1
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Isaac AR, da Silva EAN, de Matos RJB, Augusto RL, Moreno GMM, Mendonça IP, de Souza RF, Cabral-Filho PE, Rodrigues CG, Gonçalves-Pimentel C, Rodrigues MCA, da Silveira Andrade-da-Costa BL. Low omega-6/omega-3 ratio in a maternal protein-deficient diet promotes histone-3 changes in progeny neural cells and favors leukemia inhibitory factor genetranscription. J Nutr Biochem 2018; 55:229-242. [PMID: 29573696 DOI: 10.1016/j.jnutbio.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Omega-3 (n-3) fatty acids modulate epigenetic changes critical to genesis and differentiation of neural cells. Conversely, maternal protein-malnutrition can negatively modify these changes. This study investigated whether a low n-6/n-3 ratio in a maternal diet could favor histone-3 (H3) modifications, gene transcription and differentiation in the offspring neural cells even under protein-deficiency. Female rats fed a control (Ct), or 3 types of multideficient diets differing in protein levels or linoleic/alpha-linolenic fatty acid ratios (RBD, RBD-C, RBD-SO) from 30 days prior to mating and during pregnancy. Cerebral cortex tissue and cortical cultures of progeny embryonic neurons and postnatal astrocytes were analyzed. H3K9 acetylation and H3K27 or H3K4 di-methylation levels were assessed by flow cytometry and/or immunocytochemistry. In astrocyte cultures and cortical tissue, the GFAP protein levels were assessed. Glial derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) gene expression were evaluated in the cortical tissue. GFAP levels were similar in astrocytes of Ct, RBD and RBD-C, but 65% lower in RBD-SO group. Higher levels of H3K9Ac were found in the neurons and H3K4Me2 in the astrocytes of the RBD group. No intergroup difference in the cortical GDNF mRNA expression or the H3K27Me2 levels in astrocytes was detected. LIF mRNA levels were higher in the RDB (P=.002) or RBD-C (P=.004) groups than in the control. The findings indicate the importance of dietary n-3 availability for the brain, even under a protein-deficient condition, inducing Histone modifications and increasing LIF gene transcription, involved in neural cell differentiation and reactivity.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Emerson Alexandre Neves da Silva
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Ricielle Lopes Augusto
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Giselle Machado Magalhães Moreno
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Ingrid Prata Mendonça
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raphael Fabrício de Souza
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Paulo Euzébio Cabral-Filho
- Departamento de Biofísica e Radiobiologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Cláudio Gabriel Rodrigues
- Departamento de Biofísica e Radiobiologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Catarina Gonçalves-Pimentel
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Cairrão Araujo Rodrigues
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
3
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Soares GDSF, Lima CB, Cavalcanti LC, Villacampa N, Castellano B, Guedes RCA. Brain effects of the lectin from Canavalia ensiformis in adult rats previously suckled in favorable and unfavorable conditions: A spreading depression and microglia immunolabeling study. Nutr Neurosci 2014; 18:307-15. [PMID: 24819023 DOI: 10.1179/1476830514y.0000000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To evaluate in adult rats, previously suckled under favorable and unfavorable conditions, the brain electrophysiological and microglial effects of the treatment early in life with the lectin (ConA) from Canavalia ensiformis. METHODS Male Wistar newborn rats (n = 89) were suckled under favorable or unfavorable conditions, represented by litters with 6-7 pups or 12-14 pups (groups N6 and N12, respectively). From postnatal days 5-24, they were treated intraperitoneally with 1 or 10 mg/kg ConA (groups L1 and L10, respectively), or with saline solution (group Sal), or no treatment (group Naïve). At 90-120 days of age, cortical spreading depression (CSD) was recorded at two parietal points for 4 hours, and CSD parameters (velocity of propagation and amplitude and duration of the DC slow potential change) were measured. Fixative-perfused brain sections were reacted with anti-Iba1 antibodies to quantify immunolabeled microglia. RESULTS Compared with the control groups, ConA-treated animals dose-dependently presented with reduced CSD propagation velocities and increased amplitude and duration of the CSD slow potential change. Microglia Iba-1 immunoreactivity was lower in both nutritional groups treated with ConA, in comparison with the control groups. The CSD hemisphere presented with higher immunoreactivity compared with the CSD-free hemisphere. DISCUSSION Attenuation in CSD propagation and microglia reaction was associated in adulthood with ConA treatment during brain development, indicating that the lectin can affect the electrophysiological and microglial development, and suggesting long-lasting protective action of the lectin on the rat brain, which is not impeded by the unfavorable suckling condition.
Collapse
|
5
|
Rocha-de-Melo AP, Cavalcanti JDB, Barros AS, Guedes RCA. Manipulation of rat litter size during suckling influences cortical spreading depression after weaning and at adulthood. Nutr Neurosci 2013; 9:155-60. [PMID: 17176638 DOI: 10.1080/10284150600903602] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nutritional conditions early in life constitute one environmental factor that can influence brain electrophysiological features. Cortical spreading depression (SD) is a brain electrophysiological phenomenon that can be altered by the early nutritional status of organism. SD-velocity changes were presently studied in young (30-40 days old) and adult (90-120 days) rats suckled in litters formed by 3, 6, or 12 pups (called respectively small (S), medium (M) and large (L) litters). Body weights and SD propagation velocities in the 3 groups varied, respectively in an inverse and direct way, in relation to the litter sizes. The present investigation provides the first systematic description of the effectiveness of favorable and unfavorable lactation conditions (respectively suckling in S and L litters) in altering cortical SD-propagation. The results confirm previous evidence in favor of permanent or at least long-lasting SD-changes associated to the prevailing nutritional status during the period of fast brain development.
Collapse
Affiliation(s)
- Ana Paula Rocha-de-Melo
- Departamento de Nutrição, Universidade Federal de Pernambuco, BR-50670-901 Recife, PE, Brazil
| | | | | | | |
Collapse
|
6
|
Rocha-de-Melo AP, Picanço-Diniz CW, Borba JMC, Santos-Monteiro J, Guedes RCA. NADPH-diaphorase Histochemical Labeling Patterns in the Hippocampal Neuropil and Visual Cortical Neurons in Weaned Rats Reared during Lactation on Different Litter Sizes. Nutr Neurosci 2013; 7:207-16. [PMID: 15682647 DOI: 10.1080/10284150400001961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tissue distribution of nitric oxide-synthases was investigated in the rat hippocampus and visual cortex under nutritional changes induced by modification of the litter size. Young (30-45-days-old) rats, suckled in litters formed by 3,6 or 12 pups (called small, medium and large litters, respectively), were studied by using nicotine-adenine-dinucleotide phosphate-diaphorase histochemistry (shortly, diaphorase), a simple and robust procedure to characterize tissue distribution of nitric oxide-synthases. We assessed morphometric features of the diaphorase-positive cells in visual cortex, and the neuropil histochemical activity in hippocampal CA1 and dentate gyrus using densitometry analysis. In the large-litter group, the labeled-cell density in white matter of area 17 was higher, as compared to the small-litter group. There was a clear trend, in the large-litter group, to lower values of soma area, dendritic field and branches per neuron, but the differences were not significant. Densitometry analysis of hippocampus revealed a significant increase in the relative neuropil histochemical activity of the dentate gyrus molecular layer in the larger litters, which may be associated to increased compensatory blood flow in the hippocampus. The pathophysiological mechanisms of the observed changes remain to be investigated.
Collapse
Affiliation(s)
- Ana Paula Rocha-de-Melo
- Departamento de Nutrição, Universidade Federal de Pernambuco, BR-50670-901, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
7
|
Mendonça JEF, Vilela MCR, Bittencourt H, Lapa RM, Oliveira FG, Alessio MLM, Guedes RCA, De Oliveira Costa MSM, Da Costa BLDSA. GFAP Expression in Astrocytes of Suprachiasmatic Nucleus and Medial Preoptic Area are Differentially Affected by Malnutrition during Rat Brain Development. Nutr Neurosci 2013; 7:223-34. [PMID: 15682649 DOI: 10.1080/10284150400010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was investigate, in young rats, the effects of malnutrition on astrocyte distribution of two hypothalamic regions, the circadian pacemaker suprachiasmatic nucleus (SCN) and the medial preoptic area (MPA). Control rats were born from mothers fed on commercial diet since gestation and malnourished rats from mothers fed on multideficient diet, from the beginning of gestation (GLA group) or from the onset of lactation (LA group). After weaning, pups received ad libitum the same diet as their mothers, and were maintained under a 12/12 h light/dark cycle. The animals were analyzed either at 30-33, or 60-63 days of life. Brain coronal sections (50 microm) were processed to visualize glial fibrillary acidic protein (GFAP) immunoreactivity. Compared to control rats, both malnourished groups of 30 and 60 days exhibited a reduced number of GFAP-immunoreactive astrocytes in the SCN. The total GFAP-immunoreactive area in the SCN of the GLA group differed from the control group at both age ranges analyzed. The GFAP expression as measured by the relative optical density (ROD) exhibited a 50-60% reduction in the MPA in both malnourished groups, compared to controls. The results suggest that malnutrition early in life leads to alterations in gliogenesis or glial cell proliferation in both nuclei, being these alterations greater in the MPA. Compensatory plasticity mechanisms in the GFAP-expression seem to be developed in the astrocyte differentiation process in the SCN, especially when the malnutrition is installed from the lactation.
Collapse
|
8
|
Maia L, Amancio-dos-Santos A, Duda-de-Oliveira D, Angelim M, Germano P, Santos S, Guedes R. L-Arginine administration during rat brain development facilitates spreading depression propagation: evidence for a dose- and nutrition-dependent effect. Nutr Neurosci 2013; 12:73-80. [DOI: 10.1179/147683009x423229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
da Silva Tenório A, da Silva Moura FR, de Lima Silva LPS, Guedes RCA. Lasting facilitatory effects of neonatal vibrissae removal on the propagation of cortical spreading depression: an electrophysiological study in well-nourished and early-malnourished adult rats. Nutr Neurosci 2013; 12:281-8. [DOI: 10.1179/147683009x423481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Amancio-dos-Santos A, Maia LMSDS, Germano PCPDS, Negrão YDDS, Guedes RCA. Tianeptine facilitates spreading depression in well-nourished and early-malnourished adult rats. Eur J Pharmacol 2013; 706:70-5. [DOI: 10.1016/j.ejphar.2013.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 02/15/2013] [Accepted: 02/24/2013] [Indexed: 12/26/2022]
|
11
|
de Melo JF, da Costa TB, da Costa Lima TD, Chaves MEC, Vayssade M, Nagel MD, de Castro CMMB. Long-term effects of a neonatal low-protein diet in rats on the number of macrophages in culture and the expression/production of fusion proteins. Eur J Nutr 2012; 52:1475-82. [DOI: 10.1007/s00394-012-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/27/2012] [Indexed: 01/21/2023]
|
12
|
Maia CDSF, Ferreira VMM, Kahwage RL, do Amaral MN, Serra RB, Noro dos Santos S, do Nascimento JLM, Rodrigues LG, Trévia N, Diniz CWP. Adult brain nitrergic activity after concomitant prenatal exposure to ethanol and methyl mercury. Acta Histochem 2010; 112:583-91. [PMID: 19748654 DOI: 10.1016/j.acthis.2009.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 01/13/2023]
Abstract
Pregnant rats were exposed to ethanol (EtOH) and/or methyl mercury (MeHg) during fetal brain development. Nitrergic activity was quantified by densitometric measurement of formazan deposits in the hippocampus, cerebellum and striatum of two-month-old offspring following histochemical assay for NADPH-diaphorase (NADPH-d) activity. Compared to control subjects, an increase in nitrergic activity was found in the molecular layer of dentate gyrus and in the lacunosum molecular and stratum radiatum of CA1 (cornus amoni 1) in the EtOH+MeHg group, whereas a single administration of EtOH increased the activity in all striatal segments. The cerebellum seems to be less sensitive at this time-point to intoxication, and presented an increase only at the molecular layer of EtOH-exposed animals when compared to the MeHg and EtOH+MeHg groups (ANOVA, one-way followed by Tukey's test, p<0.05 or p<0.01). Taken together, results suggest that developmental exposure to EtOH and MeHg, singularly or in combination, alters nitrergic activity in adult rat in different ways depending on the region and layer of the central nervous system (CNS), and that these alterations might be related to different local metabolic properties.
Collapse
|
13
|
He Z, Sun Z, Liu S, Zhang Q, Tan Z. Effects of early malnutrition on mental system, metabolic syndrome, immunity and the gastrointestinal tract. J Vet Med Sci 2009; 71:1143-50. [PMID: 19801893 DOI: 10.1292/jvms.71.1143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The notion of how malnutrition early in life affects ontogenesis has evolved considerably since the mid-1960s. Since then, there have been many studies on the effects of early malnutrition. Nutritional and metabolic exposure during critical periods in early human and animal development may have long-term programming effects in adulthood. This is supported by evidence from epidemiological studies, numerous animal models and clinical intervention trials. In this paper, we review the effects of early malnutrition on cognitive function, metabolic syndrome, immunity and the gastrointestinal tract, as well as possible underlying mechanisms, and consider diarrhoeal disease and poor cognitive function as examples for understanding the interrelation of the harmful effects caused by early malnutrition. Previous studies on early malnutrition have mainly concentrated on humans and rats. Therefore, the main aim of the present review was to give animal scientists a clear understanding of the harmful effects of early malnutrition on animal growth and animal production, and to help identify appropriate feeding techniques to prevent early malnutrition.
Collapse
Affiliation(s)
- Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Hunan, P.R. China
| | | | | | | | | |
Collapse
|
14
|
de Lima DSC, de Seixas Maia LMS, de Andrade Barboza E, de Almeida Duarte R, de Souza LS, Guedes RCA. l-Glutamine supplementation during the lactation period facilitates cortical spreading depression in well-nourished and early-malnourished rats. Life Sci 2009; 85:241-7. [DOI: 10.1016/j.lfs.2009.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/15/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
15
|
Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J Neurosci 2009; 29:5032-43. [PMID: 19369572 DOI: 10.1523/jneurosci.5331-08.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the gamma2 subunit of type A GABA receptors (GABA(A)R), which is required to anchor GABA(A) receptors to the postsynaptic scaffold. Enhanced green fluorescent protein (EGFP)-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by vesicular GABA transporter immunoreactive puncta. ICL expression completely blocked GABA(A)R-mediated transmission in 36% of transfected neurons and significantly reduced GABA(A)R-mediated synaptic currents relative to AMPA receptor-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABA(A)R-mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of gamma2 subunit-containing GABA(A)R. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors, which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo.
Collapse
|
16
|
Frazão MF, Silva de Seixas Maia LM, Guedes RCA. Early malnutrition, but not age, modulates in the rat the l-Arginine facilitating effect on cortical spreading depression. Neurosci Lett 2008; 447:26-30. [DOI: 10.1016/j.neulet.2008.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
17
|
Viana LC, Torres JB, Farias JA, Kawhage R, Lins N, Passos A, Quintairos A, Trévia N, Guedes RCA, Diniz CWP. Exercise and food ad libitum reduce the impact of early in life nutritional inbalances on nitrergic activity of hippocampus and striatum. Nutr Neurosci 2008; 10:215-28. [PMID: 18284030 DOI: 10.1080/10284150701722158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nutritional imbalances were produced by varying litter size pups per dam: 3 (small), 6 (medium), and 12 (large). On the 21st day, 4 subjects of each litter, were sacrificed and the remaining were grouped, 2 per cage, with or without running wheels, with food and water ad libitum. Adult subjects were tested in water maze, their brains processed for NADPH-diaphorase histochemistry and quantified by densitometry. No differences were detected in water maze. At 21st day, S and L compared with M presented reduced NADPH-d in the stratum molecular of dentate gyrus (DG), stratum lacunosum of CA1 and in all CA3 layers but not in the striatum. On the 58th day, actvity remained low in S and L in CA3 and striatum and L in CA1 and DG. Voluntary exercise increased NADPH-d in DG, CA1, CA3, and striatum in S, and in the stratum lacunosum of CA1 and CA3 in L.
Collapse
Affiliation(s)
- Lane Coelho Viana
- Departamento de Morfologia, Universidade Federal do Pará, CEP 66075900 Belém, PA, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Díaz-Cintra S, González-Maciel A, Morales MA, Aguilar A, Cintra L, Prado-Alcalá RA. Protein malnutrition differentially alters the number of glutamic acid decarboxylase-67 interneurons in dentate gyrus and CA1–3 subfields of the dorsal hippocampus. Exp Neurol 2007; 208:47-53. [PMID: 17706195 DOI: 10.1016/j.expneurol.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
In 30- and 90-day-old rats, using immunohistochemistry for glutamic acid decarboxylase 67 (GAD-67), we have tested whether malnutrition during different periods of hippocampal development produces deleterious effects on the population of GABA neurons in the dentate gyrus (DG) and cornu Ammonis (CA1-3) of the dorsal hippocampus. Animals were under one of four nutritional conditions: well-nourished controls (Con), prenatal protein malnourished (PreM), postnatal protein malnourished (PostM), and chronic protein malnourished (ChroM). We found that the number of GAD-67-positive (GAD-67+) interneurons was higher in the DG than in the CA1-3 areas of both Con and malnourished groups. Regarding the DG, the number of GAD-67+ interneurons was increased in PreM and PostM and decreased in ChroM at 30 days. At 90 days of age the number of GAD-67+ interneurons was increased in PostM and ChroM and remained unchanged in PreM. With respect to CA1-3, the number of labeled interneurons was decreased in PostM and ChroM at 30 days of age, but no change was found in PreM. At 90 days no changes in the number of these interneurons were found in any of the groups. These observations suggest that 1) the cell death program starting point is delayed in DG GAD-67+ interneurons, and 2) protein malnutrition differentially affects GAD-67+ interneuron development throughout the dorsal hippocampus. Thus, these changes in the number of GAD-67+ interneurons may partly explain the alterations in modulation of dentate granule cell excitability, as well as in the emotional, motivational, and memory disturbances commonly observed in malnourished rats.
Collapse
Affiliation(s)
- Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
dos Santos AA, Pinheiro PCF, de Lima DSC, Ozias MG, de Oliveira MB, Guimarães NX, Guedes RCA. Fluoxetine inhibits cortical spreading depression in weaned and adult rats suckled under favorable and unfavorable lactation conditions. Exp Neurol 2006; 200:275-82. [PMID: 16616920 DOI: 10.1016/j.expneurol.2006.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Wistar rats (n = 58) were injected subcutaneously during the lactation period with fluoxetine (5, 10, 20 or 40 mg/kg/day) and cortical spreading depression (SD) was recorded immediately after weaning (25-30 days of life). An additional group (10 mg/kg; n = 8) was SD-recorded at 60-70 days. As compared to the saline-injected (n = 24) or "ingenuous" (n = 16) controls, fluoxetine dose-dependently reduced (P < 0.05) SD-velocities in the young rats by 4, 6, 16 and 15%, respectively, and in adult rats by 13%. In another experiment (26 adult rats), topical cortical application of fluoxetine (5 and 10 mg/ml solutions over the intact dura-mater for 10 min; n = 12 and 14, respectively) dose-dependently reduced SD-velocity (7.6% and 43.3% maximal reductions; P < 0.05). SD-propagation was blocked in 4 out of the 14 W-rats topically treated with the highest fluoxetine concentration (10 mg/ml). This topical fluoxetine effect was reverted after flushing the treated region with saline. In additional, 58 early-malnourished rats, fluoxetine applied during the suckling period (10 mg/kg/day, s.c.) and topically (10 mg/ml) also reduced (P < 0.05) SD-velocities by 18 and 22% for the systemic treatment (young and adult animals, respectively) and by 22.4% for the topical one. The present fluoxetine action supports the hypothesis of an antagonistic serotoninergic influence on SD, as previously suggested in experiments using other serotoninergic drugs. Data also suggest that early malnutrition does not greatly affect fluoxetine effects on SD.
Collapse
|
20
|
Torres JB, Assunção J, Farias JA, Kahwage R, Lins N, Passos A, Quintairos A, Trévia N, Diniz CWP. NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances. Exp Brain Res 2006; 175:292-304. [PMID: 16763833 DOI: 10.1007/s00221-006-0549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 05/05/2006] [Indexed: 02/08/2023]
Abstract
Nitric oxide is involved in memory and motor learning. We investigated possible influences of exercise on spatial memory and NADPH-diaphorase (NADPH-d) histochemical activity in the hippocampus, striatum and cerebellum. Fifteen albino Swiss mice between the 22nd and 55th post-natal days were exercised in the following modalities: voluntary (V), acrobatic (A), acrobatic/voluntary (AV) and forced (F) and compared to inactive group (I). After the exercise period, all subjects were tested in the water maze for 3 days. Animal brains were processed for NADPH-d histochemistry. Densitometry of the neuropil of the hippocampus, striatum and cerebellum and morphometric analysis of NADPHd+ type I neurons of the striatum were done. Exercise groups presented higher levels of NADPH-d activity in the molecular and polymorphic layers of dentate gyrus and lacunosum molecular layer of CA1. The A group presented higher NADPH-d activity in the cerebellar granular layer than all other groups. Branching points and dendritic segment densities of NADPH-d type I neurons were higher in V, A and AV than in F and I groups. Exercise groups revealed best performances on water maze tests. Thus, different modalities of exercise increases in different proportions for the nitrergic activity in the hippocampus, striatum and cerebellum, and these changes seem to be beneficial to spatial memory.
Collapse
|
21
|
Maia LMSS, Frazão MF, Souza TKM, Silva MB, Rocha-de-Melo AP, Picanço-Diniz CW, Amâncio-dos-Santos A, Guedes RCA. l-arginine treatment early in life influences NADPH-diaphorase neurons in visual cortex of normal and early-malnourished adult rats. Brain Res 2006; 1072:19-25. [PMID: 16426587 DOI: 10.1016/j.brainres.2005.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/25/2005] [Accepted: 12/01/2005] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of repeated l-arginine administration during lactation, combined with different suckling conditions, on morphometric parameters of primary visual cortex NADPH-diaphorase-positive neurons. Wistar rat pups reared in "normal-size litters" or "large litters" (N- and L-conditions; litters formed by 6 and 12 pups, respectively) received, from postnatal day 7 to 28, either arginine (300 mg/kg/day, per gavage) or distilled water (control). At 90-120 days of life, they were perfused with saline + formaldehyde, and their brains were processed for histochemical reaction to reveal NADPH-diaphorase-positive neurons (malic enzyme indirect method). Compared to the normal-size litters, L-rats had lower body weights (P < 0.05), confirming the effectiveness of the L-condition in affecting pup development. Concerning NADPH-d histochemistry, arginine treatment was associated with increased (P < 0.05) density of dendrite varicosities and of dendrite branching frequency, suggesting a plastic response of the developing brain to that treatment, even in previously malnourished rats. No difference was seen, however, in dendrite orientation, total number of neurons, soma area and perimeter, as well as dendrite bifurcation points, fractal dimension, and area and volume of dendrite field, suggesting that NADPH-d cells are resistant to arginine and nutritional changes, regarding these features. Data are considered of interest for studies of synaptic plasticity during neural development and its relationships to aggressive agents like malnutrition.
Collapse
Affiliation(s)
- Luciana M S S Maia
- Department of Nutrition, Federal University of Pernambuco State, 50670-901, Recife, PE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vilela MCR, Mendonça JEF, Bittencourt H, Lapa RM, Alessio MLM, Costa MSMO, Guedes RCA, Silva VL, Andrade da Costa BLS. Differential vulnerability of the rat retina, suprachiasmatic nucleus and intergeniculate leaflet to malnutrition induced during brain development. Brain Res Bull 2005; 64:395-408. [PMID: 15607827 DOI: 10.1016/j.brainresbull.2004.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 04/05/2004] [Accepted: 09/06/2004] [Indexed: 11/26/2022]
Abstract
We investigated in young rats the effects of malnutrition on the main structures of the circadian timing system: retina, hypothalamic suprachiasmatic nuclei (SCN), thalamic intergeniculate leaflet, retinohypothalamic- and geniculohypothalamic tracts. Control rats were born from mothers fed a commercial diet since gestation, and malnourished rats from mothers fed a multideficient diet since gestation (GLA group) or lactation (LA group). After weaning, pups received the same diet as their mothers, and were analysed at postnatal days 27, 30-33 and 60-63. Brain sections were processed to visualise in the SCN neuropeptide Y immunoreactivity and terminal labeling after intraocular tracer injections. Nissl staining was used to assess cytoarchitectonic boundaries of the SCN and cell features in retinal whole mounts. Cell counts, morphometric and densitometric analysis were performed. Compared with controls, the total retinal surface was reduced and the topographical distribution of retinal ganglion cells was altered in malnourished rats, with changes in their density. Alterations were also detected in the SCN dimensions in the GLA and LA groups at one and two postnatal months, as well as in the SCN portion occupied by the retinal input in the GLA group at days 30-33, but not in the NPY-containing geniculohypothalamic tract. The present data point to subtle changes, with a low and differential vulnerability to early malnutrition, of structures involved in circadian timing regulation. Furthermore, the present findings suggest that the altered circadian rhythmicity previously documented in malnourished rats cannot be ascribed to impaired development of the retino- and geniculohypothalamic projections to the SCN.
Collapse
Affiliation(s)
- M C R Vilela
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Cidade Universitária 50670901 Recife, PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Picanço-Diniz CW, Boche D, Gomes-Leal W, Perry VH, Cunningham C. Neuropil and neuronal changes in hippocampal NADPH-diaphorase histochemistry in the ME7 model of murine prion disease. Neuropathol Appl Neurobiol 2004; 30:292-303. [PMID: 15175082 DOI: 10.1111/j.1365-2990.2004.00537.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) has been implicated in neurotoxicity and cerebral blood flow changes in chronic neurodegeneration, but its activity in the mammalian prion diseases has not been studied in detail. Nicotine adenine dinucleotide phosphate (NADPH)-diaphorase (NADPH-d) histochemistry is a simple and robust histochemical procedure that allows localization of the tissue distribution of NO synthases. The aim of the present study is to assess whether NADPH-d histochemical activity is altered in the hippocampus in the ME7 model of prion disease in C57BL/6J mice. At early and late stages after the initiation of the disease we assessed features of the NADPH-d positive cells and the neuropil histochemical activity in CA1 and dentate gyrus using densitometric analysis. In C57BL/6J mice 13 weeks postinjection of the prion agent ME7, when behavioural changes first become apparent, neuropil NADPH-d histochemical staining increases, whereas at late stages it decreases dramatically. Both type I and type II NADPH-d positive cells were found to survive throughout the hippocampal formation into the late stages of the disease, but diaphorase activity was reduced in dendritic branches and abnormal varicosities were present in both dendritic and axonal processes of NADPH-d positive type I cells. The pathophysiological implications of the results remain to be investigated but both blood flow alteration and NO neurotoxicity may be features of the disease.
Collapse
Affiliation(s)
- C W Picanço-Diniz
- Universidade Federal do Pará, Centro de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neuroanatomia Funcional, Belém, Brazil
| | | | | | | | | |
Collapse
|
24
|
Almeida SS, Duntas LH, Dye L, Nunes ML, Prasad C, Rocha JBT, Wainwright P, Zaia CTBV, Guedes RCA. Nutrition and brain function: a multidisciplinary virtual symposium. Nutr Neurosci 2002; 5:311-20. [PMID: 12385593 DOI: 10.1080/1028415021000033776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A few months ago, the Brazilian Society for Neuroscience and Behavior (SBNeC) promoted a "virtual symposium" (by Internet, under the coordination of R.C.A. Guedes) on "Nutrition and Brain Function". The discussions generated during that symposium originated the present text, which analyzes current topics on the theme, based on the multidisciplinary experience of the authors. The way the brain could be non-homogeneously affected by nutritional alterations, as well as questions like early malnutrition and the development of late obesity and hormone abnormalities were discussed. Also, topics like the role of essential fatty acids (EFAs) on brain development, increased seizure susceptibility and changes in different neurotransmitters and in cognitive performance in malnourished animals, as well as differences between overall changes in nutrient intake and excess or deficiency of specific nutrients (e.g. iodine deficiency) were analyzed. It was pointed out that different types of neurons, possibly in distinct brain structures, might be differently affected by nutritional manipulation, including not only lack-but also excess of nutrient intake. Such differences could help in explaining discrepancies between data on humans and in animals and so, could aid in determining the basic mechanisms underlying lesions or changes in brain function and behavior.
Collapse
Affiliation(s)
- S S Almeida
- Departamento de Psicobiologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|