1
|
Vieweg S, Mahul-Mellier AL, Ruggeri FS, Riguet N, DeGuire SM, Chiki A, Cendrowska U, Dietler G, Lashuel HA. The Nt17 Domain and its Helical Conformation Regulate the Aggregation, Cellular Properties and Neurotoxicity of Mutant Huntingtin Exon 1. J Mol Biol 2021; 433:167222. [PMID: 34492254 DOI: 10.1016/j.jmb.2021.167222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.
Collapse
Affiliation(s)
- Sophie Vieweg
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesco S Ruggeri
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Urszula Cendrowska
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
3
|
Montague K, Malik B, Gray AL, La Spada AR, Hanna MG, Szabadkai G, Greensmith L. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. ACTA ACUST UNITED AC 2014; 137:1894-906. [PMID: 24898351 PMCID: PMC4065020 DOI: 10.1093/brain/awu114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal and bulbar muscular atrophy is a degenerative motor neuron disease caused by CAG repeat expansion in the androgen receptor gene. Montague et al. reveal an early increase in endoplasmic reticulum stress in a mouse model, and suggest that this pathway may be a therapeutic target for polyglutamine diseases. Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington’s disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.
Collapse
Affiliation(s)
- Karli Montague
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Bilal Malik
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Anna L Gray
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Albert R La Spada
- 3 Department of Paediatrics, University of California San Diego, La Jolla, CA 92093, USA4 Department of Cellular & Molecular Medicine and Neurosciences, University of California San Diego, La Jolla, CA 92093, USA5 Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA6 Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA7 Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA8 Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael G Hanna
- 2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK9 Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Gyorgy Szabadkai
- 10 Cell and Developmental Biology Department, UCL, Gower Street, London, WC1E 6BT, UK11 Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua, Italy
| | - Linda Greensmith
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
4
|
Dominguez C, Munoz-Sanjuan I. Foundation-Directed Therapeutic Development in Huntington’s Disease. J Med Chem 2014; 57:5479-88. [DOI: 10.1021/jm4009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Celia Dominguez
- CHDI Management, Inc.,
Advisors to CHDI Foundation, Inc., 6080 Center Drive, Los Angeles, California 90045, United States
| | - Ignacio Munoz-Sanjuan
- CHDI Management, Inc.,
Advisors to CHDI Foundation, Inc., 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
5
|
Pieper CC, Teismann IK, Konrad C, Heindel WL, Schiffbauer H. Changes of pituitary gland volume in Kennedy disease. AJNR Am J Neuroradiol 2013; 34:2294-7. [PMID: 23744686 DOI: 10.3174/ajnr.a3591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Kennedy disease is a rare X-linked neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the androgen-receptor gene. Apart from neurologic signs, this mutation can cause a partial androgen insensitivity syndrome with typical alterations of gonadotropic hormones produced by the pituitary gland. The aim of the present study was therefore to evaluate the impact of Kennedy disease on pituitary gland volume under the hypothesis that endocrinologic changes caused by partial androgen insensitivity may lead to morphologic changes (ie, hypertrophy) of the pituitary gland. MATERIALS AND METHODS Pituitary gland volume was measured in sagittal sections of 3D T1-weighted 3T-MR imaging data of 8 patients with genetically proven Kennedy disease and compared with 16 healthy age-matched control subjects by use of Multitracer by a blinded, experienced radiologist. The results were analyzed by a univariant ANOVA with total brain volume as a covariant. Furthermore, correlation and linear regression analyses were performed for pituitary volume, patient age, disease duration, and CAG repeat expansion length. Intraobserver reliability was evaluated by means of the Pearson correlation coefficient. RESULTS Pituitary volume was significantly larger in patients with Kennedy disease (636 [±90] mm(3)) than in healthy control subjects (534 [±91] mm(3)) (P = .041). There was no significant difference in total brain volume (P = .379). Control subjects showed a significant decrease in volume with age (r = -0.712, P = .002), whereas there was a trend to increasing gland volume in patients with Kennedy disease (r = 0.443, P = .272). Gland volume correlated with CAG repeat expansion length in patients (r = 0.630, P = .047). The correlation coefficient for intraobserver reliability was 0.94 (P < .001). CONCLUSIONS Patients with Kennedy disease showed a significantly higher pituitary volume that correlated with the CAG repeat expansion length. This could reflect hypertrophy as the result of elevated gonadotropic hormone secretion caused by the androgen receptor mutation with partial androgen insensitivity.
Collapse
Affiliation(s)
- C C Pieper
- Department of Radiology, University of Bonn, Germany
| | | | | | | | | |
Collapse
|
6
|
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724. [PMID: 23553817 PMCID: PMC3690711 DOI: 10.1002/pro.2261] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically "freeze" while their "pictures are taken." However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
7
|
Malik B, Nirmalananthan N, Gray AL, La Spada AR, Hanna MG, Greensmith L. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 2013; 136:926-43. [PMID: 23393146 DOI: 10.1093/brain/aws343] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spinal and bulbar muscular atrophy, also known as Kennedy's disease, is an adult-onset hereditary neurodegenerative disorder caused by an expansion of the polyglutamine repeat in the first exon in the androgen receptor gene. Pathologically, the disease is defined by selective loss of spinal and bulbar motor neurons causing bulbar, facial and limb weakness. Although the precise disease pathophysiology is largely unknown, it appears to be related to abnormal accumulation of the pathogenic androgen receptor protein within the nucleus, leading to disruption of cellular processes. Using a mouse model of spinal and bulbar muscular atrophy that exhibits many of the characteristic features of the human disease, in vivo physiological assessment of muscle function revealed that mice with the pathogenic expansion of the androgen receptor develop a motor deficit characterized by a reduction in muscle force, abnormal muscle contractile characteristics, loss of functional motor units and motor neuron degeneration. We have previously shown that treatment with arimoclomol, a co-inducer of the heat shock stress response, delays disease progression in the mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis, a fatal motor neuron disease. We therefore evaluated the therapeutic potential of arimoclomol in mice with spinal and bulbar muscular atrophy. Arimoclomol was administered orally, in drinking water, from symptom onset and the effects established at 18 months of age, a late stage of disease. Arimoclomol significantly improved hindlimb muscle force and contractile characteristics, rescued motor units and, importantly, improved motor neuron survival and upregulated the expression of the vascular endothelial growth factor which possess neurotrophic activity. These results provide evidence that upregulation of the heat shock response by treatment with arimoclomol may have therapeutic potential in the treatment of spinal and bulbar muscular atrophy and may also be a possible approach for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Bilal Malik
- Sobell Department of Motor Neuroscience, MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, Okano H, Suzuki N. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem 2013; 288:8043-8052. [PMID: 23364790 DOI: 10.1074/jbc.m112.408211] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.
Collapse
Affiliation(s)
- Yoshihiro Nihei
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Daisuke Ito
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yohei Okada
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Kanrinmaru Project, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Wado Akamatsu
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takuya Yagi
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahito Yoshizaki
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Suzuki
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
9
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
10
|
RNAi-based therapies for Huntington's disease: delivery challenges and opportunities. Ther Deliv 2012; 3:1061-76. [PMID: 23035592 DOI: 10.4155/tde.12.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine neurodegenerative disease caused by a mutation in the HTT gene coding for the Huntingtin protein (HTT). Unfortunately, there is no cure for HD and there is also no known way to modify the disease progression. RNAi approaches offer the promise of a certain degree of control over the disease. However, there are several challenges in potential use of RNAi in the treatment of HD. This article will discuss the details of RNAi technology as applied to the treatment of HD, and novel approaches to overcome the drug delivery challenges.
Collapse
|
11
|
Cohen A, Ross L, Nachman I, Bar-Nun S. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays. PLoS One 2012; 7:e44785. [PMID: 22970306 PMCID: PMC3435303 DOI: 10.1371/journal.pone.0044785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an “aggregation timeline”. This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.
Collapse
Affiliation(s)
- Aviv Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liron Ross
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
12
|
Kumar A, Kneynsberg A, Tucholski J, Perry G, van Groen T, Detloff PJ, Lesort M. Tissue transglutaminase overexpression does not modify the disease phenotype of the R6/2 mouse model of Huntington's disease. Exp Neurol 2012; 237:78-89. [PMID: 22698685 DOI: 10.1016/j.expneurol.2012.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine in the huntingtin protein. Determining the contribution of specific factors to the pathogenesis of HD should provide rational targets for therapeutic intervention. One suggested contributor is the type 2 transglutaminase (TG2), a multifunctional calcium dependent enzyme. A role for TG2 in HD has been suggested because a polypeptide-bound glutamine is a rate-limiting factor for a TG2-catalyzed reaction, and TG2 can cross-link mutant huntingtin in vitro. Further, TG2 is up regulated in brain areas affected in HD. The objective of this study was to further examine the contribution of TG2 as a potential modifier of HD pathogenesis and its validity as a therapeutic target in HD. In particular our goal was to determine whether an increase in TG2 level, as documented in human HD brains, modulates the well-characterized phenotype of the R6/2 HD mouse model. To accomplish this objective a genetic cross was performed between R6/2 mice and an established transgenic mouse line that constitutively expresses human TG2 (hTG2) under control of the prion promoter. Constitutive expression of hTG2 did not affect the onset and progression of the behavioral and neuropathological HD phenotype of R6/2 mice. We found no alterations in body weight changes, rotarod performances, grip strength, overall activity, and no significant effect on the neuropathological features of R6/2 mice. Overall the results of this study suggest that an increase in hTG2 expression does not significantly modify the pathology of HD.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol 2011; 97:83-100. [PMID: 21971574 DOI: 10.1016/j.pneurobio.2011.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy. Different susceptibility genes associated with an increased risk to develop MNDs have been reported and several mutated genes have been linked to hereditary forms of MNDs. However, most cases of MNDs occur in sporadic forms and very little is known on their causes. Interestingly, several molecular mechanisms seem to participate in the progression of both the inherited and sporadic forms of MNDs. These include cytoskeleton organization, mitochondrial functions, DNA repair and RNA synthesis/processing, vesicle trafficking, endolysosomal trafficking and fusion, as well as protein folding and protein degradation. In particular, accumulation of aggregate-prone proteins is a hallmark of MNDs, suggesting that the protein quality control system (molecular chaperones and the degradative systems: ubiquitin-proteasome-system and autophagy) are saturated or not sufficient to allow the clearance of these altered proteins. In this review we mainly focus on the MNDs associated with disturbances in protein folding and protein degradation and on the potential implication of a specific class of molecular chaperones, the small heat shock proteins (sHSPs/HSPBs), in motor neuron function and survival. How boosting of specific HSPBs may be a potential useful therapeutic approach in MNDs and how mutations in specific HSPBs can directly cause motor neuron degeneration is discussed.
Collapse
|
14
|
Guzhova IV, Lazarev VF, Kaznacheeva AV, Ippolitova MV, Muronetz VI, Kinev AV, Margulis BA. Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum Mol Genet 2011; 20:3953-63. [PMID: 21775503 DOI: 10.1093/hmg/ddr314] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The key feature of polyglutamine aggregates accumulating in the course of Huntington disease (HD) is their resistance to protein denaturants, and to date only chaperones are proved to prevent mutant protein aggregation. It was suggested that expanded polyglutamine chains (polyQ) of mutant huntingtin are cross-linked to other proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Here we clarify the roles of GAPDH and molecular chaperone Hsp70 in the formation of sodium dodecyl sulfate (SDS)-insoluble polyQ aggregates. First, the addition of pure GAPDH was found to enhance the aggregation of polyQ in a cell-free model of HD. Secondly, the immunodepletion of GAPDH dose-dependently decreased polyQ aggregation. Finally, siRNA-mediated inhibition of GAPDH protein in SK-N-SH neuroblastoma cells has also reduced the aggregation of cellular polyQ. Regulated over-expression of Hsp70 decreased the amount of GAPDH associated with SDS-insoluble polyQ aggregates. Physical association of Hsp70 and GAPDH in SK-N-SH cells was shown by reciprocal immunoprecipitation and confocal microscopy. Pure Hsp70 dose-dependently inhibited the formation of polyQ aggregates in cell-free model of HD by sequestering both GAPDH and polyQ. We demonstrated that Hsp70 binds to polyQ in adenosine triphosphate-dependent manner, which suggests that Hsp70 exerts a chaperoning activity in the course of this interaction. Binding of Hsp70 to GAPDH was nicotinamide adenine dinucleotide-dependent suggesting another type of association. Based on our findings, we conclude that Hsp70 protects cells in HD by removing/sequestering two intrinsic components of protein aggregates: the polyQ itself and GAPDH. We propose that GAPDH might be an important target for pharmacological treatment of HD and other polyglutamine expansion-related diseases.
Collapse
Affiliation(s)
- Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Q, Zhang X, Wang X, Zeng B, Jia X, Hou R, Yue B. Polymorphism of CAG repeats in androgen receptor of carnivores. Mol Biol Rep 2011; 39:2297-303. [PMID: 21643744 DOI: 10.1007/s11033-011-0979-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 05/26/2011] [Indexed: 01/18/2023]
Abstract
Androgen effect is mediated by the androgen receptor (AR). The polymorphism of CAG triplet repeat (polyCAG), in the N-terminal transactivation domain of the AR protein, has been involved either in endocrine or neurological disorders in human. We obtained partial sequence of AR exon 1 in 10 carnivore species. In most carnivore species, polyglutamine length polymorphism presented in all three CAG repeat regions of AR, in contrast, only CAG-I site polymorphism presented in primate species, and CAG-I and CAG-III sites polymorphism presented in Canidae. Therefore, studies focusing on disease-associated polymorphism of poly(CAG) in carnivore species AR should investigate all three CAG repeats sites, and should not only consider CAG-I sites as the human disease studies. The trinucleotide repeat length in carnivore AR exon 1 had undergone from expansions to contractions during carnivores evolution, unlike a linear increase in primate species. Furthermore, the polymorphisms of the triplet-repeats in the same tissue (somatic mosaicism) were demonstrated in Moutain weasel, Eurasian lynx, Clouded leopard, Chinese tiger, Black leopard and Leopard AR. And, the abnormal stop codon was found in the exon 1 of three carnivore species AR (Moutain weasel, Eurasian lynx and Black leopard). It seemed to have a high frequency presence of tissue-specific somatic in carnivores AR genes. Thus the in vivo mechanism leading to such highly variable phenotypes of the described mutations, and their impact on these animals, are worthwhile to be further elucidated.
Collapse
Affiliation(s)
- Qin Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington's disease mice. Acta Neuropathol 2011; 121:487-98. [PMID: 21161248 DOI: 10.1007/s00401-010-0788-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 11/21/2010] [Accepted: 12/02/2010] [Indexed: 12/17/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Oxidative damage has been associated with pathological neuronal loss in HD. The therapeutic modulation of oxidative stress and mitochondrial function using low molecular weight compounds may be an important strategy for delaying the onset and slowing the progression of HD. In the present study, we found a marked increase of 4-hydroxy-2-nonenal (4-HNE) adducts, a lipid peroxidation marker, in the caudate and putamen of HD brains and in the striatum of HD mice. Notably, 4-HNE immunoreactivity was colocalized with mutant huntingtin inclusions in the striatal neurons of R6/2 HD mice. Administration of nordihydroguaiaretic acid (NDGA), an antioxidant that functions by inhibiting lipid peroxidation, markedly reduced 4-HNE adduct formation in the nuclear inclusions of R6/2 striatal neurons. NDGA also protected cultured neurons against oxidative stress-induced cell death by improving ATP generation and mitochondrial morphology and function. In addition, NDGA restored mitochondrial membrane potential, mitochondrial structure, and synapse structure in the striatum of R6/2 mice and increased their lifespan. The present findings suggest that further therapeutic studies using NDGA are warranted in HD and other neurodegenerative diseases characterized by increased oxidative stress and altered mitochondrial function.
Collapse
|
17
|
Kumar R, Atamna H, Zakharov MN, Bhasin S, Khan SH, Jasuja R. Role of the androgen receptor CAG repeat polymorphism in prostate cancer, and spinal and bulbar muscular atrophy. Life Sci 2011; 88:565-71. [PMID: 21284948 DOI: 10.1016/j.lfs.2011.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/23/2010] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
Abstract
Androgens are involved in the development of several tissues, including prostate, skeletal muscle, bone marrow, hair follicles, and brain. Most of the biological effects of the androgens are mediated through an intracellular transcription factor, the androgen receptor (AR) at the level of gene regulation. Several types of mutations in the AR gene have been linked to endocrine dysfunctions. The expansion of CAG codon repeat, coding for a polyglutamine (PolyQ) tract in the N-terminal domain is one such mutation. The polyQ chain length impacts AR's ability to interact with critical coregulators, which in turn modulates its transcriptional efficacy. Pathologic manifestations of variations in polyQ chain length have been associated with prostate cancer susceptibility, and the Spinal and Bulbar Muscular Atrophy (SBMA), a neurodegenerative disease. In this review article, we discuss multiple aspects of the role of polyQ chain length in the actions of the AR, their importance in prostate cancer development and progression, and SBMA with an aim to understand the underlying mechanisms involved in these diseases, which can be targeted for future therapeutic approaches.
Collapse
Affiliation(s)
- R Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ. Mendelian genetics of male infertility. Ann N Y Acad Sci 2010; 1214:E1-E17. [PMID: 21382200 PMCID: PMC3654696 DOI: 10.1111/j.1749-6632.2010.05917.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infertility is defined as the inability of a couple to conceive despite trying for a year, and it affects approximately 15% of the reproductive-age population. It is considered a genetically lethal factor, as the family lineage stops at that individual with no progeny produced. A genetic defect associated with an infertile individual cannot be transmitted to the offspring, ensuring the maintenance of reproductive fitness of the species. However, with the advent of assisted reproductive techniques (ART), we are now able to overcome sterility and bypass nature's protective mechanisms that developed through evolution to prevent fertilization by defective or deficient sperm.
Collapse
Affiliation(s)
- Kathleen Hwang
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Rusmini P, Bolzoni E, Crippa V, Onesto E, Sau D, Galbiati M, Piccolella M, Poletti A. Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol Dis 2010; 40:361-9. [PMID: 20621188 DOI: 10.1016/j.nbd.2010.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/23/2010] [Accepted: 06/26/2010] [Indexed: 12/28/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons in the bulbar region of the brain and in the anterior horns of the spinal cord. The disease has been associated to an expansion of a CAG triplet repeat present in the first coding exon of the androgen receptor (AR) gene. SBMA was the first identified member of a large class of neurodegenerative diseases now known as CAG-related diseases, which includes Huntington's disease (HD), several types of spinocerebellar ataxia (SCAs), and dentatorubral and pallidoluysian atrophy (DRPLA). The expanded CAG tract is translated to an aberrantly long polyglutamine tract (ARpolyQ) in the N-terminal region of the AR protein. The elongated polyQ tract seems to confer a neurotoxic gain-of-function to the mutant AR, possibly via the generation of aberrant conformations (misfolding). Protein misfolding is thought to be a trigger of neurotoxicity, since it perturbs a wide variety of motor neuronal functions. The first event is the accumulation of the ARpolyQ into ubiquitinated aggregates in a ligand (testosterone) dependent manner. The mutant ARpolyQ also impairs proteasome functions. The autophagic pathway may be activated to compensate these aberrant events by clearing the mutant ARpolyQ from motor neuronal cells. This review illustrates the mechanisms at the basis of ARpolyQ degradation via the proteasomal and autophagic systems.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Endocrinologia, Fisiopatologia e Biologia Applicata, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 901] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
21
|
Mukherjee S, Thomas M, Dadgar N, Lieberman AP, Iñiguez-Lluhí JA. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J Biol Chem 2009; 284:21296-306. [PMID: 19497852 PMCID: PMC2755854 DOI: 10.1074/jbc.m109.011494] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Indexed: 01/30/2023] Open
Abstract
The neurodegenerative disorder spinal and bulbar muscular atrophy or Kennedy disease is caused by a CAG trinucleotide repeat expansion within the androgen receptor (AR) gene. The resulting expanded polyglutamine tract in the N-terminal region of the receptor renders AR prone to ligand-dependent misfolding and formation of oligomers and aggregates that are linked to neuronal toxicity. How AR misfolding is influenced by post-translational modifications, however, is poorly understood. AR is a target of SUMOylation, and this modification inhibits AR activity in a promoter context-dependent manner. SUMOylation is up-regulated in response to multiple forms of cellular stress and may therefore play an important cytoprotective role. Consistent with this view, we find that gratuitous enhancement of overall SUMOylation significantly reduced the formation of polyglutamine-expanded AR aggregates without affecting the levels of the receptor. Remarkably, this effect requires SUMOylation of AR itself because it depends on intact AR SUMOylation sites. Functional analyses, however, indicate that the protective effects of enhanced AR SUMOylation are not due to alterations in AR transcriptional activity because a branched protein structure in the appropriate context of the N-terminal region of AR is necessary to antagonize aggregation but not for inhibiting AR transactivation. Remarkably, small ubiquitin-like modifier (SUMO) attenuates AR aggregation through a unique mechanism that does not depend on critical features essential for its interaction with canonical SUMO binding motifs. Our findings therefore reveal a novel function of SUMOylation and suggest that approaches that enhance AR SUMOylation may be of clinical use in polyglutamine expansion diseases.
Collapse
Affiliation(s)
| | - Monzy Thomas
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Nahid Dadgar
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Andrew P. Lieberman
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | | |
Collapse
|
22
|
Palazzolo I, Gliozzi A, Rusmini P, Sau D, Crippa V, Simonini F, Onesto E, Bolzoni E, Poletti A. The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol 2008; 108:245-53. [PMID: 17945479 DOI: 10.1016/j.jsbmb.2007.09.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor which is responsible for the androgen responsiveness of target cells. Several types of mutations have been found in the AR and linked to endocrine dysfunctions. Surprisingly, the polymorphism involving the CAG triplet repeat expansion of the AR gene, coding for a polyglutamine (PolyGln) tract in the N-terminal transactivation domain of the AR protein, has been involved either in endocrine or neurological disorders. For example, among endocrine-related-diseases, the PolyGln size has been proposed to be associated to prostate cancer susceptibility, hirsutism, male infertility, cryptorchidism (in conjunction with polyglycine stretches polymorphism), etc.; the molecular mechanisms of these alterations are thought to involve a modulation of AR transcriptional competence, which inversely correlates with the PolyGln length. Among neurological alterations, a decreased AR function seems to be also involved in depression. Moreover, when the polymorphic PolyGln becomes longer than 35-40 contiguous glutamines (ARPolyGln), the ARPolyGln acquires neurotoxicity, because of an unknown gain-of-function. This mutation has been linked to a rare inherited X-linked motor neuronal disorder, the Spinal and Bulbar Muscular Atrophy, or Kennedy's disease. The disorder is characterized by death of motor neurons expressing high levels of AR. The degenerating motor neurons are mainly located in the anterior horns of the spinal cord and in the bulbar region; some neurons of the dorsal root ganglia may also be involved. Interestingly, the same type of PolyGln elongation has been found in other totally unrelated proteins responsible for different neurodegenerative diseases. A common feature of all these disorders is the formation of intracellular aggregates containing the mutated proteins; at present, but their role in the disease is largely debated. This review will discuss how the PolyGln neurotoxicity of SBMA AR may be either mediated or decreased by aggregates, and will present data on the dual role played by testosterone on motor neuronal functions and dysfunctions.
Collapse
Affiliation(s)
- Isabella Palazzolo
- Institute of Endocrinology, Centre of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vitalis A, Wang X, Pappu RV. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophys J 2007; 93:1923-37. [PMID: 17526581 PMCID: PMC1959550 DOI: 10.1529/biophysj.107.110080] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unfolded under physiological conditions. Here we ask if archetypal IDPs in aqueous milieus are best described as swollen disordered coils in a good solvent or collapsed disordered globules in a poor solvent. To answer this question, we analyzed data from molecular simulations for a 20-residue polyglutamine peptide and concluded, in accord with experimental results, that water is a poor solvent for this system. The relevance of monomeric polyglutamine is twofold: It is an archetypal IDP sequence and its aggregation is associated with nine neurodegenerative diseases. The main advance in this work lies in our ability to make accurate assessments of solvent quality from analysis of simulations for a single, rather than multiple chain lengths. We achieved this through the proper design of simulations and analysis of order parameters that are used to describe conformational equilibria in polymer physics theories. Despite the preference for collapsed structures, we find that polyglutamine is disordered because a heterogeneous ensemble of conformations of equivalent compactness is populated at equilibrium. It is surprising that water is a poor solvent for polar polyglutamine and the question is: why? Our preliminary analysis suggests that intrabackbone interactions provide at least part of the driving force for the collapse of polyglutamine in water. We also show that dynamics for conversion between distinct conformations resemble structural relaxation in disordered, glassy systems, i.e., the energy landscape for monomeric polyglutamine is rugged. We end by discussing generalizations of our methods to quantitative studies of conformational equilibria of other low-complexity IDP sequences.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biomedical Engineering, Molecular Biophysics Program, and Center for Computational Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
24
|
Abstract
Protein misfolding and aggregation are common to many disorders, including neurodegenerative diseases referred to as "conformational disorders," suggesting that alterations in the normal protein homeostasis might contribute to pathogenesis. Cells evolved 2 major components of the protein quality control system to deal with misfolded and/or aggregated proteins: molecular chaperones and the ubiquitin proteasome pathway. Recent studies have implicated components of both systems in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, or the prion diseases. A detailed understanding of how the cellular quality control systems relate to neurodegeneration might lead to the development of novel therapeutic approaches for disorders associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, MGH, Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
25
|
Ricchelli F, Fusi P, Tortora P, Valtorta M, Riva M, Tognon G, Chieregato K, Bolognin S, Zatta P. Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. Int J Biochem Cell Biol 2007; 39:966-77. [PMID: 17300980 DOI: 10.1016/j.biocel.2007.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Ataxin-3 (AT3), a protein that causes spinocerebellar ataxia type 3, has a C-terminus containing a polyglutamine stretch, the length of which can be expanded in its pathological variants. Here, we report on the role of Cu(2+), Mn(2+), Zn(2+) and Al(3+) in the induction of defective protein structures and subsequent aggregation/fibrillogenesis of three different non-pathological forms of AT3, i.e. murine (Q6), human non-expanded (Q26) and human moderately expanded (Q36). AT3 variants showed an intrinsic propensity to misfolding/aggregation; on the other hand, Zn(2+) and Al(3+) strongly stimulated the amplitude and kinetics of these conformational conversions. While both metal ions induced a time-dependent aggregation into amyloid-like fibrillar forms, only small oligomers and/or short protofibrillar species were detected for AT3s alone. The rate and extent of the metal-induced aggregation/fibrillogenesis processes increased with the size of the polyglutamine stretch. Mn(2+) and Cu(2+) had no effect on (Q6) or actually prevented (Q26 and Q36) the AT3 structural transitions. The observation that Zn(2+) and Al(3+) promote AT3 fibrillogenesis is consistent with similar results found for other amyloidogenic molecules, such as beta-amyloid and prion proteins. Plausibly, these metal ions are a major common factor/cofactor in the etiopathogenesis of neurodegenerative diseases. Studies of liposomes as membrane models showed dramatic changes in the structural properties of the lipid bilayer in the presence of AT3, which were enhanced after supplementing the protein with Zn(2+) and Al(3+). This suggests that cell membranes could be a potential primary target in the ataxin-3 pathogenesis and metals could be a biological factor capable of modulating their interaction with AT3.
Collapse
Affiliation(s)
- Fernanda Ricchelli
- C.N.R. Institute of Biomedical Technologies, Metalloproteins Unit, at the Department of Biology, University of Padova, Viale G. Colombo 3-35121 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rusmini P, Sau D, Crippa V, Palazzolo I, Simonini F, Onesto E, Martini L, Poletti A. Aggregation and proteasome: the case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy. Neurobiol Aging 2006; 28:1099-111. [PMID: 16781019 DOI: 10.1016/j.neurobiolaging.2006.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/03/2006] [Accepted: 05/09/2006] [Indexed: 12/28/2022]
Abstract
Aggregates, a hallmark of most neurodegenerative diseases, may have different properties, and possibly different roles in neurodegeneration. We analysed ubiquitin-proteasome pathway functions during cytoplasmic aggregation in polyglutamine (polyQ) diseases, using a unique model of motor neuron disease, the SpinoBulbar Muscular Atrophy. The disease, which is linked to a polyQ tract elongation in the androgen receptor (ARpolyQ), has the interesting feature that ARpolyQ aggregation is triggered by the AR ligand, testosterone. Using immortalized motor neurons expressing ARpolyQ, we found that a proteasome reporter, YFPu, accumulated in absence of aggregates; testosterone treatment, which induced ARpolyQ aggregation, allowed the normal clearance of YFPu, suggesting that aggregation contributed to proteasome de-saturation, an effect not related to AR nuclear translocation. Using AR antagonists to modulate the kinetic of ARpolyQ aggregation, we demonstrated that aggregation, by removing the neurotoxic protein from the soluble compartment, protected the proteasome from an excess of misfolded protein to be processed.
Collapse
Affiliation(s)
- Paola Rusmini
- Institute of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Echaniz-Laguna A, Rousso E, Anheim M, Fleury M, Cossée M, Tranchant C. L’amyotrophie bulbaire et spinale liée au chromosome X : une étude clinique, neurophysiologique et moléculaire de 12 patients issus de 4 familles. Rev Neurol (Paris) 2005; 161:437-44. [PMID: 15924079 DOI: 10.1016/s0035-3787(05)85073-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Spinal and bulbar muscular atrophy (SBMA) is an X-linked, late-onset neuro-endocrine disorder resulting from an expansion of a CAG repeat in the androgen receptor gene. Material and method. We report the detailed phenotypic study in a series of 12 SBMA patients evaluated in four kindreds. RESULTS Clinical phenotypic spectrum varied considerably, ranging from childhood-onset weakness and atrophy mimicking limb-girdle myopathy in patients with 53 CAG repeats to isolated hyperCKemia in an adult with 42 CAG repeats. All male patients had gynecomastia. Two female carriers presented with paresthesias and hand action tremor. Homozygous deletions of SMN1 and SMN2 genes were not found in any patients. CONCLUSION This report demonstrates that SBMA may present with a wider clinical spectrum than previously described and suggests that clinical phenotype severity in SBMA is partially linked to the number of CAG repeats. It also suggests that SMN1 and SMN2 genes do not act as modifying genes in SBMA.
Collapse
|
28
|
Marron TU, Guerini V, Rusmini P, Sau D, Brevini TAL, Martini L, Poletti A. Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J Neurochem 2005; 92:10-20. [PMID: 15606892 DOI: 10.1111/j.1471-4159.2004.02836.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the brain, the spinal cord motor neurones express the highest levels of the androgen receptor (AR). Experimental data have suggested that neurite outgrowth in these neurones may be regulated by testosterone or its derivative 5alpha-dihydrotestosterone (DHT), formed by the 5alpha-reductase type 2 enzyme. In this study we have produced and characterized a model of immortalized motor neuronal cells expressing the mouse AR (mAR) [neuroblastoma-spinal cord (NSC) 34/mAR] and analysed the role of androgens in motor neurones. Androgens either activated or repressed several genes; one has been identified as the mouse neuritin, a protein responsible for neurite elongation. Real-time PCR analysis has shown that the neuritin gene is expressed in the basal condition in immortalized motor neurones and is selectively up-regulated by androgens in NSC34/mAR cells; the DHT effect is counteracted by the anti-androgen Casodex. Moreover, DHT induced neurite outgrowth in NSC34/mAR, while testosterone was less effective and its action was counteracted by the 5alpha-reductase type 2 enzyme inhibitor finasteride. Finally, the androgenic effect on neurite outgrowth was abolished by silencing neuritin with siRNA. Therefore, the trophic effects of androgens in motor neurones may be explained by the androgenic regulation of neuritin, a protein linked to neurone development, elongation and regeneration.
Collapse
Affiliation(s)
- T U Marron
- Institute of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Kennedy's disease, also known as spinal and bulbar muscular atrophy, is a progressive degenerative condition affecting lower motor neurons. It is one of nine neurodegenerative disorders caused by a polyglutamine repeat expansion. Affecting only men, Kennedy's disease is the only one of these conditions that follows an X-linked mode of inheritance. The causative protein in Kennedy's disease, with a polyglutamine expansion residing in the first N-terminal domain, is the androgen receptor. Research in this field has made significant advances in recent years, and with the increased understanding of pathogenic mechanisms, feasible approaches to treatments are being investigated. In Kennedy's disease research, the most significant issue to emerge recently is the role of androgens in exacerbating the disease process. On the basis of animal experiments, a viable hypothesis is that higher circulating levels of androgens in men could trigger the degeneration of motor neurons causing this disease, and that lower levels in heterozygous and homozygous women are protective. This is a major issue, as treatment of individuals affected by Kennedy's disease with testosterone has been considered a reasonable therapy by some neurologists. The rationale behind this approach relates to the fact that Kennedy's disease is accompanied by mild androgen insensitivity. It was therefore believed that treatment with high doses of testosterone might compensate for this loss of androgen action, with the added benefit of preventing muscle wasting. The current review provides an overview of recent advances in the field of Kennedy's disease research, including approaches to treatment.
Collapse
Affiliation(s)
- K J Greenland
- Centre for Hormone Research, Murdoch Childrens Research Institute, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
30
|
Rouaux C, Loeffler JP, Boutillier AL. Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 2004; 68:1157-64. [PMID: 15313413 DOI: 10.1016/j.bcp.2004.05.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/24/2004] [Indexed: 01/06/2023]
Abstract
Histone acetylation/deacetylation is a master regulation of gene expression. Among the enzymes involved in this process, the CREB-binding protein (CBP) displays important functions during central nervous system development. Increasing evidence shows that CBP function is altered during neurodegenerative processes. CBP loss of function has now been reported in several diseases characterized by neurological disorders such as the Rubinstein-Taybi syndrome or polyglutamine-related pathologies (Huntington's disease). Our recent work suggests that CBP loss of function could also be involved in Alzheimer's disease and amyotrophic lateral sclerosis. In a simplified apoptotic model of primary neurons, we described CBP as a substrate of apoptotic caspases, an alternative to its classical proteasomal degradation. In these neuronal death contexts, histone acetylation levels were decreased as well. Altogether, these data point to a central role of CBP loss of function during neurodegeneration. In order to restore proper acetylation levels, a proposed therapeutic strategy relies on HDAC inhibition. Nevertheless, this approach lacks of specificity. Therefore new drugs targeted at counteracting CBP loss of function could stand as a valid therapeutic approach in neurodegenerative disorders. The challenge will be to respect the fine-tuning between cellular HAT/HDAC activities.
Collapse
Affiliation(s)
- Caroline Rouaux
- Laboratoire de Signalisation Moléculaire et Neurodégénérescence-EA#3433 11, rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
31
|
Abstract
The importance of the autopsy in neurodegenerative disease is often not appreciated. Yet clinical diagnosis of neurodegenerative disease is relatively inaccurate, many neurodegenerative diseases are inherited or are associated with specific genetic risk factors, and several non-transmissible neurodegenerative diseases may be confused clinically with prion diseases. In all these cases, the autopsy is the only practical way in which brain tissue can be obtained for diagnosis. The pathologist should ensure that consent by the next-of-kin to post mortem examination is based on clear information as to the nature, scope and limitations of the autopsy, and that any constraints on retaining brain and other tissues are documented. The autopsy should be preceded by a careful review of the clinical notes and ante mortem studies, and consideration of the possible and likely pathological processes. This may suggest the need to retain fixed or frozen samples of cerebrospinal fluid, skeletal muscle, peripheral nerve and other tissues in addition to brain and spinal cord. Ideally, the brain should be fixed intact for 2-3 weeks before it is sliced and blocks are taken. If the period of fixation is limited to a few days only, it is best to slice the brain whilst it is fresh and to allow the diagnostically relevant slices to fix flat; after about 3 days the fixed slices can be sliced further, examined macroscopically and sampled. Even if consent is limited to the retention of only a few tissue samples for histology, a reasonably confident diagnosis can still usually be made, provided that the sampling is careful and systematic. The selection of blocks or brain and spinal cord for histology should be based on internationally accepted guidelines for the pathological diagnosis of different types of neurodegenerative disease, where such guidelines are available. Illustrations are provided to indicate which regions of the brain are critical to establishing a diagnosis in the main categories of neurodegenerative disease. When difficulties arise in the pathological diagnosis of neurodegenerative disease, inadequate post mortem sampling or rapid processing of poorly fixed brain tissue is usually to blame.
Collapse
Affiliation(s)
- S Love
- Department of Neuropathology, Institute of Clinical Neuroscience, Frenchay Hospital, Bristol, UK.
| |
Collapse
|
32
|
Alendar A, Euljković B, Savić D, Djarmati A, Keckarević M, Ristić A, Dragasević N, Kosić V, Romac S. Spinocerebellar ataxia type 17 in the Yugoslav population. Acta Neurol Scand 2004; 109:185-7. [PMID: 14763955 DOI: 10.1034/j.1600-0404.2003.00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES (1) Analysis of Spinocerebellar ataxia type 17 (SCA17) locus in a group of ataxic patients excluded on other known SCAs; (2) assessment of frequency distributions of SCA17 alleles in the Yugoslav population. MATERIAL AND METHODS Study includes 115 non-related Yugoslav patients belonging to autosomal-dominant cerebellar ataxias or to sporadic idiopathic adult-onset ataxia and 115 controls. Analysis of SCA17 locus was performed using polymerase chain reaction. RESULTS None of the analyzed patients show the presence of mutation in SCA17 locus. In the group of patients 12 different alleles in the range of 30-42 repeats were observed, while in healthy population eight alleles in the range of 30-40 repeats were detected. CONCLUSION (1) None of 115 non-related Yugoslav ataxic patients belong to any known SCAs nor to DRPLA gene; (2) the distribution of SCA17 alleles in the Yugoslav population is consistent with the distribution in other populations and (3) the paucity of alleles with more than 39 repeats could suggest that SCA17 is very rare in the Yugoslav population.
Collapse
Affiliation(s)
- A Alendar
- Het Nederlands Kanker Instituut, Antoni van Leeuwenhoek ziekenhuis, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stevenson RE, Schwartz CE. Clinical and molecular contributions to the understanding of X-linked mental retardation. Cytogenet Genome Res 2004; 99:265-75. [PMID: 12900574 DOI: 10.1159/000071603] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 02/06/2003] [Indexed: 11/19/2022] Open
Abstract
X-linked mental retardation (XLMR) was first recognized in the 1940s, long before any human genes had been mapped. It is now estimated that XLMR has a prevalence of 2.6 cases per 1,000 population, accounting for over 10% of all cases of mental retardation. It is likely that over 150 genes are associated with XLMR. Fragile X syndrome, the most common form of XLMR, has a prevalence of about 1 in 4,000 males. Clinically, XLMR exists in syndromic (mental retardation with other somatic, neurological, behavioral, or metabolic findings) and nonsyndromic (mental retardation without other distinguishing features) forms. However, recent findings have caused this distinction to become blurred as mutations in some genes have been found in both syndromic and nonsyndromic XLMR. Progress in XLMR gene identification has allowed some insight into various pathways and cellular activities involved in developing cognitive functions. The genes involve signaling pathways, transcription factors, cytoskeletal organization, cell adhesion and migration, and maintenance of the cell membrane potential.
Collapse
Affiliation(s)
- R E Stevenson
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | | |
Collapse
|
34
|
Becker EBE, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25. [PMID: 15019174 DOI: 10.1016/j.pneurobio.2003.12.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther B E Becker
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
|
36
|
Pozzi P, Bendotti C, Simeoni S, Piccioni F, Guerini V, Marron TU, Martini L, Poletti A. Androgen 5-alpha-reductase type 2 is highly expressed and active in rat spinal cord motor neurones. J Neuroendocrinol 2003; 15:882-7. [PMID: 12899683 DOI: 10.1046/j.1365-2826.2003.01074.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal cord motoneurones express high levels of androgen receptor. However, in responsive tissue, the effects of testosterone is often mediated by the more potent androgenic derivative 5-alpha-dihydrotestosterone (DHT). This compound is formed in androgen target cells by the enzyme 5-alpha-reductase. Two isoforms of the 5-alpha-reductase, with limited degree of homology, have been cloned, type 1 and type 2. The low affinity-constitutive type 1 isoenzyme is widely distributed in the body; the high affinity-androgen regulated 5-alpha-reductase type 2 is confined to androgen-dependent structures and shows a peculiar pH optimum at acidic values. We have previously shown that high levels of 5-alpha-reductase activity are detectable in rat spinal cord. Here, using reverse transcriptase-polymerase chain reaction, we show that both isoforms are expressed in the whole spinal cord of the rat. The enzymatic pH optimum measured in immortalized spinal cord motoneurones (NSC34) is typical of the type 2 isoenzyme. Using in situ hybridization technique, we found that 5-alpha-reductase type 2 is confined to the motoneuronal cells of the anterior horns of the rat spinal cord, the cells that also are known to express high levels of androgen receptor. Because of the close association of androgen receptor and 5-alpha alpha-reductase type 2, motoneuronal cells should be considered as target cells for androgens.
Collapse
Affiliation(s)
- P Pozzi
- Institute of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ, Brady ST. Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport. Neuron 2003; 40:41-52. [PMID: 14527432 DOI: 10.1016/s0896-6273(03)00569-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates.
Collapse
Affiliation(s)
- Györgyi Szebenyi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Battaglia F, Le Galudec V, Cossee M, Tranchant C, Warter JM, Echaniz-Laguna A. Kennedy's Disease Initially Manifesting as an Endocrine Disorder. J Clin Neuromuscul Dis 2003; 4:165-167. [PMID: 19078709 DOI: 10.1097/00131402-200306000-00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA, or Kennedy's disease) is an X-linked, late-onset neuro-endocrine disorder characterized by degeneration of motor neurons in the spinal cord and brainstem and partial androgen insensitivity. We describe the case of a 59-year-old man who presented with diabetes mellitus, hypercholesterolemia, testicular atrophy, gynecomastia, and elevated serum creatine kinase (CK) levels. He did not have a familial history of motor neuron disease or neuromuscular symptoms or physical signs. Electromyographic (EMG) examination showed evidence of widespread denervation in muscles of different segmental innervation. Genetic studies found an abnormal 43 CAG repeat in the androgen receptor gene, leading to the diagnosis of SBMA. This report highlights the fact that SBMA can present with a pure endocrine phenotype and an absence of neuromuscular complaints or physical signs.
Collapse
Affiliation(s)
- F Battaglia
- From the *Département de Neurologie and the daggerService d'Endocrinologie et des Maladies de la Nutrition, Hôpital Civil de Strasbourg, Strasbourg, France; and the double daggerService de Diagnostic Génétique, CHRU de Strasbourg, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
39
|
Broude NE, Cantor CR. Neurological diseases and RNA-directed gene regulation: prospects for new diagnostics and therapy. Expert Rev Mol Diagn 2003; 3:269-74. [PMID: 12778999 DOI: 10.1586/14737159.3.3.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RAI, Braak H. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 2003; 25:115-27. [PMID: 12663059 DOI: 10.1016/s0891-0618(02)00099-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades residing in the caudal subnucleus of the pontine reticular formation. In the present study we investigated the RIP in five patients with clinically diagnosed and genetically confirmed spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease. Polyethylene glycol-embedded 100 microm serial sections stained for lipofuscin pigment and Nissl material as well as paraffin-embedded Nissl stained thin sections revealed the hitherto overlooked involvement of this pontine nucleus in the degenerative process underlying SCA3, whereby in four of our SCA3 patients the RIP underwent a conspicuous loss of presumed omnipause neurons. As observed in other affected brain structures, the RIP of all our SCA3 patients displayed reactive astrocytes and activated microglial cells, while some of the few of its surviving neurons harbored an ataxin-3-immunopositive intranuclear inclusion body. The findings of the present pathoanatomical study suggest that (1) neurodegeneration in the brain stem of terminal SCA3 patients is more widespread than previously thought and is not confined to cranial nerve nuclei involved in the generation of saccades but likewise involves the premotor network for saccades and (2) damage to the RIP may contribute to slowing of horizontal saccades in SCA3 patients but is not associated with saccadic oscillations as occasionally speculated.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rüb U, Brunt ER, Del Turco D, de Vos RAI, Gierga K, Paulson H, Braak H. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol 2003; 29:1-13. [PMID: 12581335 DOI: 10.1046/j.1365-2990.2003.00437.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the fact that considerable progress has been made in the last 20 years regarding the three-phase process of ingestion and the lower brain stem nuclei involved in it, no comprehensive descriptions of the ingestion-related lower brain stem nuclei are available for neuropathologists confronted with ingestive malfunctions. Here, we propose guidelines for the pathoanatomical investigation of these nuclei based on current knowledge with respect to ingestion and the nuclei responsible for this process. The application of these guidelines is described by drawing upon the example of the lower brain stem of a male patient with spinocerebellar ataxia type 3, also known as Machado-Joseph disease, who displayed malfunctions during the preparatory phase of ingestion, as well as lingual and pharyngeal phases of swallowing. By way of the representative application of the recommended investigation procedure to 100 microm serial sections through the patient's brain stem stained for lipofuscin pigment and Nissl material, we observed neuronal loss together with astrogliosis in nearly all of the ingestion-related lower brain stem nuclei (motor, principal and spinal trigeminal nuclei; facial nucleus; parvocellular reticular nucleus; ambiguous nucleus, motor nucleus of the dorsal glossopharyngeal and vagal area; gelatinous, medial, parvocellular and pigmented solitary nuclei; hypoglossal nucleus). In view of their known functional role in the three-phase process of ingestion, damage to these nuclei not only offers an explanation of the patient's malfunctions related to the preparatory phase of ingestion and lingual and pharyngeal phases of swallowing, but also suggests that the patient may have suffered from additional esophageal phase swallowing malfunctions not mentioned in his medical records.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ross CA, Poirier MA, Wanker EE, Amzel M. Polyglutamine fibrillogenesis: the pathway unfolds. Proc Natl Acad Sci U S A 2003; 100:1-3. [PMID: 12509507 PMCID: PMC140861 DOI: 10.1073/pnas.0237018100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
43
|
Nørremølle A, Grunnet M, Hasholt L, Sørensen SA. Cells exposed to a huntingtin fragment containing an expanded polyglutamine tract show no sign of ion channel formation: results arguing against the ion channel hypothesis. J Neurosci Res 2003; 71:132-7. [PMID: 12478622 DOI: 10.1002/jnr.10468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ion channels formed by expanded polyglutamine tracts have been proposed to play an important role in the pathological processes leading to neurodegeneration in Huntington's disease and other CAG repeat diseases. We tested the capacity of a huntingtin fragment containing an expanded polyglutamine tract to form ion channels in two cell types. Whole cell current from Xenopus oocytes was recorded using two-electrode voltage-clamp technique, and whole cell current from CHO-K1 cells was recorded by patch-clamp technique. The fragment with an expanded polyglutamine sequence induced no change in the currents recorded in any of the two expression systems, indicating no changes in ion channel activity. The results therefore argue against the proposed hypothesis of expanded polyglutamines forming ion channels.
Collapse
Affiliation(s)
- Anne Nørremølle
- Department of Medical Genetics, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Sárvári M, Fésüs L, Nemes Z. Transglutaminase-mediated crosslinking of neural proteins in Alzheimer's disease and other primary dementias. Drug Dev Res 2002. [DOI: 10.1002/ddr.10098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Piccioni F, Pinton P, Simeoni S, Pozzi P, Fascio U, Vismara G, Martini L, Rizzuto R, Poletti A. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J 2002; 16:1418-20. [PMID: 12205033 DOI: 10.1096/fj.01-1035fje] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The CAG/polyglutamine (polyGln)-related diseases include nine different members that together form the most common class of inherited neurodegenerative disorders; neurodegeneration is linked to the same type of mutation, found in unrelated genes, consisting of an abnormal expansion of a polyGln tract normally present in the wild-type proteins. Nuclear, cytoplasmic, or neuropil aggregates are detectable in CAG/polyGln-related diseases, but their role is still debated. Alteration of the androgen receptor (AR), one of these proteins, has been linked to spinal and bulbar muscular atrophy, an X-linked recessive disease characterized by motoneuronal death. By using immortalized motoneuronal cells (the neuroblastoma-spinal cord cell line NSC34), we analyzed neuropil aggregate formation and toxicity: green fluorescent protein-tagged wild-type or mutated ARs were cotransfected into NSC34 cells with a blue fluorescent protein tagged to mitochondria. Altered mitochondrial distribution was observed in neuronal processes containing aggregates; occasionally, neuropil aggregates and mitochondrial concentration corresponded to axonal swelling. Neuropil aggregates also impaired the distribution of the motor protein kinesin. These data suggest that neuropil aggregates may physically alter neurite transport and thus deprive neuronal processes of factors or components that are important for axonal and dendritic functions. The soma may then be affected, leading to neuronal dysfunctions and possibly to cell death.
Collapse
Affiliation(s)
- Federica Piccioni
- Institute of Endocrinology, Centre of Excellence for the Study and Treatment of Neurodegenerative Diseases, University of Milan, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hafezparast M, Ahmad-Annuar A, Wood NW, Tabrizi SJ, Fisher EMC. Mouse models for neurological disease. Lancet Neurol 2002; 1:215-24. [PMID: 12849454 DOI: 10.1016/s1474-4422(02)00100-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.
Collapse
Affiliation(s)
- Majid Hafezparast
- Department of Neurodegenerative Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | |
Collapse
|
47
|
Wassink TH, Piven J, Vieland VJ, Pietila J, Goedken RJ, Folstein SE, Sheffield VC. Evaluation of FOXP2 as an autism susceptibility gene. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 114:566-9. [PMID: 12116195 DOI: 10.1002/ajmg.10415] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A mutation in the gene FOXP2 was recently identified as being responsible for a complicated speech and language phenotype in a single large extended pedigree. This gene is of interest to autism because it lies in one of the most consistently linked autism chromosomal regions of interest. We therefore tested this gene for its involvement in autism in a large sample of autism families. We completely sequenced the exon containing the mutation, screened the remaining coding sequence using SSCP technology, and identified and genotyped two novel intronic tetranucleotide repeat polymorphisms that were then analyzed for evidence of linkage and linkage disequilibrium (LD). We identified two families in which heterozygous deletions of a small number of glutamines in a long poly-glutamine stretch were found in one parent and the autistic probands; no other non-conservative coding sequence changes were identified. Linkage and LD analyses were performed in 75 affected sibling pair families and in two subgroups of this sample defined by the presence/absence of severe language impairment. One allele appeared to have an opposite pattern of transmission in the language based subgroups, but otherwise the linkage and LD analyses were negative. We conclude that FOXP2 is unlikely to contribute significantly to autism susceptibility.
Collapse
Affiliation(s)
- Thomas H Wassink
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Enokido Y, Maruoka H, Hatanaka H, Kanazawa I, Okazawa H. PQBP-1 increases vulnerability to low potassium stress and represses transcription in primary cerebellar neurons. Biochem Biophys Res Commun 2002; 294:268-71. [PMID: 12051705 DOI: 10.1016/s0006-291x(02)00477-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PQBP-1 is a polyglutamine tract binding protein implicated in transcription. We previously reported that PQBP-1 and mutant ataxin-1, product of the spinocerebellar atrophy type 1 (SCA1) causative gene, cooperatively induce cell death in culture cells. Simultaneously, we showed that mutant ataxin-1 promoted interaction between PQBP-1 and RNA polymerase II and enhanced repression of the basal transcription by PQBP-1. In this study, we have examined the effects of overexpression of PQBP-1 to the primary-cultured cerebellar neurons. Our results indicate that overexpression of PQBP-1 inhibits the basal transcription in cerebellar neurons and increases their vulnerability to low potassium conditions.
Collapse
Affiliation(s)
- Y Enokido
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|
49
|
Abstract
Dominantly inherited diseases are generally caused by mutations resulting in gain of function protein alterations. However, a CTG expansion located in the 3' untranslated portion of a kinase gene was found to cause myotonic dystrophy type 1, a multisystemic dominantly inherited disorder. The recent discovery that an untranslated CCTG expansion causes the same constellation of clinical features in myotonic dystrophy type 2 (DM2), along with other recent discoveries on DM1 pathogenesis, have led to the understanding that both DM1 and DM2 mutations are pathogenic at the RNA level. These findings indicate the existence of a new category of disease wherein repeat expansions in RNA alter cellular function. Pathogenic repeat expansions in RNA may also be involved in spinocerebellar ataxia types 8, 10 and 12, and Huntington's disease-like type 2.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, University of Minnesota, MMC 206, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
50
|
Ueda H, Goto J, Hashida H, Lin X, Oyanagi K, Kawano H, Zoghbi HY, Kanazawa I, Okazawa H. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 2002; 293:307-13. [PMID: 12054600 DOI: 10.1016/s0006-291x(02)00211-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) are proteins homologous to ubiquitin that possibly regulate intranuclear protein localization, nuclear transport, and ubiquitination. We examined patients of DRPLA, SCA1, MJD, and Huntington's disease and found that neurons in affected regions of the brain react strongly to SUMO-1, a family member of SUMOs. Western blot with a transgenic mouse expressing mutant ataxin-1 showed the increase of SUMOylated proteins in the cerebellar cortex, which we named ESCA1 and ESCA2. These results indicated activation of SUMO-1 system in polyglutamine diseases and predicted its involvement in the pathology.
Collapse
Affiliation(s)
- Hiroko Ueda
- Department of Molecular Therapeutics, Tokyo Metropolitan, Institute for Neuroscience, 2-6, Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|