1
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
2
|
Mohamad S, Rahmah S, Zainuddin RA, A Thallib Y, Razali RS, Jalilah M, Abd Ghaffar M, Lim LS, Chang YM, Qun Liang L, Das SK, Chen YM, Liew HJ. Hoven's carp Leptobarbus hoevenii strategized metabolism needs to cope with changing environment. Heliyon 2024; 10:e25559. [PMID: 38404778 PMCID: PMC10884815 DOI: 10.1016/j.heliyon.2024.e25559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Current water warming and freshwater acidification undoubtedly affect the life of aquatic animals especially ammonotelic teleost by altering their physiological responses. The effect of temperature (28 °C vs 32 °C) and pH (7 vs. 5) on the metabolic compromising strategies of Hoven's carp (Leptobarbus hoevenii) was investigated in this study. Fishes were conditioned to (i) 28 °C + pH 7 (N28°C); (ii) 32 °C + pH 7 (N32°C); (iii) 28 °C + pH 5 (L28°C) and (iv) 32 °C + pH 5 (L32°C) for 20 days followed by osmorespiration assay. Results showed that feeding performance of Hoven's carp was significantly depressed when exposed to low pH conditions (L28°C and L32°C). However, by exposed Hoven's carp to L32°C induced high metabolic oxygen intake and ammonia excretion to about 2x-folds higher compared to the control group. As for energy mobilization, Hoven's carp mobilized liver and muscle protein under L28°C condition. Whereas under high temperature in both pH, Hoven's carp had the tendency to reserve energy in both of liver and muscle. The findings of this study revealed that Hoven's carp is sensitive to lower water pH and high temperature, thereby they remodeled their physiological needs to cope with the environmental changes condition.
Collapse
Affiliation(s)
- Suhaini Mohamad
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Sharifah Rahmah
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Rabiatul Adawiyyah Zainuddin
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Yusnita A Thallib
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Ros Suhaida Razali
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Mohamad Jalilah
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yu Mei Chang
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Li Qun Liang
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Marine Ecosystem Research Centre, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Young-Mao Chen
- Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| |
Collapse
|
3
|
Huang D, Ren M, Liang H, Ge X, Xu H, Wu L. Transcriptome analysis of the effect of high-temperature on nutrient metabolism in juvenile grass carp (Ctenopharyngodon idellus). Gene 2022; 809:146035. [PMID: 34688817 DOI: 10.1016/j.gene.2021.146035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
To investigate the variations in gene expression in grass carp under high-temperature stress, two libraries were constructed from a high-temperature treatment group (T33) and a control group (T27) and sequenced using Illumina sequencing technology. The results showed that sequencing generated a total of 279,398,348 raw reads, approximately 40.7-51.8 M clean reads were obtained from each library, and the percentage of uniquely mapped transcripts ranged from 80.13 to 84.58%. A total of 260 differentially expressed genes (DEGs) were identified under high-temperature stress, among which 84 genes were upregulated and 176 genes were downregulated. Ten DEGs were randomly selected for quantitative RT-PCR (qRT-PCR) analysis, and the results confirmed that the transcriptome analysis was reliable. Furthermore, the DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the results showed that most of the DEGs were involved in protein, lipid and carbohydrate metabolism. Moreover, plasma urea nitrogen (Urea) and triglyceride (TG) contents were significantly lower in the high-temperature treatment group than in the control group (P < 0.01). In summary, these results indicated that high-temperature stress could inhibit protein synthesis, decrease fatty acid synthesis, and weaken carbohydrate metabolism in juvenile grass carp.
Collapse
Affiliation(s)
- Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Hao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Longhua Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
4
|
Opinion AGR, Çakir R, De Boeck G. Better together: Cross-tolerance induced by warm acclimation and nitrate exposure improved the aerobic capacity and stress tolerance of common carp Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112777. [PMID: 34534834 DOI: 10.1016/j.ecoenv.2021.112777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is a threat of imminent concern that may exacerbate the impact of nitrate pollution on fish fitness. These stressors can individually affect the aerobic capacity and stress tolerance of fish. In combination, they may interact in unexpected ways where exposure to one stressor may heighten or reduce the resilience to another stressor and their interactive effects may not be uniform across species. Here, we examined how nitrate pollution under a warming scenario affects the aerobic scope (AS), and the hypoxia and heat stress susceptibility of a generally tolerant fish species, common carp Cyprinus carpio. We used a 3 × 2 factorial design, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- L-1) and one of two temperatures (18 °C or 26 °C) for 5 weeks. Warm acclimation increased the AS by 11% due to the maintained standard metabolic rate and increased maximum metabolic rate at higher temperature, and the AS improvement seemed greater at higher nitrate concentration. Warm-acclimated fish exposed to 200 mg NO3- L-1 were less susceptible to acute hypoxia, and fish acclimated at higher temperature exhibited improved heat tolerance (critical thermal maxima, CTMax) by 5 °C. This cross-tolerance can be attributed to the hematological results including maintained haemoglobin and increased haematocrit levels that may have compensated for the initial surge in methaemoglobin at higher nitrate exposure.
Collapse
Affiliation(s)
- April Grace R Opinion
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Rümeysa Çakir
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
5
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Is the dendritic organ of the striped eel catfish Plotosus lineatus an ammonia excretory organ? Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110640. [PMID: 31870932 DOI: 10.1016/j.cbpa.2019.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran.
| | - João Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| |
Collapse
|
6
|
Sun JL, Zhao LL, Cui C, Du ZJ, He Z, Wang Y, Li XW, Yang S. Influence of long-term temperature stress on respiration frequency, Na+/K+-ATPase activity, and lipid metabolism in common carp (Cyprinus carpio). J Therm Biol 2019; 83:165-171. [DOI: 10.1016/j.jtherbio.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/03/2019] [Accepted: 05/18/2019] [Indexed: 11/30/2022]
|
7
|
The effect of water temperature on muscle cellularity and gill tissue of larval and juvenile Lophiosilurus alexandri, a Neotropical freshwater fish. J Therm Biol 2018; 76:80-88. [DOI: 10.1016/j.jtherbio.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 01/19/2023]
|
8
|
|
9
|
Burleson ML, Silva PE. Cross Tolerance to Environmental Stressors: Effects of Hypoxic Acclimation on Cardiovascular Responses of Channel Catfish (Ictalurus punctatus) to a Thermal Challenge. J Therm Biol 2011; 36:250-254. [PMID: 21666848 DOI: 10.1016/j.jtherbio.2011.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoxia and temperature are two major, interactive environmental variables that affect cardiovascular function in fishes. The purpose of this study was to determine if acclimation to hypoxia increases thermal tolerance by measuring cardiovascular responses to increasing temperature in two groups of channel catfish. The hypoxic group was acclimatized to moderate hypoxia (50% air saturation, a P(O2) of approximately 75 torr) at a temperature of 22° C for seven days. The normoxic (i.e. control) group was maintained the same, but under normoxic conditions (a P(O2) of approximately 150 torr). After acclimation, fish were decerebrated, fitted with dorsal aorta cannulae, and then exposed to increasing temperature while cardiovascular variables were recorded. The end point (critical thermal maximum, CTMax) was defined as a temperature at which heart rate and blood pressure sharply decreased indicating cardiovascular collapse. Fish acclimatized to moderate hypoxia had higher resting heart rate than controls. Hypoxic acclimatized fish had a significantly higher CTMax. Acclimation to hypoxia increases the cardiovascular ability of channel catfish to withstand an acute temperature increase.
Collapse
Affiliation(s)
- Mark L Burleson
- University of North Texas, Department of Biological Sciences, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | | |
Collapse
|
10
|
Wysocki LE, Montey K, Popper AN. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish. ACTA ACUST UNITED AC 2009; 212:3091-9. [PMID: 19749101 DOI: 10.1242/jeb.033274] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Being ectothermic, fish body temperature generally depends on ambient water temperature. Thus, ambient temperature might affect various sensory systems, including hearing, as a result of metabolic and physiological processes. However, the maintenance of sensory functions in a changing environment may be crucial for an animal's survival. Many fish species rely on hearing for acoustic orientation and communication. In order to investigate the influence of temperature on the auditory system, channel catfish Ictalurus punctatus was chosen as a model for a eurytherm species and the tropical catfish Pimelodus pictus as a model for a stenotherm fish. Hearing sensitivity was measured with animals acclimated or unacclimated to different water temperatures. Ambient water temperature significantly influenced hearing thresholds and the shape of auditory evoked potentials, especially at higher frequencies in I. punctatus. Hearing sensitivity of I. punctatus was lowest at 10 degrees C and increased by up to 36 dB between 10 degrees C and 26 degrees C. Significant differences were also revealed between acclimated and unacclimated animals after an increase in water temperature but not a decrease. By contrast, differences in hearing thresholds were smaller in P. pictus, even if a similar temperature difference (8 degrees C) was considered. However, P. pictus showed a similar trend as I. punctatus in exhibiting higher hearing sensitivity at the highest tested temperature, especially at the highest frequency tested. The results therefore suggest that the functional temperature dependence of sensory systems may differ depending upon whether a species is physiologically adapted to tolerate a wide or narrow temperature range.
Collapse
Affiliation(s)
- Lidia Eva Wysocki
- Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
11
|
Thomaz JM, Martins ND, Monteiro DA, Rantin FT, Kalinin AL. Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1413-1424. [PMID: 19171380 DOI: 10.1016/j.ecoenv.2008.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/17/2008] [Accepted: 11/23/2008] [Indexed: 05/27/2023]
Abstract
The cardio-respiratory function, oxidative stress and fish antioxidants were analyzed in juvenile Nile tilapia exposed for 96 h to a sublethal trichlorfon (TRC-Neguvon, Bayer) concentration of 0.5 mg L(-1). The exposure to TRC induced oxidative stress in the heart, as manifested by the glutathione S-transferase depletion and hydroperoxide elevation, and was the most sensitive organ when compared to the liver and gills, in which the antioxidant mechanisms against TRC exposure were sufficient to remove reactive oxygen species (ROS), preventing the increase of lipid peroxidation. TRC exposure also reduced O(2) uptake (V O(2)) and increased the critical oxygen tension (PcO(2)), reducing the species capacity to survive prolonged hypoxic conditions. The heart rate and force contraction were significantly impaired, making the heart the most sensitive organ when exposed to the TRC.
Collapse
Affiliation(s)
- Juliana Montovani Thomaz
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Sollid J, Weber RE, Nilsson GE. Temperature alters the respiratory surface area of crucian carpCarassius carassiusand goldfishCarassius auratus. J Exp Biol 2005; 208:1109-16. [PMID: 15767311 DOI: 10.1242/jeb.01505] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have previously found that the gills of crucian carp Carassius carassius living in normoxic (aerated) water lack protruding lamellae,the primary site of O2 uptake in fish, and that exposing them to hypoxia increases the respiratory surface area of the gills ∼7.5-fold. We here examine whether this morphological change is triggered by temperature. We acclimated crucian carp to 10, 15, 20 and 25°C for 1 month, and investigated gill morphology, oxygen consumption and the critical oxygen concentration at the different temperatures. As expected, oxygen consumption increased with temperature. Also at 25°C an increase in the respiratory surface area, similar to that seen in hypoxia, occurred. This coincided with a reduced critical oxygen concentration. We also found that the rate of this transformation increased with rising temperature. Goldfish Carassius auratus, a close relative to crucian carp, previously kept at 25°C,were exposed to 15°C and 7.5°C. At 7.5°C the respiratory surface area of its gills was reduced by development of an interlamellar cell mass as found in normoxic crucian carp kept at 10-20°C. Thus, both species alter the respiratory surface area in response to temperature. Rather than being a graded change, the results suggest that the alteration of gill morphology is triggered at a given temperature. Oxygen-binding data reveal very high oxygen affinities of crucian carp haemoglobins, particularly at high pH and low temperature, which may be prerequisites for the reduced gill respiratory surface area at low temperatures. As ambient oxygen and temperature can both induce the remodelling of the gills, the response appears primarily to be an adaptation to the oxygen demand of the fish.
Collapse
Affiliation(s)
- Jørund Sollid
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
13
|
Anelli L, Olle C, Costa M, Rantin F, Kalinin A. Effects of temperature and calcium availability on ventricular myocardium from the neotropical teleost Piaractus mesopotamicus (Holmberg 1887—Teleostei, Serrasalmidae). J Therm Biol 2004. [DOI: 10.1016/j.jtherbio.2003.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|