1
|
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD, Lankarany M. A theoretical framework for the site-specific and frequency-dependent neuronal effects of deep brain stimulation. Brain Stimul 2021; 14:807-821. [PMID: 33991712 DOI: 10.1016/j.brs.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation is an established therapy for several neurological disorders; however, its effects on neuronal activity vary across brain regions and depend on stimulation settings. Understanding these variable responses can aid in the development of physiologically-informed stimulation paradigms in existing or prospective indications. OBJECTIVE Provide experimental and computational insights into the brain-region-specific and frequency-dependent effects of extracellular stimulation on neuronal activity. METHODS In patients with movement disorders, single-neuron recordings were acquired from the subthalamic nucleus, substantia nigra pars reticulata, ventral intermediate nucleus, or reticular thalamus during microstimulation across various frequencies (1-100 Hz) to assess single-pulse and frequency-response functions. Moreover, a biophysically-realistic computational framework was developed which generated postsynaptic responses under the assumption that electrical stimuli simultaneously activated all convergent presynaptic inputs to stimulation target neurons. The framework took into consideration the relative distributions of excitatory/inhibitory afferent inputs to model site-specific responses, which were in turn embedded within a model of short-term synaptic plasticity to account for stimulation frequency-dependence. RESULTS We demonstrated microstimulation-evoked excitatory neuronal responses in thalamic structures (which have predominantly excitatory inputs) and inhibitory responses in basal ganglia structures (predominantly inhibitory inputs); however, higher stimulation frequencies led to a loss of site-specificity and convergence towards neuronal suppression. The model confirmed that site-specific responses could be simulated by accounting for local neuroanatomical/microcircuit properties, while suppression of neuronal activity during high-frequency stimulation was mediated by short-term synaptic depression. CONCLUSIONS Brain-region-specific and frequency-dependant neuronal responses could be simulated by considering neuroanatomical (local microcircuitry) and neurophysiological (short-term plasticity) properties.
Collapse
Affiliation(s)
- Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Canada.
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Toronto, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Toronto, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Canada
| | - William D Hutchison
- CRANIA, University Health Network and University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Milad Lankarany
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| |
Collapse
|
2
|
Nardone R, Sebastianelli L, Brigo F, Golaszewski S, Trinka E, Pucks-Faes E, Saltuari L, Versace V. Effects of intrathecal baclofen therapy in subjects with disorders of consciousness: a reappraisal. J Neural Transm (Vienna) 2020; 127:1209-1215. [PMID: 32710152 DOI: 10.1007/s00702-020-02233-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
Baclofen is a structural analogue of gamma-amino-butyric acid (GABA), which reduces spastic hypertonia of striated muscle due to a mechanism of GABAB-ergic inhibition of mono- and polysynaptic reflexes at the spinal level. There are reports of patients with severe disorders of consciousness that presented a substantial improvement following intrathecal baclofen (ITB) administration for severe spasticity. The neural mechanisms underlying the clinical recovery after ITB have not yet been clarified. Baclofen could modulate sleep-wake cycles that may be dysregulated and thus interfere with alertness and awareness. The diminished proprioceptive and nociceptive sensory inputs may relieve thalamo-cortical neural networks involved in maintaining the consciousness of the self and the world. ITB treatment might also promote the recovery of an impaired GABAergic cortical tone, restoring the balance between excitatory and inhibitory cortical activity. Furthermore, glutamatergic synapses are directly or indirectly modulated by GABAB-ergic receptors. Neurophysiological techniques (such as transcranial magnetic stimulation, electroencephalography, or the combination of both) can be helpful to explore the effects of intrathecal or oral baclofen on the modulation of neural cortical circuits in humans with disorders of consciousness.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy. .,Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria. .,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria.,University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | | | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Viviana Versace
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
3
|
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD. Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 2019; 141:2142-2155. [PMID: 29878147 PMCID: PMC6022553 DOI: 10.1093/brain/awy139] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/05/2018] [Indexed: 11/12/2022] Open
Abstract
Ventral intermediate thalamic deep brain stimulation is a standard therapy for the treatment of medically refractory essential tremor and tremor-dominant Parkinson's disease. Despite the therapeutic benefits, the mechanisms of action are varied and complex, and the pathophysiology and genesis of tremor remain unsubstantiated. This intraoperative study investigated the effects of high frequency microstimulation on both neuronal firing and tremor suppression simultaneously. In each of nine essential tremor and two Parkinson's disease patients who underwent stereotactic neurosurgery, two closely spaced (600 µm) microelectrodes were advanced into the ventral intermediate nucleus. One microelectrode recorded action potential firing while the adjacent electrode delivered stimulation trains at 100 Hz and 200 Hz (2-5 s, 100 µA, 150 µs). A triaxial accelerometer was used to measure postural tremor of the contralateral hand. At 200 Hz, stimulation led to 68 ± 8% (P < 0.001) inhibition of neuronal firing and a 53 ± 5% (P < 0.001) reduction in tremor, while 100 Hz reduced firing by 26 ± 12% (not significant) with a 17 ± 6% (P < 0.05) tremor reduction. The degree of cell inhibition and tremor suppression were significantly correlated (P < 0.001). We also found that the most ventroposterior stimulation sites, closest to the border of the ventral caudal nucleus, had the best effect on tremor. Finally, prior to the inhibition of neuronal firing, microstimulation caused a transient driving of neuronal activity at stimulus onset (61% of sites), which gave rise to a tremor phase reset (73% of these sites). This was likely due to activation of the excitatory glutamatergic cortical and cerebellar afferents to the ventral intermediate nucleus. Temporal characteristics of the driving responses (duration, number of spikes, and onset latency) significantly differed between 100 Hz and 200 Hz stimulation trains. The subsequent inhibition of neuronal activity was likely due to synaptic fatigue. Thalamic neuronal inhibition seems necessary for tremor reduction and may function in effect as a thalamic filter to uncouple thalamo-cortical from cortico-spinal reflex loops. Additionally, our findings shed light on the gating properties of the ventral intermediate nucleus within the cerebello-thalamo-cortical tremor network, provide insight for the optimization of deep brain stimulation technologies, and may inform controlled clinical studies for assessing optimal target locations for the treatment of tremor.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, Toronto, Canada
| | - Suneil K Kalia
- Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Canada.,Krembil Research Institute, Toronto, Canada
| | - Mojgan Hodaie
- Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Canada.,Krembil Research Institute, Toronto, Canada
| | - Andres M Lozano
- Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Canada.,Krembil Research Institute, Toronto, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, Toronto, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, Toronto, Canada.,Krembil Research Institute, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Naik R, Valentine H, Dannals RF, Wong DF, Horti AG. Synthesis and Evaluation of a New 18F-Labeled Radiotracer for Studying the GABA B Receptor in the Mouse Brain. ACS Chem Neurosci 2018; 9:1453-1461. [PMID: 29498831 DOI: 10.1021/acschemneuro.8b00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New GABAB agonists, fluoropyridyl ether analogues of baclofen, have been synthesized as potential PET radiotracers. The compound with highest inhibition binding affinity as well as greatest agonist response, ( R)-4-amino-3-(4-chloro-3-((2-fluoropyridin-4-yl)methoxy)phenyl)butanoic acid (1b), was radiolabeled with 18F with good radiochemical yield, high radiochemical purity, and high molar radioactivity. The regional brain distribution of the radiolabeled ( R)-4-amino-3-(4-chloro-3-((2-[18F]fluoropyridin-4-yl)methoxy)phenyl)butanoic acid, [18F]1b, was studied in CD-1 male mice. The study demonstrated that [18F]1b enters the mouse brain (1% ID/g tissue). The accumulation of [18F]1b in the mouse brain was inhibited (35%) by preinjection of GABAB agonist 1a, suggesting that the radiotracer brain uptake is partially mediated by GABAB receptors. The presented data demonstrate a feasibility of imaging of GABAB receptors in rodents and justify further development of GABAB PET tracers with improved specific binding and greater blood-brain barrier permeability.
Collapse
Affiliation(s)
- Ravi Naik
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Heather Valentine
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Robert F. Dannals
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Dean F. Wong
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Andrew G. Horti
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| |
Collapse
|
5
|
Margetis K, Korfias SI, Gatzonis S, Boutos N, Stranjalis G, Boviatsis E, Sakas DE. Intrathecal baclofen associated with improvement of consciousness disorders in spasticity patients. Neuromodulation 2013; 17:699-704: discussion 704. [PMID: 24350688 DOI: 10.1111/ner.12147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/02/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Intrathecal baclofen (ITB) pump is a therapeutic option for persistent vegetative state and minimal conscious state patients that have associated spasticity. We investigated whether this treatment modality can affect their level of consciousness. METHOD In this prospective, open label, observational study, we implanted ITB pumps for the treatment of spasticity in eight patients with disorders of consciousness (vegetative state and minimally conscious state) and we followed them with the Coma Recovery Scale-Revised, the Eastern Cooperative Oncology Group (ECOG) performance scale, and the Modified Ashworth spasticity scale. Baclofen dose and complications also were noted. RESULTS The offending pathologies were traumatic brain injury in six, anoxia due to cardiac arrest in one, acute obstructive hydrocephalus in one. Two of the patients showed a marked, persistent improvement that fulfilled the criteria of emergence from minimally conscious state. Two of patients had their ITB pumps prematurely removed because of complications. The ECOG score was 4 for all patients and did not change during the study. CONCLUSION ITB might be associated with a significant improvement in the disorder of consciousness of two patients from a total of six that had a chronic ITB treatment.
Collapse
|
6
|
Froestl W. Chemistry and Pharmacology of GABAB Receptor Ligands. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:19-62. [DOI: 10.1016/s1054-3589(10)58002-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Villalba RM, Raju DV, Hall RA, Smith Y. GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus. J Comp Neurol 2006; 496:269-87. [PMID: 16538684 DOI: 10.1002/cne.20950] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal ganglia circuits and a main source of inputs to the striatum. In this study, we analyzed the subcellular and subsynaptic distribution of GABA(B) receptor subunits by using light and electron microscopic immunocytochemical techniques. Quantitative immunoperoxidase and immunogold analysis showed that both subunits display a similar pattern of distribution in CM/PF, being expressed largely at extrasynaptic and perisynaptic sites in neuronal cell bodies, dendrites, and axon-like processes and less abundantly in axon terminals. Postsynaptic GABA(B)R1 labeling was found mostly on the plasma membrane (70-80%), whereas GABA(B)R2 was more evenly distributed between the plasma membrane and intracellular compartments of CM/PF neurons. A few axon terminals forming symmetric and asymmetric synapses were also labeled for GABA(B)R1 and GABA(B)R2, but the bulk of presynaptic labeling was expressed in small axon-like processes. About 20% of presynaptic vesicle-containing dendrites of local circuit neurons displayed GABA(B)R1/R2 immunoreactivity. Vesicular glutamate transporters (vGluT1)-containing terminals forming asymmetric synapses expressed GABA(B)R1 and/or displayed postsynaptic GABA(B)R1 at the edges of their asymmetric specialization. Overall, these findings provide evidence for multiple sites where GABA(B) receptors could modulate GABAergic and glutamatergic transmission in the primate CM/PF complex.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
8
|
Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA Receptors in the Thalamus and Their Involvement in Nociception. GABA 2006; 54:29-51. [PMID: 17175809 DOI: 10.1016/s1054-3589(06)54002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fani L Neto
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
9
|
Abstract
Deep brain stimulation (DBS) has provided remarkable benefits for people with a variety of neurologic conditions. Stimulation of the ventral intermediate nucleus of the thalamus can dramatically relieve tremor associated with essential tremor or Parkinson disease (PD). Similarly, stimulation of the subthalamic nucleus or the internal segment of the globus pallidus can substantially reduce bradykinesia, rigidity, tremor, and gait difficulties in people with PD. Multiple groups are attempting to extend this mode of treatment to other conditions. Yet, the precise mechanism of action of DBS remains uncertain. Such studies have importance that extends beyond clinical therapeutics. Investigations of the mechanisms of action of DBS have the potential to clarify fundamental issues such as the functional anatomy of selected brain circuits and the relationship between activity in those circuits and behavior. Although we review relevant clinical issues, we emphasize the importance of current and future investigations on these topics.
Collapse
Affiliation(s)
- Joel S. Perlmutter
- Departments of Neurology, Radiology, Physical Therapy and Anatomy & Neurobiology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Jonathan W. Mink
- Departments of Neurology, Neurobiology & Anatomy, Brain & Cognitive Sciences, and Pediatrics, University of Rochester, Rochester, New York 14642
| |
Collapse
|
10
|
Johnston T, Duty S. GABA(B) receptor agonists reverse akinesia following intranigral or intracerebroventricular injection in the reserpine-treated rat. Br J Pharmacol 2003; 139:1480-6. [PMID: 12922935 PMCID: PMC1573971 DOI: 10.1038/sj.bjp.0705372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study examined whether GABA(B) receptor agonists injected directly into the substantia nigra pars reticulata (SNr) and globus pallidus (GP), or given intracerebroventricularly, could reverse reserpine-induced akinesia in the rat. 2. Male Sprague-Dawley rats, stereotaxically cannulated above the SNr, GP or third ventricle, were rendered akinetic by injection of reserpine (5 mg kg(-1) s.c.). After 18 h, the locomotor effects of the GABA(B) receptor agonists, baclofen or SKF 97541 were examined. 3. Unilateral injection of baclofen (1-5 micro g in 0.5 micro l) into the GP failed to evoke any locomotor response (n=6). In contrast, unilateral intranigral injection of baclofen (0.08-1.6 micro g in 0.5 micro l) produced a dose-dependent increase in net contraversive rotations reaching a maximum of 162+/-24 turns 90 min(-1) (n=6-8). Pretreatment with the selective GABA(B) receptor antagonist, CGP 46381 (2.4 micro g in 0.5 micro l), inhibited the effects of baclofen (0.8 micro g) by 68+/-9% (n=6). 4. Following intracerebroventricular injection, baclofen (0.8-4 micro g in 2 micro l) produced a dose-dependent increase in net arbitrary locomotor units (ALUs), reaching a maximum of 447+/-154 ALUs in 35 min (n=6-7). SKF 97541 (4-32 micro g in 2 micro l) similarly reversed akinesia, reaching 129+/-69 ALUs in 15 min (n=6). 5. These data show that activation of GABA(B) receptors within the SNr, but not the GP, reverses reserpine-induced akinesia. The success of intracerebroventricular injection of baclofen suggests a potential for systemically active GABA(B) receptor agonists in the treatment of akinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Tom Johnston
- Neurodegenerative Disease Research Group, Wolfson Centre for Age-Related Diseases, Hodgkin Building, GKT School of Biomedical Sciences, King's College London, London SE1 1UL
| | | |
Collapse
|
11
|
Ambardekar AV, Surin A, Parts K, Ilinsky IA, Kultas-Ilinsky K. Distribution and binding parameters of GABAA receptors in the thalamic nuclei of Macaca mulatta and changes caused by lesioning in the globus pallidus and reticular thalamic nucleus. Neuroscience 2003; 118:1033-43. [PMID: 12732248 DOI: 10.1016/s0306-4522(03)00064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ascending output from the basal ganglia to the primate motor thalamus is carried by GABAergic nigro- and pallido-thalamic pathways, which interact with intrinsic thalamic GABAergic systems represented in primates by local circuit neurons and axons of the reticular thalamic nucleus. Disease-triggered pathological processes in the basal ganglia can compromise any of these pathways either directly or indirectly, yet the effects of basal ganglia lesioning on its thalamic afferent-receiving territories has not been studied in primates. Two GABA(A) receptor ligands, [(3)H]muscimol and [(3)H]flunitrazepam, were used to study the distribution and binding properties of the receptor in intact monkeys, those with kainic acid lesions in the globus pallidus, and those with ibotenic acid lesions in the reticular nucleus using quantitative autoradiographic technique on cryostat sections of fresh frozen brain tissue. In control monkeys the binding affinities for [(3)H]muscimol averaged 50 nM in the thalamic nuclei and 86 nM in the basal ganglia while the binding densities varied (maximum density of binding sites [Bmax] range of 99.4-1000.1 fmol/mg of tissue). Binding affinities and Bmax values for [(3)H]flunitrazepam averaged 2.02 nM and 81-113 fmol/mg of tissue, respectively. Addition of 100-microM GABA increased average affinity to 1.35 nM whereas Bmax values increased anywhere from 1-50% in different nuclei. Zolpidem (100 nM) decreased binding by 68-80%. Bmax values for both ligands were decreased at the two survival times in both medial and lateral globus pallidus implying involvement of both nuclei in the lesion. Statistically significant, 40% decrease (P=0.055) of Bmax for [(3)H]muscimol was observed in the ventral anterior nucleus pars densicellularis (VAdc, the main pallidal projection territory in the thalamus) 1 week after globus pallidus lesioning and a 36% decrease (P=0.017) 4 months post-lesioning. In contrast, [(3)H]flunitrazepam Bmax values in the VAdc of the same animals were increased by 23% (P=0.021) at 1 week and 28% (P=0.005) 4 months postlesion, respectively. One week after the reticular nucleus lesioning, the binding densities of [(3)H]muscimol and [(3)H]flunitrazepam were decreased in the thalamic nuclei receiving projections from the lesioned reticular nucleus sector by approximately 50% (P<0.05) and 10-33% (P<0.05), respectively. The results suggest that different GABA(A) receptor subtypes are associated with different GABAergic systems in the thalamus which react differently to deafferentation.
Collapse
Affiliation(s)
- A V Ambardekar
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
12
|
Froestl W, Bettler B, Bittiger H, Heid J, Kaupmann K, Mickel SJ, Strub D. Ligands for expression cloning and isolation of GABA(B) receptors. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2003; 58:173-83. [PMID: 12620413 DOI: 10.1016/s0014-827x(03)00018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The scope of the plenary lecture at the occasion of the Xth Meeting on Heterocyclic Structures in Medicinal Chemistry, Palermo 2002, is considerably larger than that of the main lecture at the XVIth International Symposium on Medicinal Chemistry, Bologna 2000, described by Froestl et al. in Farmaco 56 (2001) 101. Additional information is presented, in particular, on the reaction conditions for the 31 step synthesis of the combined affinity chromatography and photoaffinity radioligand [125I]CGP84963 and on the recent developments of the molecular biology of GABA(B) receptors.
Collapse
Affiliation(s)
- Wolfgang Froestl
- Nervous System Research, Novartis Pharma AG, WKL-136.5.25, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Smith Y, Charara A, Paquet M, Kieval JZ, Paré JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22:13-42. [PMID: 11470552 DOI: 10.1016/s0891-0618(01)00098-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.
Collapse
Affiliation(s)
- Y Smith
- Division of Neuroscience, Yerkes Regional Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|