1
|
Salvestrini V, Lastrucci A, Banini M, Loi M, Carnevale MG, Olmetto E, Garlatti P, Simontacchi G, Francolini G, Bonomo P, Wandael Y, Desideri I, Ricci R, Giansanti D, Scotti V, Livi L. Recent Advances and Current Challenges in Stereotactic Body Radiotherapy for Ultra-Central Lung Tumors. Cancers (Basel) 2024; 16:4135. [PMID: 39766035 PMCID: PMC11674056 DOI: 10.3390/cancers16244135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.e., directly abutting or whose PTV is overlapping critical mediastinal organs. While historical retrospective data are abundant but mostly heterogenous in terms of the definition of ultra-central lesions, dosing regimens and outcomes, prospective data remain scarce, even though recently published studies have given new encouraging results for such delicate treatment scenarios. For this reason, we aimed to review and summarize current knowledge on stereotactic radiation treatment for ultra-central thoracic lesions, highlighting the most recent advances and the messages that can be taken from them. Lastly, we propose a workflow of the necessary steps to identify and treat such patients, therefore helping in elucidating the advantages and caveats of such treatment options.
Collapse
Affiliation(s)
- Viola Salvestrini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Andrea Lastrucci
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Marco Banini
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Mauro Loi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Maria Grazia Carnevale
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Emanuela Olmetto
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pietro Garlatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Gabriele Simontacchi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pierluigi Bonomo
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Yannick Wandael
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Renzo Ricci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | | | - Vieri Scotti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| |
Collapse
|
2
|
McNair HA, Milosevic MF, Parikh PJ, van der Heide UA. Future of Multidisciplinary Team in the Context of Adaptive Therapy. Semin Radiat Oncol 2024; 34:418-425. [PMID: 39271276 DOI: 10.1016/j.semradonc.2024.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The implementation and early adoption of online adaptive radiotherapy (oART) has required the presence of clinicians, physicists and radiation therapists (RTT) at the treatment console. The impact on each of them is unique to their profession and must be considered for safe and efficient implementation. In the short term future, widespread adoption will depend on the development of innovative workflows, and rethinking of traditional roles and responsibilities may be required. For the future, technologies such as artificial intelligence promise to change the workflow significantly in terms of speed, automation and decision-making. However, overall communication within the team will persist in being one of the most important aspects.
Collapse
Affiliation(s)
- H A McNair
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK..
| | - M F Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre and Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | | | - U A van der Heide
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam and department of Radiation Oncology, Leiden University Medical Centre the Netherlands, Leiden, The Netherlands
| |
Collapse
|
3
|
Lauria M, Miller C, Singhrao K, Lewis J, Lin W, O'Connell D, Naumann L, Stiehl B, Santhanam A, Boyle P, Raldow AC, Goldin J, Barjaktarevic I, Low DA. Motion compensated cone-beam CT reconstruction using an a priorimotion model from CT simulation: a pilot study. Phys Med Biol 2024; 69:075022. [PMID: 38452385 DOI: 10.1088/1361-6560/ad311b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Objective. To combat the motion artifacts present in traditional 4D-CBCT reconstruction, an iterative technique known as the motion-compensated simultaneous algebraic reconstruction technique (MC-SART) was previously developed. MC-SART employs a 4D-CBCT reconstruction to obtain an initial model, which suffers from a lack of sufficient projections in each bin. The purpose of this study is to demonstrate the feasibility of introducing a motion model acquired during CT simulation to MC-SART, coined model-based CBCT (MB-CBCT).Approach. For each of 5 patients, we acquired 5DCTs during simulation and pre-treatment CBCTs with a simultaneous breathing surrogate. We cross-calibrated the 5DCT and CBCT breathing waveforms by matching the diaphragms and employed the 5DCT motion model parameters for MC-SART. We introduced the Amplitude Reassignment Motion Modeling technique, which measures the ability of the model to control diaphragm sharpness by reassigning projection amplitudes with varying resolution. We evaluated the sharpness of tumors and compared them between MB-CBCT and 4D-CBCT. We quantified sharpness by fitting an error function across anatomical boundaries. Furthermore, we compared our MB-CBCT approach to the traditional MC-SART approach. We evaluated MB-CBCT's robustness over time by reconstructing multiple fractions for each patient and measuring consistency in tumor centroid locations between 4D-CBCT and MB-CBCT.Main results. We found that the diaphragm sharpness rose consistently with increasing amplitude resolution for 4/5 patients. We observed consistently high image quality across multiple fractions, and observed stable tumor centroids with an average 0.74 ± 0.31 mm difference between the 4D-CBCT and MB-CBCT. Overall, vast improvements over 3D-CBCT and 4D-CBCT were demonstrated by our MB-CBCT technique in terms of both diaphragm sharpness and overall image quality.Significance. This work is an important extension of the MC-SART technique. We demonstrated the ability ofa priori5DCT models to provide motion compensation for CBCT reconstruction. We showed improvements in image quality over both 4D-CBCT and the traditional MC-SART approach.
Collapse
Affiliation(s)
- Michael Lauria
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Claudia Miller
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Kamal Singhrao
- Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Department of Radiation Oncology, Boston, MA, United States of America
| | - John Lewis
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Weicheng Lin
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Dylan O'Connell
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Louise Naumann
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Bradley Stiehl
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Anand Santhanam
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Peter Boyle
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Ann C Raldow
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Jonathan Goldin
- UCLA, Department of Radiological Sciences, Los Angeles, CA, United States of America
| | - Igor Barjaktarevic
- UCLA, Department of Pulmonary and Critical Care Medicine, Los Angeles, CA, United States of America
| | - Daniel A Low
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| |
Collapse
|
4
|
Wei C, Albrecht J, Rit S, Laurendeau M, Thummerer A, Corradini S, Belka C, Steininger P, Ginzinger F, Kurz C, Riboldi M, Landry G. Reduction of cone-beam CT artifacts in a robotic CBCT device using saddle trajectories with integrated infrared tracking. Med Phys 2024; 51:1674-1686. [PMID: 38224324 DOI: 10.1002/mp.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data. PURPOSE Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data. Therefore, we investigated the feasibility and performance of saddle trajectory CBCT scans and compared them to circular trajectory scans. METHODS We performed circular and saddle trajectory scans using a novel robotic CBCT scanner (Mobile ImagingRing (IRm); medPhoton, Salzburg, Austria). For the saddle trajectory, the gantry executed yaw motion up to± 10 ∘ $\pm 10^{\circ }$ using motorized wheels driving on the floor. An infrared (IR) tracking device with reflective markers was used for online geometric calibration correction (mainly floor unevenness). All images were reconstructed using penalized least-squares minimization with the conjugate gradient algorithm from RTK with0.5 × 0.5 × 0.5 mm 3 $0.5 \times 0.5\times 0.5 \text{ mm}^3$ voxel size. A disk phantom and an Alderson phantom were scanned to assess the image quality. Results were correlated with the local incompleteness value represented bytan ( ψ ) $\tan (\psi)$ , which was calculated at each voxel as a function of the source trajectory and the voxel's 3D coordinates. We assessed the magnitude of CB artifacts using the full width half maximum (FWHM) of each disk profile in the axial center of the reconstructed images. Spatial resolution was also quantified by the modulation transfer function at 10% (MTF10). RESULTS When using the saddle trajectory, the region without CB artifacts was increased from 43 to 190 mm in the SI direction compared to the circular trajectory. This region coincided with low values fortan ( ψ ) $\tan (\psi)$ . Whentan ( ψ ) $\tan (\psi)$ was larger than 0.02, we found there was a linear relationship between the FWHM andtan ( ψ ) $\tan (\psi)$ . For the saddle, IR tracking allowed the increase of MTF10 from 0.37 to 0.98 lp/mm. CONCLUSIONS We achieved saddle trajectory CBCT scans with a novel CBCT system combined with IR tracking. The results show that the saddle trajectory provides a larger region with reliable reconstruction compared to the circular trajectory. The proposed method can be used to evaluate other non-circular trajectories.
Collapse
Affiliation(s)
- Chengtao Wei
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Johanna Albrecht
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Matthieu Laurendeau
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
- Thales AVS, Moirans, France
| | - Adrian Thummerer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital Munich, Munich, Germany
| | | | | | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Wang Z, Sun X, Wang W, Zhang T, Chen L, Duan J, Feng S, Chen Y, Wei Z, Zang J, Xiao F, Zhao L. Characterization and commissioning of a new collaborative multi-modality radiotherapy platform. Phys Eng Sci Med 2023; 46:981-994. [PMID: 37378823 PMCID: PMC10480288 DOI: 10.1007/s13246-023-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 06/29/2023]
Abstract
TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.
Collapse
Affiliation(s)
- Zhongfei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Xiaohuan Sun
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Wei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Te Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Liting Chen
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Jie Duan
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Siqi Feng
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Yinzhu Chen
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Zhiwei Wei
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Jian Zang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| |
Collapse
|
6
|
Results of Radiation Therapy as Local Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13225773. [PMID: 34830925 PMCID: PMC8616303 DOI: 10.3390/cancers13225773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Oligometastatic cancer is characterized by a limited number of metastatic deposits. Compared with lung cancer patients who have more widespread disease, oligometastatic lung cancer patients have more favorable survival outcomes. Therefore, it has been hypothesized that local ablative therapy (LAT) directed at the metastatic deposits in addition to standard-of-care systemic therapy may further improve survival outcomes in oligometastatic lung cancer patients. One LAT modality that has been utilized in oligometastatic lung cancer is radiation therapy. In particular, ultra-hypofractionated radiotherapy, also known as stereotactic body radiotherapy (SBRT), has been shown to provide excellent local control with a favorable safety profile. Here, we reviewed the retrospective studies and prospective trials that have deployed radiation therapy as LAT in oligometastatic lung cancer, including randomized studies showing benefits for progression-free survival and overall survival with the addition of LAT. We also discuss the impact of targeted therapies and immunotherapy on radiation as LAT.
Collapse
|
7
|
Fahrig R, Jaffray DA, Sechopoulos I, Webster Stayman J. Flat-panel conebeam CT in the clinic: history and current state. J Med Imaging (Bellingham) 2021; 8:052115. [PMID: 34722795 DOI: 10.1117/1.jmi.8.5.052115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Research into conebeam CT concepts began as soon as the first clinical single-slice CT scanner was conceived. Early implementations of conebeam CT in the 1980s focused on high-contrast applications where concurrent high resolution ( < 200 μ m ), for visualization of small contrast-filled vessels, bones, or teeth, was an imaging requirement that could not be met by the contemporaneous CT scanners. However, the use of nonlinear imagers, e.g., x-ray image intensifiers, limited the clinical utility of the earliest diagnostic conebeam CT systems. The development of consumer-electronics large-area displays provided a technical foundation that was leveraged in the 1990s to first produce large-area digital x-ray detectors for use in radiography and then compact flat panels suitable for high-resolution and high-frame-rate conebeam CT. In this review, we show the concurrent evolution of digital flat panel (DFP) technology and clinical conebeam CT. We give a brief summary of conebeam CT reconstruction, followed by a brief review of the correction approaches for DFP-specific artifacts. The historical development and current status of flat-panel conebeam CT in four clinical areas-breast, fixed C-arm, image-guided radiation therapy, and extremity/head-is presented. Advances in DFP technology over the past two decades have led to improved visualization of high-contrast, high-resolution clinical tasks, and image quality now approaches the soft-tissue contrast resolution that is the standard in clinical CT. Future technical developments in DFPs will enable an even broader range of clinical applications; research in the arena of flat-panel CT shows no signs of slowing down.
Collapse
Affiliation(s)
- Rebecca Fahrig
- Innovation, Advanced Therapies, Siemens Healthcare GmbH, Forchheim, Germany.,Friedrich-Alexander Universitat, Department of Computer Science 5, Erlangen, Germany
| | - David A Jaffray
- MD Anderson Cancer Center, Departments of Radiation Physics and Imaging Physics, Houston, Texas, United States
| | - Ioannis Sechopoulos
- Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands.,Dutch Expert Center for Screening (LRCB), Nijmegen, The Netherlands.,University of Twente, Technical Medical Center, Enschede, The Netherlands
| | - J Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Souleyman S, Maria KD, Cheikh T, Karima KK. Impact of Acquisition Protocols on Accuracy of Dose Calculation Based on XVI Cone Beam Computed Tomography. J Med Phys 2021; 46:94-104. [PMID: 34566289 PMCID: PMC8415252 DOI: 10.4103/jmp.jmp_128_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: The objective of this work is to study the impact of acquisition protocols on the accuracy of cone beam computed tomography (CBCT)-based dose calculation and to determinate its limits from image characteristics such as image quality, Hounsfield numbers consistency, and restrictive sizes of volume acquisition, compared to the CT imaging for the different anatomy localizations: head and neck (H&N), thorax, and pelvis. Materials and Methods: In this work, we used a routine on-board imaging CBCT of the XVI system (Elekta, Stockholm, Sweden). Dosimetric calculations performed on CT images require the knowledge of the Hounsfield unit-relative electron density (HU-ReD) calibration curve, which is determined for each imaging technology and must be adapted to the imaging acquisition parameters (filter/field of view). The accuracy of the dose calculation from CBCT images strongly depends on the quality of these images and also on the appropriate correspondence to the electronic densities, which will be used by the treatment planning system to simulate the dose distribution. In this study, we evaluated the accuracy of the dose calculation for each protocol, as already pointed in many studies. Results: As a result, the protocols that give better results in terms of dose calculation are F0S20 for the H&N region and F1M20 for the thoracic and pelvic regions, with an error <2% compared to results obtained with CT images. In addition, the dose distributions obtained with CT and CBCT imaging modalities were compared by two different methods. The first comparison was done by gamma index in three planes (sagittal, coronal, and transverse) with 2%; 2 mm criteria. The results showed good correspondence, with more than 95% of points passed the criteria. We also compared the target volume, the organs at risk (OARs), and the maximum and minimum doses for the three localizations (H&N, thorax, and pelvis) in CT and CBCT imaging modalities using a Rando phantom. Conclusions: The choice of the adequate CBCT acquisition protocol and the appropriate phantom to determine the HU-ReD calibration curve provides a better precision in the calculation of dose on CBCT images. This allows improving the results obtained when using the HU-ReD calibration method for dose calculation in adaptive radiotherapy.
Collapse
Affiliation(s)
- Slimani Souleyman
- Department of Radiotherapy, HCA Hospital, Kouba, Algeria.,SNIRM Laboratory, Faculty of Physics, University of Sciences and Technology Houari Boumediene, Algiers, ALGERIA
| | - Khalal Dorea Maria
- Dosage, Analyse and Characterisation in High Resolution Laboratory, Department of Physics, Ferhat Abbas Setif 1 University, Setif, Algeria
| | - Tyeb Cheikh
- Department of Radiotherapy, HCA Hospital, Kouba, Algeria
| | - Khalal-Kouache Karima
- SNIRM Laboratory, Faculty of Physics, University of Sciences and Technology Houari Boumediene, Algiers, ALGERIA
| |
Collapse
|
9
|
Yu L, Zhao J, Zhang Z, Wang J, Hu W. Commissioning of and preliminary experience with a new fully integrated computed tomography linac. J Appl Clin Med Phys 2021; 22:208-223. [PMID: 34151504 PMCID: PMC8292712 DOI: 10.1002/acm2.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose A new medical linear accelerator (linac) platform integrated with helical computed tomography (CT), the uRT‐linac 506c, was introduced into clinical application in 2019 by United Imaging Healthcare (UIH) Co., Ltd. (Shanghai, China). It combines a Carm linac with a diagnostic‐quality 16‐slice CT imager, providing seamless workflow from simulation to treatment. The aim of this report is to assess the technical characteristics, commissioning results and preliminary experiences stemming from clinical usage. Methods The mechanical and imaging test procedures, commissioning data collection and TPS validation were summarized. CTIGRT accuracy was investigated with different loads and couch extensions. A series of end‐to‐end cases for different treatment sites and delivery techniques were tested preclinically to estimate the overall accuracy for the entire treatment scheme. The results of patient‐specific QA and machine stability during a one‐year operation are also reported. Results Gantry/couch/collimator isocentricity was measured as 0.63 mm in radius. The TPS models were in agreement with the beam commissioning data within a deviation of 2%. An overall submillimeter accuracy was demonstrated for the CT‐IGRT process under all conditions. The absolute point dose difference for all the preclinical end‐to‐end tests was within 3%, and the gamma passing rate of the 2D dose distribution measured by EBT3 film was better than 90% (3% DD, 3 mm DTA and 10% threshold). Pretreatment QA of clinical cases resulted with better than 3% point dose difference and more than 99% gamma passing rate (3% DD/2 mm DTA/10% threshold) tested with Delta4. The output of the linac was mostly within 1% of variation in a one‐year operation. Conclusion The commissioning results and clinical QA results show that the uRT‐linac 506c platform exhibits good and stable performance in mechanical and dosimetric accuracy. The integrated CT system provides an efficient workflow for image guidance with submillimeter localization precision, and will be a good starting point to proceed advanced adaptive radiotherapy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Paganetti H, Beltran C, Both S, Dong L, Flanz J, Furutani K, Grassberger C, Grosshans DR, Knopf AC, Langendijk JA, Nystrom H, Parodi K, Raaymakers BW, Richter C, Sawakuchi GO, Schippers M, Shaitelman SF, Teo BKK, Unkelbach J, Wohlfahrt P, Lomax T. Roadmap: proton therapy physics and biology. Phys Med Biol 2021; 66. [DOI: 10.1088/1361-6560/abcd16] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
|
11
|
Duan YH, Gu HL, Yang XH, Chen H, Wang H, Shao Y, Li XY, Feng AH, Ying YC, Fu XL, Ma K, Zhou T, Xu ZY. Evaluation of IGRT-Induced Imaging Doses and Secondary Cancer Risk for SBRT Early Lung Cancer Patients In Silico Study. Technol Cancer Res Treat 2021; 20:15330338211016472. [PMID: 34184567 PMCID: PMC8251513 DOI: 10.1177/15330338211016472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This study performed dosimetry studies and secondary cancer risk assessments on using electronic portal imaging device (EPID) and cone beam computed tomography (CBCT) as image guided tools for the early lung cancer patients treated with SBRT. METHODS The imaging doses from MV-EPID and kV-CBCT of the Edge accelerator were retrospectively added to sixty-one SBRT treatment plans of early lung cancer patients. The MV-EPID imaging dose (6MV Photon beam) was calculated in Pinnacle TPS, and the kV-CBCT imaging dose was simulated and calculated by modeling of the kV energy beam in TPS using Pinnacle automatic modeling program. Three types of plans, namely PlanEPID, PlanCBCT and Planorigin, were generated with incorporating doses of EPID, CBCT and no imaging, respectively, for analysis. The effects of imaging doses on dose-volume-histogram (DVH) and plan quality were analyzed, and the excess absolute risk (EAR) of secondary cancer for ipsilateral lung was evaluated. RESULTS The regions that received less than 50 cGy were significantly impacted by the imaging doses, while the isodose lines greater than 1000 cGy were barely changed. The DVH values of ipsilateral lung increased the most in PlanEPID, followed by PlanCBCT. Compared to Planorigin on the average, the estimated EAR of ipsilateral lung in PlanEPID increased by 3.43%, while the corresponding EAR increase in PlanCBCT was much smaller (about 0.4%). Considering only the contribution of the imaging dose, the EAR values for the ipsilateral lung due to the MV-EPID dose in 5 years,10 years and 15 years were 1.49 cases, 2.09 cases and 2.88 cases per 104PY respectively, and those due to the kV-CBCT dose were about 9 times lower, correspondingly. CONCLUSIONS The imaging doses produced by MV-EPID and kV-CBCT had little effects on the target dose coverage. The secondary cancer risk caused by MV-EPID dose is more than 8.5 times that of kV-CBCT.
Collapse
Affiliation(s)
- Yan-Hua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Le Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Yang
- Department of Engineering, Beijing Jingfang Technologies Co. Ltd, Beijing, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Hui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Chen Ying
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Ma
- Clinical helpdesk, Varian Medical Systems, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi-Yong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Taneja S, Barbee DL, Rea AJ, Malin M. CBCT image quality QA: Establishing a quantitative program. J Appl Clin Med Phys 2020; 21:215-225. [PMID: 33078562 PMCID: PMC7701111 DOI: 10.1002/acm2.13062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose Routine quality assurance (QA) of cone‐beam computed tomography (CBCT) scans used for image‐guided radiotherapy is prescribed by the American Association of Physicists in Medicine Task Group (TG)‐142 report. For CBCT image quality, TG‐142 recommends using clinically established baseline values as QA tolerances. This work examined how image quality parameters vary both across machines of the same model and across different CBCT techniques. Additionally, this work investigated how image quality values are affected by imager recalibration and repeated exposures during routine QA. Methods Cone‐beam computed tomography scans of the Catphan 604 phantom were taken on four TrueBeam® and one Edge™ linear accelerator using four manufacturer‐provided techniques. TG‐142 image quality parameters were calculated for each CBCT scan using SunCHECK Machine™. The variability of each parameter with machine and technique was evaluated using a two‐way ANOVA test on a dataset consisting of 200 CBCT scans. The impact of imager calibration on image quality parameters was examined for a subset of three machines using an unpaired Student’s t‐test. The effect of artifacts appearing on CBCTs taken in rapid succession was characterized and an approach to reduce their appearance was evaluated. Additionally, a set of baselines and tolerances for all image quality metrics was presented. Results All imaging parameters except geometric distortion varied with technique (P < 0.05) and all imaging parameters except slice thickness varied with machine (P < 0.05). Imager calibration can change the expected value of all imaging parameters, though it does not consistently do so. While changes are statistically significant, they may not be clinically significant. Finally, rapid acquisition of CBCT scans can introduce image artifacts that degrade CBCT uniformity. Conclusions This work characterized the variability of acquired CBCT data across machines and CBCT techniques along with the impact of imager calibration and rapid CBCT acquisition on image quality.
Collapse
Affiliation(s)
- Sameer Taneja
- Department of Radiation Oncology, New York University Langone Medical Center, New York, NY, USA
| | - David L Barbee
- Department of Radiation Oncology, New York University Langone Medical Center, New York, NY, USA
| | - Anthony J Rea
- Department of Radiation Oncology, New York University Langone Medical Center, New York, NY, USA
| | - Martha Malin
- Department of Radiation Oncology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Hatamikia S, Biguri A, Kronreif G, Russ T, Kettenbach J, Birkfellner W. Short Scan Source-detector Trajectories for Target-based CBCT. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1299-1302. [PMID: 33018226 DOI: 10.1109/embc44109.2020.9176667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We proposed a target-based cone beam computed tomography (CBCT) imaging framework in order to optimize a free three dimensional (3D) source-detector trajectory by incorporating prior 3D image data. We aim to enable CBCT systems to provide topical information about a region of interest (ROI) using a short-scan trajectory with a reduced number of projections. The best projection views are selected by maximizing an objective function fed by the image quality by means of applying different x-ray positions on the digital phantom data. Finally, an optimized trajectory is selected which is applied to a C-arm device able to perform general source-detector positioning. An Alderson-Rando head phantom is used in order to investigate the performance of the proposed framework. Our experiments showed that the optimized trajectory could achieve a comparable image quality in the ROI with respect to the reference C-arm CBCT while using approximately one-quarter of projections. An angular range of 156° was used for the optimized trajectory.
Collapse
|
14
|
Knisely JP, Apuzzo ML. Historical Aspects of Stereotactic Radiosurgery: Concepts, People, and Devices. World Neurosurg 2019; 130:593-607. [DOI: 10.1016/j.wneu.2019.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 11/30/2022]
|
15
|
Alongi P, Laudicella R, Desideri I, Chiaravalloti A, Borghetti P, Quartuccio N, Fiore M, Evangelista L, Marino L, Caobelli F, Tuscano C, Mapelli P, Lancellotta V, Annunziata S, Ricci M, Ciurlia E, Fiorentino A. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 1. Crit Rev Oncol Hematol 2019; 140:74-79. [PMID: 30795884 DOI: 10.1016/j.critrevonc.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Functional and molecular imaging, including positron emission tomography with computed tomography imaging (PET/CT) is increasing for radiotherapy (RT) definition of the target volume. This expert review summarizes existing data of functional imaging modalities and RT management, in terms of target volume delineation, for the following anatomical districts: brain (for primary and secondary tumors), head/neck and lung. MATERIALS AND METHODS A collection of available published data was made, by PubMed a search. Only original articles were carefully and critically revised. RESULTS For primary and secondary brain tumors, amino acid PET radiotracers could be useful to identify microscopic residual areas and to differ between recurrence and treatment-related alterations in case of re-irradiation. As for head and neck neoplasms may benefit from precise PET/CT-based target delineation, due to the major capability to identify high-risk RT areas. In primary and secondary lung cancer, PET/CT could be useful both to delimit a tumor and collapsed lungs and as a predictive parameter of treatment response. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Nevertheless, several uncertainties remain on the standard method to properly assess the target volume definition including PET information for primary and secondary brain tumors.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu. Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina. Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Strada Prov. 127 Km 4, 70021, Acquaviva delle Fonti, Bari, Italy.
| |
Collapse
|
16
|
Liang X, Jiang Y, Zhao W, Zhang Z, Luo C, Xiong J, Yu S, Yang X, Sun J, Zhou Q, Niu T, Xie Y. Scatter correction for a clinical cone‐beam CT system using an optimized stationary beam blocker in a single scan. Med Phys 2019; 46:3165-3179. [DOI: 10.1002/mp.13568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xiaokun Liang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055China
- Shenzhen Colleges of Advanced Technology University of Chinese Academy of Sciences Shenzhen Guangdong 518055China
| | - Yangkang Jiang
- Institute of Translational Medicine Zhejiang University Hangzhou Zhejiang 310016China
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Wei Zhao
- Department of Radiation Oncology Stanford University Stanford CA 94305USA
| | - Zhicheng Zhang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055China
- Shenzhen Colleges of Advanced Technology University of Chinese Academy of Sciences Shenzhen Guangdong 518055China
| | - Chen Luo
- Institute of Translational Medicine Zhejiang University Hangzhou Zhejiang 310016China
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Jing Xiong
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055China
| | - Shaode Yu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055China
- Shenzhen Colleges of Advanced Technology University of Chinese Academy of Sciences Shenzhen Guangdong 518055China
| | - Xiaoming Yang
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Jihong Sun
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Qinxuan Zhou
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Tianye Niu
- Institute of Translational Medicine Zhejiang University Hangzhou Zhejiang 310016China
- Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310016China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055China
| |
Collapse
|
17
|
Cho YB, Alasti H, Kong V, Catton C, Berlin A, Chung P, Bayley A, Jaffray D. Impact of high dose volumetric CT on PTV margin reduction in VMAT prostate radiotherapy. ACTA ACUST UNITED AC 2019; 64:065017. [DOI: 10.1088/1361-6560/ab050f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Giacometti V, King RB, Agnew CE, Irvine DM, Jain S, Hounsell AR, McGarry CK. An evaluation of techniques for dose calculation on cone beam computed tomography. Br J Radiol 2019; 92:20180383. [PMID: 30433821 DOI: 10.1259/bjr.20180383] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE: To assess the accuracy and efficiency of four different techniques, thus determining the optimum method for recalculating dose on cone beam CT (CBCT) images acquired during radiotherapy treatments. METHODS: Four established techniques were investigated and their accuracy assessed via dose calculations: (1) applying a standard planning CT (pCT) calibration curve, (2) applying a CBCT site-specific calibration curve, (3) performing a density override and (4) using deformable registration. Each technique was applied to 15 patients receiving volumetric modulated arc therapy to one of three treatment sites, head and neck, lung and prostate. Differences between pCT and CBCT recalculations were determined with dose volume histogram metrics and 2.0%/0.1 mm gamma analysis using the pCT dose distribution as a reference. RESULTS: Dose volume histogram analysis indicated that all techniques yielded differences from expected results between 0.0 and 2.3% for both target volumes and organs at risk. With volumetric gamma analysis, the dose recalculation on deformed images yielded the highest pass-rates. The median pass-rate ranges at 50% threshold were 99.6-99.9%, 94.6-96.0%, and 94.8.0-96.0% for prostate, head and neck and lung patients, respectively. CONCLUSION: Deformable registration, HU override and site-specific calibration curves were all identified as dosimetrically accurate and efficient methods for dose calculation on CBCT images. ADVANCES IN KNOWLEDGE: With the increasing adoption of CBCT, this study provides clinical radiotherapy departments with invaluable information regarding the comparison of dose reconstruction methods, enabling a more accurate representation of a patient's treatment. It can also integrate studies in which CBCT is used in image-guided radiation therapy and for adaptive radiotherapy planning processes.
Collapse
Affiliation(s)
- Valentina Giacometti
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK
| | - Raymond B King
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Christina E Agnew
- 2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Denise M Irvine
- 2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Suneil Jain
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Alan R Hounsell
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Conor K McGarry
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| |
Collapse
|
19
|
Davis AM, Pearson EA, Pan X, Pelizzari CA, Al-Hallaq H. Collision-avoiding imaging trajectories for linac mounted cone-beam CT. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:1-16. [PMID: 30400125 DOI: 10.3233/xst-180401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Some patients cannot be imaged with cone-beam CT for image-guided radiation therapy because their size, pose, or fixation devices cause collisions with the machine. OBJECTIVE To investigate imaging trajectories that avoid such collisions by using virtual isocenter and variable magnification during acquisition while yielding comparable image quality. METHODS The machine components most likely to collide are the gantry and kV detector. A virtual isocenter trajectory continuously moves the patient during gantry rotation to maintain an increased separation between the two. With dynamic magnification, the kV detector is dynamically moved to increase clearance for an angular range around the potential collision point while acquiring sufficient data to maintain the field-of-view. Both strategies were used independently and jointly with the resultant image quality evaluated against the standard circular acquisition. RESULTS Collision avoiding trajectories show comparable contrast and resolution to standard techniques. For an anthropomorphic phantom, the RMSE is <7×10- 4, multi-scale structural similarity index is >0.97, and visual image fidelity is >0.96 for all trajectories when compared to a standard circular scan. CONCLUSIONS The proposed trajectories avoid machine-patient collisions while providing comparable image quality to the current standard thereby enabling CBCT imaging for patients that could not otherwise be scanned.
Collapse
Affiliation(s)
- Andrew M Davis
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore
| | - Erik A Pearson
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago
| | - Xiaochuan Pan
- Department of Radiology, University of Chicago, Chicago
| | - Charles A Pelizzari
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago
| | - Hania Al-Hallaq
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago
| |
Collapse
|
20
|
Molitoris JK, Diwanji T, Snider JW, Mossahebi S, Samanta S, Badiyan SN, Simone CB, Mohindra P. Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis 2018; 10:S2437-S2450. [PMID: 30206490 PMCID: PMC6123191 DOI: 10.21037/jtd.2018.01.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
Abstract
The development of advanced radiation technologies, including intensity-modulated radiation therapy (IMRT), stereotactic body radiation therapy (SBRT) and proton therapy, has resulted in increasingly conformal radiation treatments. Recent evidence for the importance of minimizing dose to normal critical structures including the heart and lungs has led to incorporation of these advanced treatment modalities into radiation therapy (RT) for non-small cell lung cancer (NSCLC). While such technologies have allowed for improved dose delivery, implementation requires improved target accuracy with treatments, placing increasing importance on evaluating tumor motion at the time of planning and verifying tumor position at the time of treatment. In this review article, we describe issues and updates related both to motion management and image guidance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James W. Snider
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Santanu Samanta
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Shahed N. Badiyan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
21
|
Abstract
The introduction of image guidance in radiation therapy and its subsequent innovations have revolutionised the delivery of cancer treatment. Modern imaging systems can supplement and often replace the historical practice of relying on external landmarks and laser alignment systems. Rather than depending on markings on the patient's skin, image-guided radiation therapy (IGRT), using techniques such as computed tomography (CT), cone beam CT, MV on-board imaging (OBI), and kV OBI, allows the patient to be positioned based on the internal anatomy. These advances in technology have enabled more accurate delivery of radiation doses to anatomically complex and temporally changing tumour volumes, while simultaneously sparing surrounding healthy tissues. While these imaging modalities provide excellent bony anatomy image quality, magnetic resonance imaging (MRI) surpasses them in soft tissue image contrast for better visualisation and tracking of soft tissue tumours with no additional radiation dose to the patient. However, the introduction of MRI into a radiotherapy facility has a number of complications, including the influence of the magnetic field on the dose deposition, as well as the effects it can have on dosimetry systems. The development and introduction of these new IGRT techniques will be reviewed, and the benefits and disadvantages of each will be described.
Collapse
Affiliation(s)
- G S Ibbott
- Department of Radiation Physics, UT MD Anderson Cancer Center, 1400 Pressler St., Unit 1420, Houston, TX 77030, USA
| |
Collapse
|
22
|
Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, Miften M, Morin R, Xu XG, Zhu TC. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys 2018; 45:e84-e99. [PMID: 29468678 DOI: 10.1002/mp.12824] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. AIMS This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. MATERIALS & METHODS We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. RESULTS We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. DISCUSSION Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. CONCLUSION Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Parham Alaei
- University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bruce Curran
- Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ryan Flynn
- University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | - X George Xu
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Timothy C Zhu
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Rafic KM, Amalan S, Timothy Peace BS, Ravindran BP. Extended localization and adaptive dose calculation using HU corrected cone beam CT: Phantom study. Rep Pract Oncol Radiother 2018; 23:126-135. [PMID: 29556141 PMCID: PMC5856675 DOI: 10.1016/j.rpor.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/12/2017] [Accepted: 01/21/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND AIM The practicability of computing dose calculation on cone beam CT (CBCT) has been widely investigated. In most clinical scenarios, the craniocaudal scanning length of CBCT is found to be inadequate for localization. This study aims to explore extended tomographic localization and adaptive dose calculation strategies using Hounsfield unit (HU) corrected CBCT image sets. MATERIALS AND METHODS Planning CT (pCT) images of the Rando phantom (T12-to-midthigh) were acquired with pelvic-protocol using Biograph CT-scanner. Similarly, half-fan CBCT were acquired with fixed parameters using Clinac2100C/D linear accelerator integrated with an on-board imager with 2-longitudinal positions of the table. For extended localization and dose calculation, two stitching strategies viz., one with "penumbral-overlap" (S1) and the other with "no-overlap" (S2) and a local HU-correction technique were performed using custom-developed MATLAB scripts. Fluence modulated treatment plans computed on pCT were mapped with stitched CBCT and the dosimetric analyses such as dose-profile comparison, 3D-gamma (γ) evaluation and dose-volume histogram (DVH) comparison were performed. RESULTS Localizing scanning length of CBCT was extended by up to 15 cm and 16 cm in S1 and S2 strategies, respectively. Treatment plan mapping resulted in minor variations in the volumes of delineated structures and the beam centre co-ordinates. While the former showed maximum variations of -1.4% and -1.6%, the latter showed maximum of 1.4 mm and 2.7 mm differences in anteroposterior direction in S1 and S2 protocols, respectively. Dosimetric evaluations viz., dose profile and DVH comparisons were found to be in agreement with one another. In addition, γ-evaluation results showed superior pass-rates (≥98.5%) for both 3%/3 mm dose-difference (DD) and distance-to-agreement (DTA) and 2%/2 mm DD/DTA criteria with desirable dosimetric accuracy. CONCLUSION Cone beam tomographic stitching and local HU-correction strategies developed to facilitate extended localization and dose calculation enables routine adaptive re-planning while circumventing the need for repeated pCT.
Collapse
Affiliation(s)
- K Mohamathu Rafic
- Department of Radiotherapy, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | | | | | | |
Collapse
|
24
|
Towards a Clinical Decision Support System for External Beam Radiation Oncology Prostate Cancer Patients: Proton vs. Photon Radiotherapy? A Radiobiological Study of Robustness and Stability. Cancers (Basel) 2018; 10:cancers10020055. [PMID: 29463018 PMCID: PMC5836087 DOI: 10.3390/cancers10020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/25/2022] Open
Abstract
We present a methodology which can be utilized to select proton or photon radiotherapy in prostate cancer patients. Four state-of-the-art competing treatment modalities were compared (by way of an in silico trial) for a cohort of 25 prostate cancer patients, with and without correction strategies for prostate displacements. Metrics measured from clinical image guidance systems were used. Three correction strategies were investigated; no-correction, extended-no-action-limit, and online-correction. Clinical efficacy was estimated via radiobiological models incorporating robustness (how probable a given treatment plan was delivered) and stability (the consistency between the probable best and worst delivered treatments at the 95% confidence limit). The results obtained at the cohort level enabled the determination of a threshold for likely clinical benefit at the individual level. Depending on the imaging system and correction strategy; 24%, 32% and 44% of patients were identified as suitable candidates for proton therapy. For the constraints of this study: Intensity-modulated proton therapy with online-correction was on average the most effective modality. Irrespective of the imaging system, each treatment modality is similar in terms of robustness, with and without the correction strategies. Conversely, there is substantial variation in stability between the treatment modalities, which is greatly reduced by correction strategies. This study provides a ‘proof-of-concept’ methodology to enable the prospective identification of individual patients that will most likely (above a certain threshold) benefit from proton therapy.
Collapse
|
25
|
|
26
|
MacManus M, Everitt S, Schimek-Jasch T, Li XA, Nestle U, Kong FMS. Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization. Transl Lung Cancer Res 2017; 6:670-688. [PMID: 29218270 DOI: 10.21037/tlcr.2017.09.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews key imaging modalities for lung cancer patients treated with radiation therapy (RT) and considers their actual or potential contributions to critical decision-making. An international group of researchers with expertise in imaging in lung cancer patients treated with RT considered the relevant literature on modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). These perspectives were coordinated to summarize the current status of imaging in lung cancer and flag developments with future implications. Although there are no useful randomized trials of different imaging modalities in lung cancer, multiple prospective studies indicate that management decisions are frequently impacted by the use of complementary imaging modalities, leading both to more appropriate treatments and better outcomes. This is especially true of 18F-fluoro-deoxyglucose (FDG)-PET/CT which is widely accepted to be the standard imaging modality for staging of lung cancer patients, for selection for potentially curative RT and for treatment planning. PET is also more accurate than CT for predicting survival after RT. PET imaging during RT is also correlated with survival and makes response-adapted therapies possible. PET tracers other than FDG have potential for imaging important biological process in tumors, including hypoxia and proliferation. MRI has superior accuracy in soft tissue imaging and the MRI Linac is a rapidly developing technology with great potential for online monitoring and modification of treatment. The role of imaging in RT-treated lung cancer patients is evolving rapidly and will allow increasing personalization of therapy according to the biology of both the tumor and dose limiting normal tissues.
Collapse
Affiliation(s)
- Michael MacManus
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, WI, USA
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Feng-Ming Spring Kong
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Hariu M, Suda Y, Chang W, Myojoyama A, Saitoh H. Contrast enhancement for portal images by combination of subtraction and reprojection processes for Compton scattering. J Appl Clin Med Phys 2017; 18:71-78. [PMID: 28895278 PMCID: PMC5689919 DOI: 10.1002/acm2.12181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/29/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger Compton scatter photons. In this work, an original image processing algorithm is proposed to improve and enhance the image contrast without increasing the imaging dose. Scatter estimation was performed in detail by MC simulation based on patient CT data. In the image processing, scatter photons were eliminated and then they were reprojected as primary photons on the assumption that Compton interaction did not take place. To improve the processing efficiency, the dose spread function within the EPID was investigated and implemented on the developed code. Portal images with and without the proposed image processing were evaluated by the image contrast profile. By the subtraction process, the image contrast was improved but the EPID signal was weakened because 15.2% of the signal was eliminated due to the contribution of scatter photons. Hence, these scatter photons were reprojected in the reprojection process. As a result, the tumor, bronchi, mediastinal space and ribs were observed more clearly than in the original image. It was clarified that image processing with the dose spread functions provides stronger contrast enhancement while maintaining a sufficient signal‐to‐noise ratio. This work shows the feasibility of improving and enhancing the contrast of portal images.
Collapse
Affiliation(s)
- Masatsugu Hariu
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuhi Suda
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Weishan Chang
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Myojoyama
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hidetoshi Saitoh
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
28
|
Abstract
Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life.
Collapse
Affiliation(s)
- Vincent Caillet
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia.
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia
| | - Paul Keall
- School of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Saleh ZH, Jeong J, Quinn B, Mechalakos J, St Germain J, Dauer LT. Results of a 10-year survey of workload for 10 treatment vaults at a high-throughput comprehensive cancer center. J Appl Clin Med Phys 2017; 18:207-214. [PMID: 28422421 PMCID: PMC5689849 DOI: 10.1002/acm2.12076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/18/2016] [Accepted: 02/15/2017] [Indexed: 12/02/2022] Open
Abstract
The workload for shielding purposes of modern linear accelerators (linacs) consists of primary and scatter radiation which depends on the dose delivered to isocenter (cGy) and leakage radiation which depends on the monitor units (MUs). In this study, we report on the workload for 10 treatment vaults in terms of dose to isocenter (cGy), monitor units delivered (MUs), number of treatment sessions (Txs), as well as, use factors (U) and modulation factors (CI) for different treatment techniques. The survey was performed for the years between 2006 and 2015 and included 16 treatment machines which represent different generations of Varian linear accelerators (6EX, 600C, 2100C, 2100EX, and TrueBeam) operating at different electron and x‐ray energies (6, 9, 12, 16 and 20 MeV electrons and, 6 and 15 MV x‐rays). An institutional review board (IRB) approval was acquired to perform this study. Data regarding patient workload, dose to isocenter, number of monitor units delivered, beam energies, gantry angles, and treatment techniques were exported from an ARIA treatment management system (Varian Medical Systems, Palo Alto, Ca.) into Excel spreadsheets and data analysis was performed in Matlab. The average (± std‐dev) number of treatment sessions, dose to isocenter, and number of monitor units delivered per week per machine in 2006 was 119 ± 39 Txs, (300 ± 116) × 102cGys, and (78 ± 28) × 103MUs respectively. In contrast, the workload in 2015 was 112 ± 40 Txs, (337 ± 124) × 102cGys, and (111 ± 46) × 103MUs. 60% of the workload (cGy) was delivered using 6 MV and 30% using 15 MV while the remaining 10% was delivered using electron beams. The modulation factors (MU/cGy) for IMRT and VMAT were 5.0 (± 3.4) and 4.6 (± 1.6) respectively. Use factors using 90° gantry angle intervals were equally distributed (~0.25) but varied considerably among different treatment techniques. The workload, in terms of dose to isocenter (cGy) and subsequently monitor units (MUs), has been steadily increasing over the past decade. This increase can be attributed to increased use of high dose hypo‐fractionated regimens (SBRT, SRS) and the increase in use of IMRT and VMAT, which require higher MUs per cGy as compared to more conventional treatment (3DCRT). Meanwhile, the patient workload in terms of treatment sessions per week remained relatively constant. The findings of this report show that variables used for shielding purposes still fall within the recommendation of NCRP Report 151.
Collapse
Affiliation(s)
- Ziad H Saleh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| | - Jeho Jeong
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| | - Brian Quinn
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| | - James Mechalakos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| | - Jean St Germain
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, York Ave, NY, USA
| |
Collapse
|
30
|
Barnes MP, Greer PB. Evaluation of the truebeam machine performance check (MPC) geometric checks for daily IGRT geometric accuracy quality assurance. J Appl Clin Med Phys 2017; 18:200-206. [PMID: 28332342 PMCID: PMC5689847 DOI: 10.1002/acm2.12064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022] Open
Abstract
Machine Performance Check (MPC) is an automated and integrated image‐based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the performance of the MPC geometric tests relevant to OBI/CBCT IGRT geometric accuracy. This included evaluation of the MPC isocenter and couch tests. Evaluation was performed by comparing MPC to QA tests performed routinely in the department over a 4‐month period. The MPC isocenter tests were compared against an in‐house developed Winston–Lutz test and the couch compared against routine mechanical QA type procedures. In all cases the results from the routine QA procedure was presented in a form directly comparable to MPC to allow a like‐to‐like comparison. The sensitivity of MPC was also tested by deliberately miscalibrating the appropriate linac parameter. The MPC isocenter size and MPC kV imager offset were found to agree with Winston–Lutz to within 0.2 mm and 0.22 mm, respectively. The MPC couch tests agreed with routine QA to within 0.12 mm and 0.15°. The MPC isocenter size and kV imager offset parameters were found to be affected by a change in beam focal spot position with the kV imager offset more sensitive. The MPC couch tests were all unaffected by an offset in the couch calibration but the three axes that utilized two point calibrations were sensitive to a miscalibration of the size in the span of the calibration. All MPC tests were unaffected by a deliberate misalignment of the MPC phantom and roll of the order of one degree.
Collapse
Affiliation(s)
- Michael P Barnes
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, NSW, 2298, Australia.,School of Medical Radiation Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Peter B Greer
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, NSW, 2298, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| |
Collapse
|
31
|
Jia X, Tian Z, Xi Y, Jiang SB, Wang G. New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy. J Med Imaging (Bellingham) 2017; 4:015004. [PMID: 28331888 DOI: 10.1117/1.jmi.4.1.015004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient's anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam.
Collapse
Affiliation(s)
- Xun Jia
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Zhen Tian
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Yan Xi
- Biomedical Imaging Center , Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Steve B Jiang
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Ge Wang
- Biomedical Imaging Center , Rensselaer Polytechnic Institute, Troy, New York, United States
| |
Collapse
|
32
|
Michienzi A, Kron T, Callahan J, Plumridge N, Ball D, Everitt S. Cone-beam computed tomography for lung cancer - validation with CT and monitoring tumour response during chemo-radiation therapy. J Med Imaging Radiat Oncol 2016; 61:263-270. [DOI: 10.1111/1754-9485.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Alissa Michienzi
- Faculty of Medicine, Dentistry and Health Sciences; University of Melbourne; Melbourne Victoria Australia
| | - Tomas Kron
- Department of Physical Sciences; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
- Department of Medical Imaging and Radiation Sciences; Monash University; Clayton Victoria Australia
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Victoria Australia
| | - Jason Callahan
- Department of Medical Imaging and Radiation Sciences; Monash University; Clayton Victoria Australia
- Centre for Cancer Imaging; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Nikki Plumridge
- Division of Radiation Oncology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - David Ball
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Victoria Australia
- Division of Radiation Oncology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Sarah Everitt
- Department of Medical Imaging and Radiation Sciences; Monash University; Clayton Victoria Australia
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Victoria Australia
- Radiation Therapy Services; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| |
Collapse
|
33
|
Deshpande S, Dhote DS, Kumar R, Naidu S, Sutar A, Kannan V. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey. J Med Phys 2016; 40:220-5. [PMID: 26865758 PMCID: PMC4728893 DOI: 10.4103/0971-6203.170788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements.
Collapse
Affiliation(s)
- Sudesh Deshpande
- Department of Radiation Oncology, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - D S Dhote
- Department of Electronic, Brijalal Biyani Mahavidyalaya, Amravati, Maharashtra, India
| | - Rajesh Kumar
- RPAD Bhabha Atomic Research Center, Mumbai, Maharashtra, India
| | - Suresh Naidu
- Department of Radiation Oncology, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - A Sutar
- Department of Radiation Oncology, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - V Kannan
- Department of Radiation Oncology, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Emerging Modalities in Radiation Therapy for Prostate Cancer. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: A clinical study for prostate and head-and-neck cancer. Phys Med 2015; 31:1055-1059. [DOI: 10.1016/j.ejmp.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
|
36
|
Lee S, Yan G, Lu B, Kahler D, Li JG, Sanjiv SS. Impact of scanning parameters and breathing patterns on image quality and accuracy of tumor motion reconstruction in 4D CBCT: a phantom study. J Appl Clin Med Phys 2015; 16:195-212. [PMID: 26699574 PMCID: PMC5690988 DOI: 10.1120/jacmp.v16i6.5620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/27/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022] Open
Abstract
Four-dimensional, cone-beam CT (4D CBCT) substantially reduces respiration-induced motion blurring artifacts in three-dimension (3D) CBCT. However, the image quality of 4D CBCT is significantly degraded which may affect its accuracy in localizing a mobile tumor for high-precision, image-guided radiation therapy (IGRT). The purpose of this study was to investigate the impact of scanning parameters hereinafter collectively referred to as scanning sequence) and breathing patterns on the image quality and the accuracy of computed tumor trajectory for a commercial 4D CBCT system, in preparation for its clinical implementation. We simulated a series of periodic and aperiodic sinusoidal breathing patterns with a respiratory motion phantom. The aperiodic pattern was created by varying the period or amplitude of individual sinusoidal breathing cycles. 4D CBCT scans of the phantom were acquired with a manufacturer-supplied scanning sequence (4D-S-slow) and two in-house modified scanning sequences (4D-M-slow and 4D-M-fast). While 4D-S-slow used small field of view (FOV), partial rotation (200°), and no imaging filter, 4D-M-slow and 4D-M-fast used medium FOV, full rotation, and the F1 filter. The scanning speed was doubled in 4D-M-fast (100°/min gantry rotation). The image quality of the 4D CBCT scans was evaluated using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and motion blurring ratio (MBR). The trajectory of the moving target was reconstructed by registering each phase of the 4D CBCT with a reference CT. The root-mean-squared-error (RMSE) analysis was used to quantify its accuracy. Significant decrease in CNR and SNR from 3D CBCT to 4D CBCT was observed. The 4D-S-slow and 4D-M-fast scans had comparable image quality, while the 4D-M-slow scans had better performance due to doubled projections. Both CNR and SNR decreased slightly as the breathing period increased, while no dependence on the amplitude was observed. The difference of both CNR and SNR between periodic and aperiodic breathing patterns was insignificant (p > 0.48). At end-exhale phases, the motion blurring was negligible for both periodic and aperiodic breathing patterns; at mid-inhale phase, the motion blurring increased as the period, the amplitude or the amount of cycle-to-cycle variation on amplitude increased. Overall, the accuracy of localizing the moving target in 4D CBCT was within 2 mm under all studied cases. No difference in the RMSEs was noticed among the three scanning sequences. The 4D-M-fast scans, free of volume truncation artifacts, exhibited comparable image quality and accuracy in tumor motion reconstruction as the 4D-S-slow scans with reduced imaging dose (0.60 cGy vs. 0.99 cGy) due to the use of faster gantry rotation and the F1 filter, suggesting its suitability for clinical use.
Collapse
Affiliation(s)
- Soyoung Lee
- University of Florida and University of Florida, College of Medicine.
| | | | | | | | | | | |
Collapse
|
37
|
Chiu TD, Yan Y, Foster R, Mao W. Long-term evaluation and cross-checking of two geometric calibrations of kV and MV imaging systems for Linacs. J Appl Clin Med Phys 2015. [PMID: 26218992 PMCID: PMC5690018 DOI: 10.1120/jacmp.v16i4.5140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Geometric or mechanical accuracy of kV and MV imaging systems of two Varian TrueBeam linacs have been monitored by two geomertirc calibration systems, Varian IsoCal geometric calibration system and home‐developed gQA system. Results of both systems are cross‐checked and the long‐term geometric stabilities of linacs are evaluated. Two geometric calibration methodologies have been used to assess kV and MV imaging systems and their coincidence periodically on two TrueBeam linacs for about one year. Both systems analyze kV or MV projection images of special designed phantoms to retrieve geometric parameters of the imaging systems. The isocenters — laser isocenter and centers of rotations of kV imager and EPID — are then calculated, based on results of multiple projections from different angles. Long‐term calibration results from both systems are compared for cross‐checking. There are 24 sessions of side‐by‐side calibrations performed by both systems on two TrueBeam linacs. All the disagreements of isocenters between two calibrations systems are less than 1 mm with ± 0.1 mm SD. Most of the large disagreements occurred in vertical direction (AP direction), with an averaged disagreement of 0.45 mm. The average disagreements of isocenters are 0.09 mm in other directions. Additional to long‐term calibration monitoring, for the accuracy test, special tests were performed by misaligning QA phantoms on purpose (5 mm away from setup isocenter in AP, SI, and lateral directions) to test the liability performance of both systems with the known deviations. The errors are within 0.5 mm. Both geometric calibration systems, IsoCal and gQA, are capable of detecting geometric deviations of kV and MV imaging systems of linacs. The long‐term evaluation also shows that the deviations of geometric parameters and the geometric accuracies of both linacs are small and very consistent during the one‐year study period. PACS number: 87.56.Fc
Collapse
|
38
|
Rehani MM, Gupta R, Bartling S, Sharp GC, Pauwels R, Berris T, Boone JM. Radiological Protection in Cone Beam Computed Tomography (CBCT). ICRP Publication 129. Ann ICRP 2015; 44:9-127. [PMID: 26116562 DOI: 10.1177/0146645315575485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this publication is to provide guidance on radiological protection in the new technology of cone beam computed tomography (CBCT). Publications 87 and 102 dealt with patient dose management in computed tomography (CT) and multi-detector CT. The new applications of CBCT and the associated radiological protection issues are substantially different from those of conventional CT. The perception that CBCT involves lower doses was only true in initial applications. CBCT is now used widely by specialists who have little or no training in radiological protection. This publication provides recommendations on radiation dose management directed at different stakeholders, and covers principles of radiological protection, training, and quality assurance aspects. Advice on appropriate use of CBCT needs to be made widely available. Advice on optimisation of protection when using CBCT equipment needs to be strengthened, particularly with respect to the use of newer features of the equipment. Manufacturers should standardise radiation dose displays on CBCT equipment to assist users in optimisation of protection and comparisons of performance. Additional challenges to radiological protection are introduced when CBCT-capable equipment is used for both fluoroscopy and tomography during the same procedure. Standardised methods need to be established for tracking and reporting of patient radiation doses from these procedures. The recommendations provided in this publication may evolve in the future as CBCT equipment and applications evolve. As with previous ICRP publications, the Commission hopes that imaging professionals, medical physicists, and manufacturers will use the guidelines and recommendations provided in this publication for implementation of the Commission's principle of optimisation of protection of patients and medical workers, with the objective of keeping exposures as low as reasonably achievable, taking into account economic and societal factors, and consistent with achieving the necessary medical outcomes.
Collapse
|
39
|
Tian Z, Peng F, Folkerts M, Tan J, Jia X, Jiang SB. Multi-GPU implementation of a VMAT treatment plan optimization algorithm. Med Phys 2015; 42:2841-52. [DOI: 10.1118/1.4919742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
40
|
Xu Y, Bai T, Yan H, Ouyang L, Pompos A, Wang J, Zhou L, Jiang SB, Jia X. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy. Phys Med Biol 2015; 60:3567-87. [PMID: 25860299 DOI: 10.1088/0031-9155/60/9/3567] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the time for both the scatter estimation and CBCT reconstruction steps. The efficacy of our method and its high computational efficiency make our method attractive for clinical use.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Image quality and dose distributions of three linac-based imaging modalities. Strahlenther Onkol 2014; 191:365-74. [PMID: 25527311 DOI: 10.1007/s00066-014-0798-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. PATIENTS AND METHODS The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. RESULTS For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics.
Collapse
|
42
|
Lu W, Yan H, Gu X, Tian Z, Luo O, Yang L, Zhou L, Cervino L, Wang J, Jiang S, Jia X. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study. Phys Med Biol 2014; 59:6251-66. [PMID: 25255957 PMCID: PMC4197814 DOI: 10.1088/0031-9155/59/20/6251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.
Collapse
Affiliation(s)
- Wenting Lu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hao Yan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuejun Gu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tian
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ouyang Luo
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liu Yang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linghong Zhou
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Laura Cervino
- Center for Advanced Radiotherapy Technologies, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Steve Jiang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Jia
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
43
|
Kaltwasser A, Dodt C. [Organizational models of inpatient emergency and acute care]. Med Klin Intensivmed Notfmed 2014; 109:478. [PMID: 25293596 DOI: 10.1007/s00063-013-0330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Kaltwasser
- Kreiskliniken Reutlingen GmbH, Steinenbergstr. 31 , 72764, Reutlingen, Deutschland,
| | | |
Collapse
|
44
|
Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136513. [PMID: 25110653 PMCID: PMC4109604 DOI: 10.1155/2014/136513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.
Collapse
|
45
|
Kapoor BS, Esparaz A, Levitin A, McLennan G, Moon E, Sands M. Nonvascular and portal vein applications of cone-beam computed tomography: current status. Tech Vasc Interv Radiol 2014; 16:150-60. [PMID: 23993077 DOI: 10.1053/j.tvir.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
C-arm cone-beam computed tomography (CBCT) is a relatively new imaging technology that uses a conical-shaped radiation beam and a 2-dimensional flat-panel detector to produce 3-dimensional volumetric datasets with excellent spatial resolution. Recently, this technology has been implemented in angiographic units across the country. This imaging modality is particularly useful when both images of "CT-like" quality and real-time fluoroscopic imaging are required for pretreatment planning and intraprocedural guidance. In this article, we describe the use of cone-beam CT technology in various nonvascular and portal venous interventions, including percutaneous vertebroplasty or kyphoplasty, transjugular intrahepatic portosystemic shunt, percutaneous needle biopsy and ablation of pulmonary nodules and renal masses, gastrostomy tube insertion, hepatic radiofrequency ablation, and biliary interventions.
Collapse
|
46
|
Zhuang L, Yan D, Liang J, Ionascu D, Mangona V, Yang K, Zhou J. Evaluation of image guided motion management methods in lung cancer radiotherapy. Med Phys 2014; 41:031911. [PMID: 24593729 DOI: 10.1118/1.4866220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. METHODS Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. RESULTS In the theoretical motion study (a), the MP detection errors are -0.2 ± 0.2, -1.5 ± 1.1, and -0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the variances of MP error in SI direction explained by target sizes, motion patterns, and EX variations are 9% with the 2D method, 74.4% with the 3D method, and 27% with the 4D method. The EX/SD detection errors are both < 1.0 mm for the 2D method and < 2.0 mm for the 4D method. CONCLUSIONS The 2D method provides the most accurate MP detection regardless of the motion pattern variations, while its performance is limited by the accuracy of target identification in the projection images. The 3D method causes the largest error in MP determination, and its accuracy significantly depends on target sizes, motion patterns, and EX variations. The 4D method provides moderate MP detection results, while its accuracy relies on a regular motion pattern. In addition, the 2D and 4D methods both provide accurate measurement of the motion SD/EX, providing extra information for motion management.
Collapse
Affiliation(s)
- Ling Zhuang
- Department of Radiation Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, Michigan 48201
| | - Di Yan
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| | - Jian Liang
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| | - Dan Ionascu
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| | - Victor Mangona
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| | - Kai Yang
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| | - Jun Zhou
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073
| |
Collapse
|
47
|
Abstract
Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented.
Collapse
Affiliation(s)
- Xun Jia
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter Ziegenhein
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Steve B. Jiang
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Montanari D, Scolari E, Silvestri C, Graves YJ, Yan H, Cervino L, Rice R, Jiang SB, Jia X. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations. Phys Med Biol 2014; 59:1239-53. [PMID: 24556699 DOI: 10.1088/0031-9155/59/5/1239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
Collapse
Affiliation(s)
- Davide Montanari
- Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, CA 92037-0843, USA. Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of image-guided radiation therapy. Expert Rev Anticancer Ther 2014; 7:89-103. [PMID: 17187523 DOI: 10.1586/14737140.7.1.89] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Image-guided radiation therapy represents a new paradigm in the field of high-precision radiation medicine. A synthesis of recent technological advances in medical imaging and conformal radiation therapy, image-guided radiation therapy represents a further expansion in the recent push for maximizing targeting capabilities with high-intensity radiation dose deposition limited to the true target structures, while minimizing radiation dose deposited in collateral normal tissues. By improving this targeting discrimination, the therapeutic ratio may be enhanced significantly. The principle behind image-guided radiation therapy relies heavily on the acquisition of serial image datasets using a variety of medical imaging platforms, including computed tomography, ultrasound and magnetic resonance imaging. These anatomic and volumetric image datasets are now being augmented through the addition of functional imaging. The current interest in positron-emitted tomography represents a good example of this sort of functional information now being correlated with anatomic localization. As the sophistication of imaging datasets grows, the precise 3D and 4D positions of the target and normal structures become of great relevance, leading to a recent exploration of real- or near-real-time positional replanning of the radiation treatment localization coordinates. This 'adaptive' radiotherapy explicitly recognizes that both tumors and normal tissues change position in time and space during a multiweek course of treatment, and even within a single treatment fraction. As targets and normal tissues change, the attenuation of radiation beams passing through these structures will also change, thus adding an additional level of imprecision in targeting unless these changes are taken into account. All in all, image-guided radiation therapy can be seen as further progress in the development of minimally invasive highly targeted cytotoxic therapies with the goal of substituting remote technologies for direct contact on the part of an operator or surgeon. Although data demonstrating clear-cut superiority of this new high-tech paradigm compared with more conventional radiation treatment approaches are scant, the emergence of preliminary data from several early studies shows that interest in this field is broad based and robust. As outcomes data accumulate, it is very likely that this field will continue to expand greatly. Although at present most of the work is being performed at major academic centers, the enthusiastic adoption of many of the devices and approaches being developed for this field suggest a rapid penetration into the community and the use of the technology by teams of specialists in the fields of radiation medicine, radiation physics and various branches of surgery. A recent survey of practitioners predicted very widespread adoption within the next 10 years.
Collapse
Affiliation(s)
- David Jaffray
- Princess Margaret Hospital /University of Toronto, Radiation Medicine Program, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
50
|
Yan H, Zhen X, Cerviño L, Jiang SB, Jia X. Progressive cone beam CT dose control in image-guided radiation therapy. Med Phys 2014; 40:060701. [PMID: 23718579 DOI: 10.1118/1.4804215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. METHODS A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction. The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. RESULTS In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. CONCLUSIONS PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.
Collapse
Affiliation(s)
- Hao Yan
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843, USA
| | | | | | | | | |
Collapse
|