty S. Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 2002; 43:261-71. [PMID: 12213280 DOI: 10.1016/s0028-3908(02)00090-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate (mGlu) receptors in the basal ganglia motor loop may increase cell excitability (Group I) or modulate neurotransmitter release (Group I, II and III). Nigrostriatal tract degeneration in Parkinson's disease (PD) produces downstream pathological disturbances in glutamate and GABA transmission. The present study examined whether changes in mGlu receptor gene expression may either contribute to, or compensate for these pathological changes in transmission. In situ hybridisation studies examined the levels of mGlu receptor mRNA in motor loop regions in rats bearing a 6-hydroxydopamine-induced unilateral nigrostriatal tract lesion. Gene expression was reduced in the lesion compared to intact hemispheres for mGlu(1) in the substantia nigra pars compacta (SNc; 51.8+/-11.5%), mGlu(3) in the striatum and globus pallidus (11.7+/-2.8% and 18.9+/-1.4%, respectively) and mGlu(4) in the striatum and premotor cortex (13.8+/-2.7% and 15.8+/-5.5%, respectively). Loss of mGlu(1) mRNA in the SNc confirms that mGlu(1) is highly expressed on dopaminergic neurones where it may contribute to their vulnerability in PD. The down-regulation of mGlu(3) and mGlu(4) mRNA may reflect reduced transcriptional activity in response to increased levels of extracellular glutamate in these regions under parkinsonian conditions. These changes are likely to exacerbate the pathophysiological glutamate and GABA transmission within these regions in PD.
Collapse
Affiliation(s)
- M J Messenger
- Neurodegenerative Disease Research Group, Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | |
Collapse
|
12
|
Marino MJ, Awad-Granko H, Ciombor KJ, Conn PJ. Haloperidol-induced alteration in the physiological actions of group I mGlus in the subthalamic nucleus and the substantia nigra pars reticulata. Neuropharmacology 2002; 43:147-59. [PMID: 12213269 DOI: 10.1016/s0028-3908(02)00097-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excitatory glutamatergic inputs to the subthalamic nucleus (STN), and subthalamic afferents to the substantia nigra pars reticulata (SNr) are believed to play a key role in the pathophysiology of Parkinson's disease (PD). Previously, we have shown that activation of the group I mGlus in the STN and SNr induces a direct depolarization of the neurons in these nuclei. Surprisingly, although both group I mGlus were present in the STN and SNr, mGlu5 alone mediated the DHPG-induced depolarization of the STN, and mGlu1 alone mediated the DHPG-induced depolarization of the SNr. We now report that both mGlu1 and mGlu5 are coexpressed in the same cells in both of these brain regions, and that both receptors play a role in mediating the DHPG-induced increase in intracellular calcium. Furthermore, we demonstrate that the induction of an acute PD-like state using a 16 h haloperidol treatment produces an alteration in the coupling of the group I receptors, such that post-haloperidol, DHPG-induced depolarizations are mediated by both mGlu1 and mGlu5 in the STN and SNr. Therefore, the pharmacology of the group I mGlu-mediated depolarization depends on the state of the system, and alterations in receptor coupling may be evident in pathological states such as PD.
Collapse
Affiliation(s)
- M J Marino
- Department of Neuroscience, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | |
Collapse
|
13
|
Steiner H, Kitai ST. Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 2001; 14:1390-404. [PMID: 11703467 DOI: 10.1046/j.0953-816x.2001.01756.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we showed that unilateral blockade of D1 dopamine receptors in the striatum inhibits immediate-early gene expression bilaterally throughout large parts of the cortex, including sensory-evoked expression in the barrel cortex. To further investigate this dopamine regulation of cortical function, we examined the effects of dopamine depletion on cortical gene regulation and behavioural correlates. Two days after unilateral infusion of 6-hydroxydopamine into the midbrain, rats displayed a (to some degree) bilateral reduction in cortical zif 268 expression that was more pronounced on the lesioned side. This decrease was found across motor, somatosensory, insular and piriform, but not cingulate, cortex, similar to the effects of blockade of striatal D1 receptors. Furthermore, whisker stimulation-evoked c-fos and zif 268 expression in the barrel cortex ipsilateral to the lesion was also attenuated by acute dopamine depletion. These cortical deficits were accompanied by a breakdown of spontaneous behaviours in an open-field test. In contrast, 21 days after dopamine depletion, both basal and sensory-evoked gene expression in the cortex were near-normal. This cortical recovery was paralleled by recovery in locomotion and in sensory-guided behaviour (scanning) related to the hemisphere contralateral to the lesion, but not in scanning by the dopamine-depleted hemisphere. Our results suggest that striatal dopamine exerts a widespread facilitatory influence on cortical function that is necessary, but not sufficient, for normal behaviour. Moreover, the mechanisms mediating this cortical facilitation appear to be subject to substantial neuroplasticity after dopamine perturbation.
Collapse
Affiliation(s)
- H Steiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA.
| | | |
Collapse
|
14
|
Yu TS, Wang SD, Liu JC, Yin HS. Changes in the gene expression of GABA(A) receptor alpha1 and alpha2 subunits and metabotropic glutamate receptor 5 in the basal ganglia of the rats with unilateral 6-hydroxydopamine lesion and embryonic mesencephalic grafts. Exp Neurol 2001; 168:231-41. [PMID: 11259111 DOI: 10.1006/exnr.2000.7590] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using an animal model of parkinsonism, we examined the expression of GABA(A) receptor (R) and metabotropic glutamate receptor (mGluR) 5 in the basal ganglia after transplantation with dopamine-rich tissue. The adult rats were unilaterally lesioned by the injection of 6-hydroxydopamine to their left medial forebrain bundles. At 5-10 weeks following the dopaminergic denervation, the levels of GABA(A)R in the left caudate-putamen and globus pallidus were about 20 and 16% lower than that of the right intact (control) sides, as shown by [3H]flunitrazepam binding autoradiography on the brain sections. However, the receptor density increased to around 132 and 130% of control levels in the entopeduncular nucleus and substantia nigra pars reticulata of the lesioned sides. Furthermore, in situ hybridization analysis exhibited parallel trends of changes in the levels of the GABA(A)R alpha1 and alpha2 subunit and mGluR5 mRNAs in the neurons of the brain regions with that of the proteins detected by the binding assay. A number of the rats 5 weeks postlesion were transplanted with the ventral mesencephalon of the embryonic rat into their left striata. Five weeks later, the changes in the [3H]flunitrazepam binding seemed to be recovered by approximately 50-63% on the grafted sides of the areas. Moreover, the transplantation appeared to produce a nearly complete reversal of the lesion-induced alterations in the levels of the mRNAs. Thus, the data indicate the mechanism of gene regulation for the modified expression of the receptors and could implicate the participation of the receptors in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- T S Yu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Republic of China
| | | | | | | |
Collapse
|
15
|
Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 2000; 62:63-88. [PMID: 10821982 DOI: 10.1016/s0301-0082(99)00067-2] [Citation(s) in RCA: 364] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The basal ganglia circuitry processes the signals that flow from the cortex, allowing the correct execution of voluntary movements. In Parkinson's disease, the degeneration of dopaminergic neurons of the substantia nigra pars compacta triggers a cascade of functional changes affecting the whole basal ganglia network. The most relevant alterations affect the output nuclei of the circuit, the medial globus pallidus and substantia nigra pars reticulata, which become hyperactive. Such hyperactivity is sustained by the enhanced glutamatergic inputs that the output nuclei receive from the subthalamic nucleus. The mechanisms leading to the subthalamic disinhibition are still poorly understood. According to the current model of basal ganglia organization, the phenomenon is due to a decrease in the inhibitory control exerted over the subthalamic nucleus by the lateral globus pallidus. Recent data, however, suggest that additional if not alternative mechanisms may underlie subthalamic hyperactivity. In particular, given the reciprocal innervation of the substantia nigra pars compacta and the subthalamic nucleus, the dopaminergic deficit might influence the subthalamic activity, directly. In addition, the increased excitatory drive to the dopaminergic nigral neurons originating from the hyperactive subthalamic nucleus might sustain the progression of the degenerative process. The identification of the role of the subthalamic nucleus and, more in general, of the glutamatergic mechanisms in the pathophysiology of Parkinson's disease might lead to a new approach in the pharmacological treatment of the disease. Current therapeutic strategies rely on the use of L-DOPA and/or dopamine agonists to correct the dopaminergic deficit. Drugs capable of antagonizing the effects of glutamate might represent, in the next future, a valuable tool for the development of new symptomatic and neuroprotective strategies for therapy of Parkinson's disease.
Collapse
Affiliation(s)
- F Blandini
- Neurological Institute "C. Mondino", Pavia, Italy.
| | | | | | | |
Collapse
|