1
|
El-Gendi H, Badawy AS, Bakhiet EK, Rawway M, Ali SG. Valorization of lignocellulosic wastes for sustainable xylanase production from locally isolated Bacillus subtilis exploited for xylooligosaccharides' production with potential antimicrobial activity. Arch Microbiol 2023; 205:315. [PMID: 37605001 PMCID: PMC10442310 DOI: 10.1007/s00203-023-03645-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
The worldwide availability of lignocellulosic wastes represents a serious environmental challenge with potential opportunities. Xylanases are crucial in lignocellulosic bio-hydrolysis, but the low enzyme productivity and stability are still challenges. In the current study, Bacillus subtilis (coded ARSE2) revealed potent xylanase activity among other local isolates. The enzyme production optimization revealed that maximum enzyme production (490.58 U/mL) was achieved with 1% xylan, 1.4% peptone, and 5% NaCl at 30 °C and pH 9. Furthermore, several lignocellulosic wastes were exploited for sustainable xylanase production, where sugarcane bagasse (16%) under solid-state fermentation and woody sawdust (2%) under submerged fermentation supported the maximum enzyme titer of about 472.03 and 485.7 U/mL, respectively. The partially purified enzyme revealed two protein bands at 42 and 30 kDa. The partially purified enzyme revealed remarkable enzyme activity and stability at 50-60 °C and pH 8-9. The enzyme also revealed significant stability toward tween-80, urea, DTT, and EDTA with Vmax and Km values of 1481.5 U/mL and 0.187 mM, respectively. Additionally, the purified xylanase was applied for xylooligosaccharides production, which revealed significant antimicrobial activity toward Staphylococcus aureus with lower activity against Escherichia coli. Hence, the locally isolated Bacillus subtilis ARSE2 could fulfill the xylanase production requirements in terms of economic production at a high titer with promising enzyme characteristics. Additionally, the resultant xylooligosaccharides revealed a promising antimicrobial potential, which paves the way for other medical applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Ahmed S Badawy
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Elsayed K Bakhiet
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Mohammed Rawway
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Salah G Ali
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| |
Collapse
|
2
|
Ikram Ul Haq, Shakoor S, Nawaz A, Arshad Y, Mukhtar H. Purification and Characterization of Mannanase from Aspergillus awamori for Fruit Juice Clarification. Protein Pept Lett 2021; 28:459-468. [PMID: 32938340 DOI: 10.2174/0929866527666200916142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fruit juice clarification is a challenging aspect of beverage industry which needs to be addressed for economical and hygienic production of fruit juices. OBJECTIVE Current study is focused on the complete purification, characterization and thermodynamic analysis of an efficient mannanase enzyme to analyze its applicability in biological clarification fruit juice. METHODS Mannanase production using Aspergillus awamori IIB037 in a 25 L stirred fermenter at pre optimized reaction conditions was carried out. Enzyme purification was carried out via series of steps. Characterization of enzyme along with kinetics and thermodynamic studies was conducted. Purified and characterized enzyme was assessed for its applicability in fruit juice clarification through clarification experiments on fresh apple juice. RESULTS Purification fold of 3.98 was obtained along with 86.80% purification yield of mannanase with specific activity of 158.16 U/mg. The molecular size of purified enzyme was determined as 66 kDa. The enzyme depicted 56% residual activity at 60°C after 8 hrs. Thermodynamic studies of an enzyme revealed enthalpy of activation (ΔH) and activation energy (Ea) as 30.53KJ/mol, 27.76KJ/mol, respectively. The enzyme activity increased in the presence of ß-mercaptoethanol surprisingly. On the other hand, methyl alcohol, ethanol, Hg2+ and Cu2+ inhibited enzyme activity. The enzyme showed Km and Vmax values of 11.07 mM and 19.08 μM min-1 for Locust Bean Gum (LBG) under optimal conditions. Juice treated with mannanase showed decrease in absorbance and increase in reducing sugar content. CONCLUSION The current study demonstrated that mannanase from Aspergillus awamori in its purified form has significant characteristics to be employed industrially for juice clarification.
Collapse
Affiliation(s)
- Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sheeba Shakoor
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Yesra Arshad
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
3
|
Xiong K, Yan ZX, Liu JY, Pei PG, Deng L, Gao L, Sun BG. Inter domain interactions influence the substrate affinity and hydrolysis product specificity of xylanase from Streptomyces chartreusis L1105. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01560-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Purpose
This study investigated the influence of inter-domain interactions on the substrate affinity and hydrolysis product specificity of xylanase.
Methods
Genes encoding a GH10 endo-xylanase from Streptomyces chartreusis L1105 xynA and its truncated derivative were cloned and expressed in Escherichia coli. The catalytic activities of the enzyme (xynA) and the derivative xynADCBM, lacking the carbohydrate binding module (CBM), were assessed to evaluate the role of CBM in xynA.
Results
Recombinant xynA (44 kDa) was found to be optimally active on beechwood xylan at 65 °C with pH 7.7, while xynADCBM (34 kDa) exhibited optimal activity at 65 °C with pH 7.2. Additionally, xynA and xynADCBM were found to be highly thermostable at 40–60 °C, each retaining 80% of their original activity after 30 min. The xynADCBM without the CBM domain was highly efficient at hydrolyzing xylan to produce xylobiose (over 67%), which may be because the CBM domain facilitates substrate binding with xylanase. Meanwhile, the xylan hydrolysis efficiency of xynADCBM was higher than that of xynA.
Conclusion
These findings showed that the CBM domain with non-catalytic activity has no significant effect on the characteristics of the enzyme at optimum pH and pH tolerance. It has also been suggested that the derivative xynADCBM without CBM components can promote hydrolysis of xylan to yield xylooligosaccharides, which has great potential economic benefits.
Collapse
|
4
|
Basic Mechanism of Lignocellulose Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Waghmare PR, Patil SM, Jadhav SL, Jeon BH, Govindwar SP. Utilization of agricultural waste biomass by cellulolytic isolate Enterobacter sp. SUK-Bio. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Effects of mutations of non-catalytic aromatic residues on substrate specificity of Bacillus licheniformis endocellulase cel12A. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Prajapati AS, Pawar VA, Panchal KJ, Sudhir AP, Dave BR, Patel DH, Subramanian RB. Effects of substrate binding site residue substitutions of xynA from Bacillus amyloliquefaciens on substrate specificity. BMC Biotechnol 2018; 18:9. [PMID: 29439688 PMCID: PMC5812043 DOI: 10.1186/s12896-018-0420-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aromatic residues of xylanase enzyme, W187, Y124, W144, Y128 and W63 of substrate binding pocket from Bacillus amyloliquefaciens were investigated for their role in substrate binding by homology modelling and sequence analysis. These residues are highly conserved and play an important role in substrate binding through steric hindrance. The substitution of these residues with alanine allows the enzyme to accommodate nonspecific substrates. RESULTS Wild type and mutated genes were cloned and overexpressed in BL21. Optimum pH and temperature of rBAxn exhibited pH 9.0 and 50 °C respectively and it was stable up to 215 h. Along with the physical properties of rBAxn, kinetic parameters (Km 19.34 ± 0.72 mg/ml; kcat 6449.12 ± 155.37 min- 1 and kcat/Km 333.83 ± 6.78 ml min- 1 mg- 1) were also compared with engineered enzymes. Out of five mutations, W63A, Y128A and W144A lost almost 90% activity and Y124A and W187A retained almost 40-45% xylanase activity. CONCLUSIONS The site-specific single mutation, led to alteration in substrate specificity from xylan to CMC while in case of double mutant the substrate specificity was altered from xylan to CMC, FP and avicel, indicating the role of aromatic residues on substrate binding, catalytic process and overall catalytic efficiency.
Collapse
Affiliation(s)
- Anil S. Prajapati
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| | - Vishakha A. Pawar
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| | - Ketankumar J. Panchal
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| | - Ankit P. Sudhir
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| | - Bhaumik R. Dave
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| | - Darshan H. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat India
| | - R. B. Subramanian
- P. G. Department of Biosciences, UGC-Centre of advanced studies, Satellite campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, PO Box 39, Vallabh Vidyanagar, Gujarat 388 120 India
| |
Collapse
|
8
|
Cellulase-free-thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8: Over-production through statistical approach, purification and bio-deinking/ bio-bleaching potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Nawawi MH, Mohamad R, Tahir PM, Saad WZ. Extracellular Xylanopectinolytic Enzymes by Bacillus subtilis ADI1 from EFB's Compost. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017; 2017:7831954. [PMID: 28523288 PMCID: PMC5421085 DOI: 10.1155/2017/7831954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022]
Abstract
Microbial xylanase and pectinase are two extremely valuable enzymes, which have captivated much attention. This can be seen from the increased demand for these enzymes by many industrial sectors. This study investigates the isolation and screening of extracellular xylanopectinolytic enzymes-producing bacteria in a submerged fermentation (SmF). Samples are collected from the compost of empty fruit bunch (EFB) at Biocompost Pilot Plant, located at Biorefinery Plant, Universiti Putra Malaysia. From the experiment, out of 20 isolates, 11 isolates show xylanase or/and pectinase activity, and only one isolate (EFB-11) shows the concurrent activities of xylanase and pectinase. These activities are selected for enzyme production under submerged fermentation (quantitative screening). At the 72nd hour of incubation, xylanase and pectinase show the highest production, which ranges about 42.33 U/mL and 62.17 U/mL (with low amount of cellulase present), supplemented with 2% (w/v) of rice bran as carbon source at incubation temperature level, which is 30°C. Meanwhile, the pH of media is shifted to 8.42, which indicates that EFB-11 isolate is alkalotolerant bacteria and identified as Bacillus subtilis ADI1. This strain proves to have potential in agroindustrial bioconversion and has a promising ability to scale up to an industrial scale.
Collapse
Affiliation(s)
- Muhammad Hariadi Nawawi
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Paridah Md. Tahir
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Zuhainis Saad
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech 2016; 6:136. [PMID: 28330208 PMCID: PMC4912962 DOI: 10.1007/s13205-016-0454-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Aspergillus terreus FBCC 1369 was grown in solid-state culture under statistically optimized conditions. β-Mannanase was purified to apparent homogeneity by ultrafiltration, anion exchange and gel filtration chromatography. A purification factor of 10.3-fold was achieved, with the purified enzyme exhibiting specific activity of 53 U/mg protein. The purified β-mannanase was optimally active at pH 7.0 and 70 °C and displayed stability over a broad pH range of 4.0–8.0 and a 30 min half-life at 80 °C. The molecular weight of β-mannanase was calculated as ~49 kDa by SDS-PAGE. The enzyme exhibited Km and Vmax values of 5.9 mg/ml and 39.42 µmol/ml/min, respectively. β-Mannanase activity was stimulated by β-mercaptoethanol and strongly inhibited by Hg2+. The β-Mannanase did not hydrolyze mannobiose and mannotriose, but only mannotetraose liberating mannose and mannotriose. This indicated that at least four mannose residues were required for catalytic activity. Oligosaccharide with a degree of polymerization (DP) three was the predominant product in the case of locust bean gum (16.5 %) and guar gum (15.8 %) hydrolysis. However, the enzyme liberated DP4 oligosaccharide (24 %) exclusively from konjac gum. This property can be exploited in oligosaccharides production with DP 3–4. β-Mannanase hydrolyzed pretreated lignocelluloses and liberated reducing sugars (% theoretical yield) from copra meal (30 %). This property is an important factor for the bioconversion of the biomass.
Collapse
|
11
|
Goluguri BR, Thulluri C, Addepally U, Shetty PR. Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): Purification and kinetic characterization. Int J Biol Macromol 2016; 82:823-9. [DOI: 10.1016/j.ijbiomac.2015.10.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
12
|
Zafar A, Aftab MN, ud Din Z, Aftab S, Iqbal I, ul Haq I. Cloning, Purification and Characterization of a Highly Thermostable Amylase Gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol 2015; 178:831-48. [PMID: 26526464 DOI: 10.1007/s12010-015-1912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
A putative α-amylase gene of Thermotoga petrophila was cloned and expressed in Escherichia coli BL21 (DE3) using pET-21a (+), as an expression vector. The growth conditions were optimized for maximal expression of the α-amylase using various parameters, such as pH, temperature, time of induction and addition of an inducer. The optimum temperature and pH for the maximum expression of α-amylase were 22 °C and 7.0 pH units, respectively. Purification of the recombinant enzyme was carried out by heat treatment method, followed by ion exchange chromatography with 34.6-fold purification having specific activity of 126.31 U mg(-1) and a recovery of 56.25%. Molecular weight of the purified α-amylase, 70 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 100 °C temperature and at pH of 7.0. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA indicating that the α-amylase was a metalloenzyme. However, addition of 1% Tween 20, Tween 80 and β-mercaptoethanol constrained the enzyme activity to 87, 96 and 89%, respectively. No considerable effect of organic solvents (ethanol, methanol, isopropanol, acetone and n-butanol) was observed on enzyme activity. With soluble starch as a substrate, the enzyme activity under optimized conditions was 73.8 U mg(-1). The α-amylase enzyme was active to hydrolyse starch forming maltose.
Collapse
Affiliation(s)
- Asma Zafar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zia ud Din
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Saima Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Irfana Iqbal
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
13
|
Zafar A, Aftab MN, Din ZU, Aftab S, Iqbal I, Shahid A, Tahir A, Haq IU. Cloning, Expression, and Purification of Xylanase Gene from Bacillus licheniformis for Use in Saccharification of Plant Biomass. Appl Biochem Biotechnol 2015; 178:294-311. [DOI: 10.1007/s12010-015-1872-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022]
|
14
|
Rani GB, Chiranjeevi T, Chandel AK, Satish T, Radhika K, Narasu ML, Uma A. Optimization of selective production media for enhanced production of xylanases in submerged fermentation by Thielaviopsis basicola MTCC 1467 using L16 orthogonal array. Journal of Food Science and Technology 2014; 51:2508-16. [PMID: 25328190 DOI: 10.1007/s13197-012-0784-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 11/30/2022]
Abstract
Enzymes have been the centre of attention for researchers/industrialists worldwide due to their wide range of physiological, analytical, food/feed and industrial based applications. Among the enzymes explored for industrial applications, xylanases play an instrumental role in food/feed, textile/detergent, paper and biorefinery based application sectors. This study deals with the statistical optimization of xylanase production by Thielaviopsis basicola MTCC 1467 under submerged fermentation conditions using rice straw, as sole carbon source. Different fermentation parameters such as carbon source, nitrogen source, inorganic salts like KH2PO4, MgSO4 and pH of the medium were optimized at the individual and interactive level by Taguchi orthogonal array methodology (L16). All selected fermentation parameters influenced the enzyme production. Rice straw, the major carbon source mainly influenced the production of xylanase (~34 %). After media optimization, the yield of enzyme improved from 38 to ~60 IU/ml (161.5 %) indicating the commercial production of xylanase by T. basicola MTCC 1467. This study shows the potential of T. basicola MTCC 1467 for the efficient xylanase production under the optimized set of conditions.
Collapse
Affiliation(s)
- G Baby Rani
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India
| | - T Chiranjeevi
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India
| | - Anuj K Chandel
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India ; Department of Biotechnology, School of Engineering of Lorena, Engenharia de Lorena Estrada Municipal do Campinho, Caixa Postal 116 12.602.810 Lorena, SP Brazil
| | - T Satish
- Indian Institute of chemical Technology, Tarnaka, Hyderabad, 500 607 India
| | - K Radhika
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India
| | - M Lakshmi Narasu
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India
| | - A Uma
- Centre for Biotechnology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085 India
| |
Collapse
|
15
|
Discovery and characterization of endo-xylanase and β-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Rahman MA, Choi YH, Pradeep GC, Choi YS, Choi EJ, Cho SS, Sohng JK, Yoo JC. An alkaline and metallo-protein type endo xylanase from Streptomyces sp. CSWu-1. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Zhu Y, Li X, Sun B, Song H, Li E, Song H. Properties of an Alkaline-Tolerant, Thermostable Xylanase from Streptomyces chartreusis L1105, Suitable for Xylooligosaccharide Production. J Food Sci 2012; 77:C506-11. [DOI: 10.1111/j.1750-3841.2012.02671.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Biochemical and biophysical characterization of purified thermophilic xylanase isoforms in Cereus pterogonus plant spp. Protein J 2012; 31:141-9. [PMID: 22231627 DOI: 10.1007/s10930-011-9383-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Two thermostable xylanase isoforms T₆₀ and T₈₀ were purified to homogeneity from the cladodes of the xerophytic Cereus pterogonus plant species. After three consecutive purification steps, the specific activity of T₆₀ and T₈₀ isoforms were found to be 178.6 and 216.2 U mg⁻¹ respectively. The molecular mass of both isoforms was determined to be 80 kDa. The optimum temperature for T₆₀ and T₈₀ xylanase isoforms were 60 and 80 °C respectively. The pH was 5.0 for both isoforms. The presence of divalent metal ions (10 mM Co²⁺) showed stimulatory effects of both catalytic activities, where as in the presence of Hg²⁺, Cd²⁺, Cu²⁺ showed inhibitory effect on these activities at all concentrations studied. The thermodynamic analysis of xylanase activity using denaturation kinetics and the presence divalent cations at 30-100 °C, showed lower ΔH, ΔS, and ΔG values at all the temperatures investigated. The melting temperature of purified T₈₀ xylanase isoform as determined by TG/DTA analysis and it showed the unfolding temperature was 80 °C. The g value and hyperfine (A) value purified xylanase T₈₀ isoform was 2.017 and 10.80 respectively. Immunoblot analysis with antiserum raised against the purified T₈₀ xylanase isoforms revealed single immunolgically related polypeptides of 80 kDa, identical with the polypeptide band produced on SDS-PAGE. The results of double immunodiffusion against the T₈₀ isoforms showed a single precipitin line indicating that the serum used was specific to these xylanase isoforms. The kinetic and thermodynamic properties suggested that xylanase from C. pterogonus may have a potential usage in various industries.
Collapse
|
20
|
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100534] [Citation(s) in RCA: 1243] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Akhavan Sepahy A, Ghazi S, Akhavan Sepahy M. Cost-Effective Production and Optimization of Alkaline Xylanase by Indigenous Bacillus mojavensis AG137 Fermented on Agricultural Waste. Enzyme Res 2011; 2011:593624. [PMID: 21904670 PMCID: PMC3166571 DOI: 10.4061/2011/593624] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/19/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022] Open
Abstract
A xylanase producer Bacillus mojavensis strain, called AG137, isolated from cotton farm (Kashan-Iran). The optimal xylanase activity reached at 55°C & pH 9.0. Enzyme yield was studied using a medium with different agricultural wastes as inducers. Xylanase production of about 249.308 IU/mL was achieved at pH 8 and 37°C, within 48 h submerged fermentation in enzyme production medium supplemented with 2% (w/v) oat bran as an optimum carbon source. A mixture of 1% (w/v) yeast extract and 1% (w/v) tryptone as optimum nitrogen sources, agitation speed 200 rpm, and inoculum size 2% (v/v) were the optimums for maximum production. Accordingly, xylanase yield from 194.68 IU/mL under non-optimized fermentation condition enhanced to 302.466 IU/mL in optimized condition. Screened xylanase is thermostable, presenting 70% stability at 60°C during 30 min. Further enzyme incubation in higher temperature caused a decrease in the residual enzyme activity, yet it retained 68%–50% of its activity after 1 hour from 45°C to 55°C. Besides, it is stable in pH 9 and 10, maintaining over 70% of its activity for 2 h. The enzyme also could preserve 71% and 63% of its initial activity after 3 hours of pre-incubation in the same alkaline condition. Produced xylanase therefore was introduced as an alkaline-active and stable one, displaying suitable thermostability feature, confirmed by HPLC analysis. Hence, all xylanase properties highlight its promising uses in industrial scale.
Collapse
Affiliation(s)
- Abbas Akhavan Sepahy
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, 16 South Makran St., Heravi Sq., Pasdaran, Tehran 19585, Iran
| | | | | |
Collapse
|
22
|
Murugan S, Arnold D, Pongiya UD, Narayanan PM. Production of Xylanase from Arthrobacter sp. MTCC 6915 Using Saw Dust As Substrate under Solid State Fermentation. Enzyme Res 2011; 2011:696942. [PMID: 22013512 PMCID: PMC3191362 DOI: 10.4061/2011/696942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 08/08/2011] [Indexed: 11/29/2022] Open
Abstract
Saw dust was used as substrate for xylanase production from Arthrobacter sp. MTCC 6915. The study of period of incubation, temperature, pH, carbon, and nitrogen sources for xylanase production was optimized. Xylanase production was found to be optimum at an incubation period of 96 hrs (117.0 U/mL), temperature 30°C (105.0 U/mL), and pH 9.0 (102.9 U/mL). The results showed that the xylanase production was found to be higher in the presence of carboxymethylcellulose (176.4 U/mL) and dextrose (126.0 U/mL). It was also observed that peptone (170.1 U/mL) and beef extract (161.7 U/mL) supported maximum xylanase production.The enzyme was characterized and found to be fairly active at pH 9 (764.4 U/mL) and temperature 60°C (819 U/mL). Even in the present study, a major difference in the production temperature (30°C) and optimal temperature (60°C) of the enzyme activity was observed. However, the pH of the production media and the enzyme activity were found to be the same (pH 9).
Collapse
Affiliation(s)
- Sevanan Murugan
- Microbiology Laboratory, School of Biotechnology and Health Sciences, Karunya University, Karunya Nagar, 641114, Coimbatore, India
| | | | | | | |
Collapse
|
23
|
Nawel B, Said B, Estelle C, Hakim H, Duchiron F. Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Mohana S, Shah A, Divecha J, Madamwar D. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. BIORESOURCE TECHNOLOGY 2008; 99:7553-7564. [PMID: 18374565 DOI: 10.1016/j.biortech.2008.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 05/26/2023]
Abstract
Xylanase production by a newly isolated strain of Burkholderia sp. was studied under solid state fermentation using anaerobically treated distillery spent wash. Response surface methodology (RSM) involving Box-Behnken design was employed for optimizing xylanase production. The interactions between distillery effluent concentration, initial pH, moisture ratio and inoculum size were investigated and modeled. Under optimized conditions, xylanase production was found to be in the range of 5200-5600 U/g. The partially purified enzyme recovered after ammonium sulphate fractionation showed maximum activity at 50 degrees C and pH 8.6. Kinetic parameters like Km and Vmax for xylan were found to be 12.75 mg/ml and 165 micromol/mg/min. In the presence of metal ions such as Ca2+, Co2+, Mn2+, Ba2+, Mg2+ and protein disulphide reducing agents such as beta-mercaptoethanol and dithiotheritol (DTT) the activity of enzyme increased, where as strong inhibition of enzyme activity was observed in the presence of Cu2+, Ag+, Fe2+ and SDS. The crude enzyme hydrolysed lignocellulosic substrate, wheat bran as well as industrial pulp.
Collapse
Affiliation(s)
- Sarayu Mohana
- BRD School of Biosciences, Sardar Patel Maidan, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.
| | | | | | | |
Collapse
|
25
|
Rajendran A, Selvaraj V, Thangavelu V. Statistical optimization and kinetic modeling of xylanase production byArthrobactersp. ASIA-PAC J CHEM ENG 2008. [DOI: 10.1002/apj.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Nyanga LK, Nout MJR, Gadaga TH, Theelen B, Boekhout T, Zwietering MH. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe. Int J Food Microbiol 2007; 120:159-66. [PMID: 17904237 DOI: 10.1016/j.ijfoodmicro.2007.06.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 06/19/2007] [Accepted: 06/23/2007] [Indexed: 11/15/2022]
Abstract
Masau are Zimbabwean wild fruits, which are usually eaten raw and/ or processed into products such as porridge, traditional cakes, mahewu and jam. Yeasts, yeast-like fungi, and lactic acid bacteria present on the unripe, ripe and dried fruits, and in the fermented masau fruits collected from Muzarabani district in Zimbabwe were isolated and identified using physiological and molecular methods. The predominant species were identified as Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia fabianii and Aureobasidium pullulans. A. pullulans was the dominant species on the unripe fruits but was not isolated from the fermented fruit pulp. S. cerevisiae and I. orientalis were predominant in the fermented fruit pulp but were not detected in the unripe fruits. S. cerevisiae, I. orientalis, P. fabianii and S. fibuligera are fermentative yeasts and these might be used in the future development of starter cultures to produce better quality fermented products from masau fruit. Lactic acid bacteria were preliminary identified and the predominant strains found were Lactobacillus agilis and L. plantarum. Other species identified included L. bifermentans, L. minor, L. divergens, L. confusus, L. hilgardii, L. fructosus, L. fermentum and Streptococcus spp. Some of the strains of LAB could also potentially be used in a mixed-starter culture with yeasts and might contribute positively in the production of fermented masau fruit products.
Collapse
Affiliation(s)
- Loveness K Nyanga
- Institute of Food, Nutrition and Family Sciences, University of Zimbabwe, P. Box MP167, Mt Pleasant, Harare, Zimbabwe
| | | | | | | | | | | |
Collapse
|
27
|
Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Khandeparkar R, Bhosle NB. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 2006; 157:315-25. [PMID: 16426818 DOI: 10.1016/j.resmic.2005.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 09/13/2005] [Indexed: 11/26/2022]
Abstract
Thermoalkalophilic Enterobacter sp. MTCC 5112 was isolated from a sediment sample collected from the Mandovi estuary on the west coast of India. This culture produced extracellular xylanase. The xylanase enzyme was isolated by ammonium sulfate (80%) fractionation and purified to homogeneity using size exclusion and ion exchange chromatography. The molecular mass of the xylanase was approximately 43 kDa. The optimal pH of the xylanase activity was 9, and at room temperature it showed 100% stability at pH 7, 8 and 9 for 3 h. The optimal temperature for the enzyme activity was 100 degrees C at pH 9.0. At 80 degrees C and pH 9, 90% of the enzyme activity was retained after 40 min. At 70 and 60 degrees C, the enzyme retained 64% and 85% of its activity after 18 h, respectively, while at 50 degrees C and pH 9 the enzyme remained stable for days. For xylan, the enzyme gave a K(m) value of 3.3 mg ml(-1) and a V(max) value of 5,000 micromol min(-1) mg(-1) when the reaction was carried out at 100 degrees C and pH 9. In the presence of metal ions such as Co(2+), Zn(2+), Fe(2+), Cu(2+), Mg(2+) and Ca(2+) the activity of the enzyme increased, whereas strong inhibition of enzyme activity was observed in the presence of Hg(2+) and EDTA. To the best of our knowledge, this is the first report on the production of xylanase by this bacterium.
Collapse
|
29
|
Shin YO, Wahnon D, Weber ME, Vera JH. Selective precipitation and recovery of xylanase using surfactant and organic solvent. Biotechnol Bioeng 2004; 86:698-705. [PMID: 15137082 DOI: 10.1002/bit.20080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The selective precipitation of xylanase from an aqueous phase containing mixtures of xylanase and cellulase was studied using an ionic surfactant as precipitating ligand and a polar organic solvent as recovery solvent. Of four ionic surfactants tested, sodium di-(2-ethylhexyl) sulfosuccinate (AOT) showed a complete removal of xylanase at pH 4.5. The recovery of xylanase from the xylanase-AOT complex was a strong function of the type and the volume of the polar solvent and of the concentration of sodium acetate buffer in the final aqueous solution used to solubilize the recovered xylanase. With ethanol as a recovery solvent, a recovery of xylanase activity of 78 +/- 10% was obtained. The cellulase activity in the recovered xylanase was below the detection limit. The results demonstrate that an ionic surfactant can recover enzymes from aqueous solutions without loss in their activity.
Collapse
Affiliation(s)
- Youn-Ok Shin
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 2B2 Canada
| | | | | | | |
Collapse
|
30
|
|