1
|
Ma Q, Zheng L, Cheng H, Li X, Liu Z, Gong P. PDCD4-induced oxidative stress through FGR/NF-κB axis in rectal cancer radiotherapy-induced AKI. Int Immunopharmacol 2024; 132:111779. [PMID: 38581987 DOI: 10.1016/j.intimp.2024.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to investigate the molecular mechanism of the effect of PDCD4 on radiotherapy-induced acute kidney injury (AKI) in rectal cancer through the regulation of FGR/NF-κB signaling. Differentially expressed genes were identified using Gene Expression Omnibus (GEO) datasets (GSE90627 for rectal cancer and GSE145085 for AKI) and R software. The human renal tubular epithelial cell line, HK-2, was used to establish an in vitro model of radiotherapy-induced AKI. RT-qPCR and western blotting were used to detect gene and protein expression levels, respectively. Cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. The malondialdehyde and superoxide dismutase levels in the cell culture supernatants were determined. Additionally, an in vivo AKI model was established using BALB/c mice, and kidney tissue morphology, expression of the renal injury molecule KIM-1, apoptosis of renal tubular cells, and TAS and TOS in serum were evaluated. Bioinformatics analysis revealed the upregulated expression of PDCD4 in AKI. In vitro experiments demonstrated that PDCD4 induced apoptosis in renal tubular cells by promoting FGR expression, which activated the NF-κB signaling pathway and triggered an oxidative stress response. In vivo animal experiments confirmed that PDCD4 promoted oxidative stress response and radiotherapy-induced AKI through the activation of the FGR/NF-κB signaling pathway. Silencing PDCD4 attenuated radiotherapy-induced AKI. Our findings suggest that PDCD4 may induce radiotherapy-induced AKI in rectal cancer by promoting FGR expression, activating the NF-κB signaling pathway, and triggering an oxidative stress response.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Lu Zheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Hao Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Xiaoyang Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510515, PR China
| | - Zhining Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China.
| | - Peng Gong
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China.
| |
Collapse
|
2
|
Zhang M, Yang J, Liang G, Yuan H, Wu Y, Li L, Yu T, Zhang Y, Wang J. FOXA1-Driven pathways exacerbate Radiotherapy-Induced kidney injury in colorectal cancer. Int Immunopharmacol 2024; 131:111689. [PMID: 38471364 DOI: 10.1016/j.intimp.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.
Collapse
Affiliation(s)
- Minhai Zhang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Guodong Liang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiqiong Yuan
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanni Wu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
3
|
Xu J, He J, Zhou YL, Weng Z, Li M, Wang ZX, He Y. Von Willebrand factor promotes radiation-induced intestinal injury (RIII) development and its cleavage enzyme rhADAMTS13 protects against RIII by reducing inflammation and oxidative stress. Free Radic Biol Med 2024; 210:1-12. [PMID: 37956910 DOI: 10.1016/j.freeradbiomed.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Patients with abdominopelvic cancer undergoing radiotherapy commonly develop radiation-induced intestinal injury (RIII); however, its underlying pathogenesis remains elusive. The von Willebrand factor (vWF)/a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in thrombosis, inflammation, and oxidative stress. However, its role in RIII remains unclear. In this study, the effect of radiation on vWF and ADAMTS13 expression was firstly evaluated in patients with cervical cancer undergoing radiotherapy and C57BL/6J mice exposed to different doses of total abdominal irradiation. Then, mice with the specific deletion of vWF in the platelets and endothelium were established to demonstrate the contribution of vWF to RIII. Additionally, the radioprotective effect of recombinant human (rh) ADAMTS13 against RIII was assessed. Results showed that both the patients with cervical cancer undergoing radiotherapy and RIII mouse model exhibited increased vWF levels and decreased ADAMTS13 levels. The knockout of platelet- and endothelium-derived vWF rectified the vWF/ADAMTS13 axis imbalance; improved intestinal structural damage; increased crypt epithelial cell proliferation; and reduced radiation-induced apoptosis, inflammation, and oxidative stress, thereby alleviating RIII. Administration of rhADAMTS13 could equally alleviate RIII. Our results demonstrated that abdominal irradiation affected the balance of the vWF/ADAMTS13 axis. vWF exerted a deleterious role and ADAMTS13 exhibited a protective role in RIII progression. rhADAMTS13 has the potential to be developed into a radioprotective agent.
Collapse
Affiliation(s)
- Jie Xu
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ya-Li Zhou
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yang He
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Zhang D, Zhang S, He Z, Chen Y. Cytosine-phosphate-guanine oligodeoxynucleotides alleviate radiation-induced kidney injury in cervical cancer by inhibiting DNA damage and oxidative stress through blockade of PARP1/XRCC1 axis. J Transl Med 2023; 21:679. [PMID: 37773127 PMCID: PMC10541701 DOI: 10.1186/s12967-023-04548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Zheng He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Kerns SL, Williams JP, Marples B. Modeling normal bladder injury after radiation therapy. Int J Radiat Biol 2023; 99:1046-1054. [PMID: 36854008 PMCID: PMC10330568 DOI: 10.1080/09553002.2023.2182000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE For decades, Dr. John Moulder has been a leading radiation biologist and one of the few who consistently supported the study of normal tissue responses to radiation. His meticulous modeling and collaborations across the field have offered a prime example of how research can be taken from the bench to the bedside and back, with the ultimate goal of providing benefit to patients. Much of the focus of John's work was on mitigating damage to the kidney, whether as the result of accidental or deliberate clinical exposures. Following in his footsteps, we offer here a brief overview of work conducted in the field of radiation-induced bladder injury. We then describe our own preclinical experimental studies which originated as a response to reports from a clinical genome-wide association study (GWAS) investigating genomic biomarkers of normal tissue toxicity in prostate cancer patients treated with radiotherapy. In particular, we discuss the use of Renin-Angiotensin System (RAS) inhibitors as modulators of injury, agents championed by the Moulder group, and how RAS inhibitors are associated with a reduction in some measures of toxicity. Using a murine model, along with precise CT-image guided irradiation of the bladder using single and fractionated dosing regimens, we have been able to demonstrate radiation-induced functional injury to the bladder and mitigation of this functional damage by an inhibitor of angiotensin-converting enzyme targeting the RAS, an experimental approach akin to that used by the Moulder group. We consider our scientific trajectory as a bedside-to-bench approach because the observation was made clinically and investigated in a preclinical model; this experimental approach aligns with the exemplary career of Dr. John Moulder. CONCLUSIONS Despite the differences in functional endpoints, recent findings indicate a commonality between bladder late effects and the work in kidney pioneered by Dr. John Moulder. We offer evidence that targeting the RAS pathway may provide a targetable pathway to reducing late bladder toxicity.
Collapse
Affiliation(s)
- Sarah L. Kerns
- Department of Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian Marples
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Oslina D, Rybkina V, Adamova G, Zhuntova G, Bannikova M, Azizova T. Biomarkers of Atherosclerotic Vascular Disease in Workers Chronically Exposed to Ionizing Radiation. HEALTH PHYSICS 2021; 121:92-101. [PMID: 33867435 DOI: 10.1097/hp.0000000000001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ABSTRACT It is well established that cohorts of individuals exposed to ionizing radiation demonstrate increased risks of cardio- and cerebrovascular diseases. However, mechanisms of these radiation-induced diseases developing in individuals exposed to ionizing radiation remain unclear. To identify biomarkers of the atherosclerotic vessel damage in workers chronically exposed to ionizing radiation, this study considered 49 workers of the Russian nuclear production facility-the Mayak Production Association (mean age of 68.73 ± 6.92 years)-and 38 unexposed individuals (mean age of 68.84 ± 6.20 y) who had never been exposed to ionizing radiation (control). All workers were chronically exposed to combined radiation (external gamma rays and internal alpha particles). The mean cumulative liver absorbed dose from external gamma-ray exposure was 0.18 ± 0.12 Gy; the mean cumulative liver absorbed dose from internal alpha-particles was 0.14 ± 0.21 Gy. Levels of biomarkers in blood serum of the study participants were measured using the ELISA method. Elevated levels of apolipoprotein B, superoxide dismutase, monocyte chemoattractant protein 1, vascular cell adhesion protein 1, and a decreased level of endothelin-1 were observed in blood serum of Mayak PA workers chronically exposed to combined radiation compared to control individuals. A significant positive correlation was demonstrated between the vascular cell adhesion protein 1 level and cumulative liver absorbed doses from external gamma radiation and internal alpha radiation. Findings of the study suggest that molecular changes in blood of individuals occupationally exposed to ionizing radiation (combined internal exposure to alpha particles and external exposure to gamma rays) may indicate dyslipidemia, oxidative stress, inflammation, and endothelial dysfunction involved in atherosclerosis development.
Collapse
Affiliation(s)
- Darya Oslina
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorskoe shosse 19, Ozyorsk Chelyabinsk Region, 456780 Russia
| | | | | | | | | | | |
Collapse
|
7
|
LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules 2019; 24:E2076. [PMID: 31159153 PMCID: PMC6600250 DOI: 10.3390/molecules24112076] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
- Molecular Hydrogen Institute, Enoch City, UT, 847 21, USA.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Narcis Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| |
Collapse
|
8
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
9
|
Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L, Okruhlicova L, Ravingerova T, Singal PK, Szeiffova Bacova B, Viczenczova C, Vrbjar N, Tribulova N. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol 2017; 95:1190-1203. [PMID: 28750189 DOI: 10.1139/cjpp-2017-0121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.
Collapse
Affiliation(s)
- Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pavel Babal
- b Institute of Pathology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Miroslav Barancik
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Karel Frimmel
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Barbora Kalocayova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Rakesh C Kukreja
- c Division of Cardiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucia Mezesova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Ludmila Okruhlicova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Tanya Ravingerova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pawan K Singal
- e University of Manitoba, St. Boniface Research Centre, Winnipeg, MB R2H 2A6, Canada
| | | | - Csilla Viczenczova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Norbert Vrbjar
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Narcis Tribulova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, Tapio S, Zhang W, Gomolka M. Low-dose ionising radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:90-100. [DOI: 10.1016/j.mrrev.2015.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022]
|
11
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 810] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
12
|
Stewart FA, Hoving S, Russell NS. Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat Res 2010; 174:865-9. [PMID: 21128810 DOI: 10.1667/rr1862.1] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Radiation is an independent risk factor for cardiovascular and cerebrovascular disease in cancer patients. Modern radiotherapy techniques reduce the volume of the heart and major coronary vessels exposed to high doses, but some exposure is often unavoidable. Radiation damage to the myocardium is caused primarily by inflammatory changes in the microvasculature, leading to microthrombi and occlusion of vessels, reduced vascular density, perfusion defects and focal ischemia. This is followed by progressive myocardial cell death and fibrosis. Clinical studies also demonstrate regional perfusion defects in non-symptomatic breast cancer patients after radiotherapy. The incidence and extent of perfusion defects are related to the volume of left ventricle included in the radiation field. Irradiation of endothelial cells lining large vessels also increases expression of inflammatory molecules, leading to adhesion and transmigration of circulating monocytes. In the presence of elevated cholesterol, invading monocytes transform into activated macrophages and form fatty streaks in the intima, thereby initiating the process of atherosclerosis. Experimental studies have shown that radiation predisposes to the formation of inflammatory plaque, which is more likely to rupture and cause a fatal heart attack or stroke. This paper presents a brief overview of the current knowledge on mechanisms for development of radiation-induced cardiovascular and cerebrovascular damage. It does not represent a comprehensive review of the literature, but reference is made to several excellent recent reviews on the topic.
Collapse
Affiliation(s)
- F A Stewart
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Jansen EPM, Saunders MP, Boot H, Oppedijk V, Dubbelman R, Porritt B, Cats A, Stroom J, Valdés Olmos R, Bartelink H, Verheij M. Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 2006; 67:781-5. [PMID: 17157445 DOI: 10.1016/j.ijrobp.2006.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/09/2006] [Accepted: 09/11/2006] [Indexed: 01/28/2023]
Abstract
PURPOSE Postoperative chemoradiotherapy in gastric cancer improves locoregional control and survival. Reports on late toxicity, however, have been scarce thus far. Because renal toxicity is one of the most serious late complications in upper abdominal radiotherapy, we prospectively analyzed kidney function in patients who underwent postoperative chemoradiotherapy for gastric cancer. PATIENTS AND METHODS In 44 patients, Tc99m-thiatide renography was performed before and at regular intervals after postoperative chemoradiotherapy. The left-to-right (L/R) ratio was used as an index of the relative kidney function. Mean L/R values were calculated for four follow-up time intervals. For all patients, kidney V20 (percentage of the volume of the kidney that received more than 20 Gy) and mean dose of both kidneys were retrieved from the three-dimensional dose-volume histograms. RESULTS We observed a progressive decrease in left renal function of 11% (p = 0.012) after 6 months, up to 52% (p < 0.001) after >18 months. The V20 (left kidney) and mean left kidney dose were identified as parameters associated with decreased kidney function. Mean serum creatinine was increased from 74.6 micromol/L before treatment to 86.1 micromol/L at 1 year after chemoradiotherapy (p < 0.001). In patients with a follow-up of 18-28 months, one case of severe renovascular hypertension was observed. CONCLUSION A progressive relative functional impairment of the left kidney in patients after postoperative chemoradiotherapy for gastric cancer is demonstrated. To optimize the survival benefit that can be established with adjuvant regimens, strategies to minimize the dose to the kidneys and other critical organs should be explored.
Collapse
Affiliation(s)
- Edwin P M Jansen
- Department of Radiotherapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Boerma M, Wang J, Richter KK, Hauer-Jensen M. Orazipone, a locally acting immunomodulator, ameliorates intestinal radiation injury: a preclinical study in a novel rat model. Int J Radiat Oncol Biol Phys 2006; 66:552-9. [PMID: 16965997 DOI: 10.1016/j.ijrobp.2006.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 01/13/2023]
Abstract
PURPOSE Intestinal radiation injury (radiation enteropathy) is relevant to cancer treatment, as well as to radiation accidents and radiation terrorism scenarios. This study assessed the protective efficacy of orazipone, a locally-acting small molecule immunomodulator. METHODS AND MATERIALS Male rats were orchiectomized, a 4-cm segment of small bowel was sutured to the inside of the scrotum, a proximal anteperistaltic ileostomy was created for intraluminal drug administration, and intestinal continuity was re-established by end-to-side anastomosis. After three weeks postoperative recovery, the intestine in the "scrotal hernia" was exposed locally to single-dose or fractionated X-radiation. Orazipone (30 mg/kg/day) or vehicle was administered daily through the ileostomy, either during and after irradiation, or only after irradiation. Structural, cellular, and molecular aspects of intestinal radiation toxicity were assessed two weeks after irradiation. RESULTS Orazipone significantly ameliorated histologic injury and transforming growth factor-beta immunoreactivity levels, both after single-dose and fractionated irradiation. Intestinal wall thickness was significantly reduced after single-dose and nonsignificantly after fractionated irradiation. Mucosal surface area and numbers of mast cells were partially restored by orazipone after single-dose irradiation. CONCLUSIONS This work (1) demonstrates the utility of the ileostomy rat model for intraluminal administration of response modifiers in single-dose and fractionated radiation studies; (2) shows that mucosal immunomodulation during and/or after irradiation ameliorates intestinal toxicity; and (3) highlights important differences between single-dose and fractionated radiation regimens.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
15
|
Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, Daemen M. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:649-58. [PMID: 16436678 PMCID: PMC1606487 DOI: 10.2353/ajpath.2006.050409] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
After radiotherapy treatment, there is an increased incidence of localized atherosclerosis in patients with Hodgkin's disease, breast cancer, and head and neck cancer. Here, we established a mouse model to study the development and progression of radiation-induced atherosclerosis and to compare the phenotype of these lesions with age-related atherosclerosis. Atherosclerosis-prone ApoE-/- mice fed a regular chow diet received single radiation doses of 14 Gy or sham treatments (0 Gy) to the neck, including both carotid arteries. At 22, 28, and 34 weeks after irradiation, blood samples were taken, and the arterial tree was removed for histological examination. Cholesterol levels in irradiated mice were not significantly different from age-matched controls, and markers of systemic inflammation (soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, and C-reactive protein) were not elevated. The lesions in irradiated arteries were macrophage rich, with a remarkable influx of inflammatory cells, predominantly granulocytes. Intraplaque hemorrhage and erythrocyte-containing macrophages were seen only in lesions of irradiated arteries. Based on these data, we propose that irradiation accelerates the development of macrophage-rich, inflammatory atherosclerotic lesions prone to intraplaque hemorrhage.
Collapse
Affiliation(s)
- Fiona Anne Stewart
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
O'Donoghue J. Relevance of external beam dose-response relationships to kidney toxicity associated with radionuclide therapy. Cancer Biother Radiopharm 2005; 19:378-87. [PMID: 15285886 DOI: 10.1089/1084978041425025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of the kidney as a dose-limiting organ is likely to increase as smaller molecular vectors and radiometals become more commonly used in targeted radionuclide therapy. Data derived from kidney irradiation by external-beam therapy (XRT) indicate that the kidney is radiosensitive. The features of radiation nephropathy seen post-treatment appear similar between local XRT, total-body irradiation (TBI), and radionuclide therapy. For uniform kidney irradiation, tolerance doses appear to be approximately 15-17 Gy in 2 Gy fractions for local XRT and probably less than this (approximately 12 Gy in 2 Gy fractions) when radiation is delivered systemically as TBI in the context of bone marrow transplant protocols. Animal studies indicate that the linear quadratic (LQ) model with an alpha/beta parameter of 1.5-3 Gy seems to adequately describe the XRT fractionation sensitivity of kidney for doses per fraction down to approximately 1 Gy, but may underestimate the effectiveness of fraction sizes less than this. Animal studies have also clarified the dose-dependency of the time to expression of radiation nephropathy and have indicated that radiation nephropathy may be alleviated by pharmacological means.
Collapse
Affiliation(s)
- Joseph O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
17
|
Gaugler MH. A unifying system: does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? Br J Radiol 2005. [DOI: 10.1259/bjr/24511652] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Gaugler MH, Vereycken-Holler V, Squiban C, Aigueperse J. PECAM-1 (CD31) is required for interactions of platelets with endothelial cells after irradiation. J Thromb Haemost 2004; 2:2020-6. [PMID: 15550034 DOI: 10.1111/j.1538-7836.2004.00951.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sustained adhesion of platelets to endothelial cells (EC) is believed to contribute to thrombosis and vascular occlusions following radiation exposure leading to organ functional impairment and even death. Our objective was to evaluate the role of platelet endothelial cell adhesion molecule (PECAM)-1 in the prothrombotic response of EC after irradiation. Endothelial PECAM-1 expression was determined by cell-enzyme linked immunosorbent assay (ELISA) on human microvascular EC from lung (HMVEC-L) up to 21 days after a 10 Gy irradiation. Platelet- and leukocyte-endothelial cell interactions were assessed using a flow adhesion assay with fluorescently labeled whole blood, and the function of PECAM-1 in these processes was measured by using blocking antibody. PECAM-1 expression was significantly increased on irradiated HMVEC-L and remained elevated at 21 days. Anti-PECAM-1 antibody significantly inhibited adhesion of single platelets and thrombi on irradiated HMVEC-L. This inhibitory effect persisted at day 21. Anti-PECAM-1 also reduced leukocyte adhesion to irradiated HMVEC-L. The up-regulation of endothelial PECAM-1 following radiation exposure is persistent. PECAM-1 plays a key role platelet adhesion/aggregation on irradiated EC. Therefore, strategies targeting this adhesion molecule may prevent the development of radiation pathologies.
Collapse
Affiliation(s)
- M-H Gaugler
- Institut de Radioprotection et de Surete Nuclèaire, IRSN, DRPH/SRBE/LRPAT, Fontenay-aux-Roses, France.
| | | | | | | |
Collapse
|
19
|
Kruse JJCM, te Poele JAM, Velds A, Kerkhoven RM, Boersma LJ, Russell NS, Stewart FA. Identification of differentially expressed genes in mouse kidney after irradiation using microarray analysis. Radiat Res 2004; 161:28-38. [PMID: 14680399 DOI: 10.1667/rr3097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Irradiation of the kidney induces dose-dependent, progressive renal functional impairment, which is partly mediated by vascular damage. The molecular mechanisms underlying the development of radiation-induced nephropathy are unclear. Given the complexity of radiation-induced responses, microarrays may offer new opportunities to identify a wider range of genes involved in the development of radiation injury. The aim of the present study was to determine whether microarrays are a useful tool for identifying time-related changes in gene expression and potential mechanisms of radiation-induced nephropathy. Microarray experiments were performed using amplified RNA from irradiated mouse kidneys (1 x 16 Gy) and from sham-irradiated control tissue at different intervals (1-30 weeks) after irradiation. After normalization procedures (using information from straight-color, color-reverse and self-self experiments), the differentially expressed genes were identified. Control and repeat experiments were done to confirm that the observations were not artifacts of the array procedure (RNA amplification, probe synthesis, hybridizations and data analysis). To provide independent confirmation of microarray data, semi-quantitative PCR was performed on a selection of genes. At 1 week after irradiation (before the onset of vascular and functional damage), 16 genes were significantly up-regulated and 9 genes were down-regulated. During the period of developing nephropathy (10 to 20 weeks), 31 and 42 genes were up-regulated and 9 and 4 genes were down-regulated. At the later time of 30 weeks, the vast majority of differentially expressed genes (191 out of 203) were down-regulated. Potential genes of interest included TSA-1 (also known as Ly6e) and Jagged 1 (Jag1). Increased expression of TSA-1, a member of the Ly-6 family, has previously been reported in response to proteinuria. Jagged 1, a ligand for the Notch receptor, is known to play a role in angiogenesis, and is particularly interesting in the context of radiation-induced vascular injury. The present study demonstrates the potential of microarrays to identify changing patterns of gene expression in irradiated kidney. Further studies will be required to evaluate functional involvement of these genes in vascular-mediated normal tissue injury.
Collapse
Affiliation(s)
- Jacqueline J C M Kruse
- The Netherlands Cancer Institute, Division of Experimental Therapy (H6),Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The pronounced radiosensitivity of renal tissue limits the total radiotherapeutic dose that can be applied safely to treatment volumes that include the kidneys. The incidence of clinical radiation nephropathy has increased with the use of total-body irradiation (TBI) in preparation for bone marrow transplantation and as a consequence of radionuclide therapies. The clinical presentation is azotemia, hypertension, and, disproportionately, severe anemia seen several months to years after irradiation that, if untreated, leads to renal failure. Structural features include mesangiolysis, sclerosis, tubular atrophy, and tubulointerstitial scarring. Similar changes are seen in a variety of experimental animal models. The classic view of radiation nephropathy being inevitable, progressive, and untreatable because of DNA damage-mediated cell loss at division has been replaced by a new paradigm in which radiation-induced injury involves not only direct cell kill but also involves complex and dynamic interactions between glomerular, tubular, and interstitial cells. These serve both as autocrine and as paracrine, if not endocrine, targets of biologic mediators that mediate nephron injury and repair. The renin angiotensin system (RAS) clearly is involved; multiple experimental studies have shown that antagonism of the RAS is beneficial, even when not initiated until weeks after irradiation. Recent findings suggest a similar benefit in clinical radiation nephropathy.
Collapse
Affiliation(s)
- Eric P Cohen
- Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|