1
|
Edwards AJ, Beltz BS. Longitudinal tracking of hemocyte populations in vivo indicates lineage relationships and supports neural progenitor identity in adult neurogenesis. Neural Dev 2024; 19:7. [PMID: 38902780 PMCID: PMC11191286 DOI: 10.1186/s13064-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Adult neurogenesis, which takes place in both vertebrate and invertebrate species, is the process by which new neurons are born and integrated into existing functional neural circuits, long after embryonic development. Most studies in mammals suggest that self-renewing stem cells are the source of the new neurons, although the extent of self-renewal is a matter of debate. In contrast, research in the crayfish Procambarus clarkii has demonstrated that the neural progenitors producing adult-born neurons are capable of both self-renewing and consuming (non-self-renewing) divisions. However, self-renewing divisions are relatively rare, and therefore the production of adult-born neurons depends heavily on progenitors that are not replenishing themselves. Because the small pool of neural progenitors in the neurogenic niche is never exhausted throughout the long lives of these animals, we hypothesized that there must also be an extrinsic source of these cells. It was subsequently demonstrated that the neural progenitors originate in hemocytes (blood cells) produced by the immune system that travel in the circulation before ultimately integrating into niches where the neural lineage begins. The current study examines the developmental lineage of the three hemocyte types - hyaline (HC), semigranular (SGC) and granular (GC) cells - with the goal of understanding the origins of the progenitor cells that produce adult-born neurons. Longstanding qualitative metrics for hemocyte classification were validated quantitatively. Then, in a longitudinal study, proliferation markers were used to label the hemocytes in vivo, followed by sampling the circulating hemocyte population over the course of two months. Hemolymph samples were taken at intervals to track the frequencies of the different hemocyte types. These data reveal sequential peaks in the relative frequencies of HCs, SGCs and GCs, which were identified using qualitative and quantitative measures. These findings suggest that the three hemocyte types comprise a single cellular lineage that occurs in the circulation, with each type as a sequential progressive stage in hemocyte maturation beginning with HCs and ending with GCs. When combined with previously published data, this timeline provides additional evidence that HCs serve as the primary neural progenitor during adult neurogenesis in P. clarkii.
Collapse
Affiliation(s)
- Alex J Edwards
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Barbara S Beltz
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Xie J, Wu S, Szadowski H, Min S, Yang Y, Bowman AB, Rochet JC, Freeman JL, Yuan C. Developmental Pb exposure increases AD risk via altered intracellular Ca 2+ homeostasis in hiPSC-derived cortical neurons. J Biol Chem 2023; 299:105023. [PMID: 37423307 PMCID: PMC10413359 DOI: 10.1016/j.jbc.2023.105023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aβ42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Hailey Szadowski
- Agriculture and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Aaron B Bowman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer L Freeman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
3
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
5
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
6
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Kerever A, Arikawa-Hirasawa E. Optimal Extracellular Matrix Niches for Neurogenesis: Identifying Glycosaminoglycan Chain Composition in the Subventricular Neurogenic Zone. Front Neuroanat 2021; 15:764458. [PMID: 34671246 PMCID: PMC8520954 DOI: 10.3389/fnana.2021.764458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
In the adult mammalian brain, new neurons are generated in a restricted region called the neurogenic niche, which refers to the specific regulatory microenvironment of neural stem cells (NSCs). Among the constituents of neurogenic niches, the extracellular matrix (ECM) has emerged as a key player in NSC maintenance, proliferation, and differentiation. In particular, heparan sulfate (HS) proteoglycans are capable of regulating various growth factor signaling pathways that influence neurogenesis. In this review, we summarize our current understanding of the ECM niche in the adult subventricular zone (SVZ), with a special focus on basement membrane (BM)-like structures called fractones, and discuss how fractones, particularly their composition of glycosaminoglycans (GAGs), may influence neurogenesis.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: A muscle‑specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med 2021; 48:203. [PMID: 34549305 PMCID: PMC8480384 DOI: 10.3892/ijmm.2021.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Calpains are a family of Ca2+‑dependent cysteine proteases that participate in various cellular processes. Calpain 3 (CAPN3) is a classical calpain with unique N‑terminus and insertion sequence 1 and 2 domains that confer characteristics such as rapid autolysis, Ca2+‑independent activation and Na+ activation of the protease. CAPN3 is the only muscle‑specific calpain that has important roles in the promotion of calcium release from skeletal muscle fibers, calcium uptake of sarcoplasmic reticulum, muscle formation and muscle remodeling. Studies have indicated that recessive mutations in CAPN3 cause limb‑girdle muscular dystrophy (MD) type 2A and other types of MD; eosinophilic myositis, melanoma and epilepsy are also closely related to CAPN3. In the present review, the characteristics of CAPN3, its biological functions and roles in the pathogenesis of a number of disorders are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Zhang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
10
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
11
|
Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines 2021; 9:biomedicines9040381. [PMID: 33916593 PMCID: PMC8067000 DOI: 10.3390/biomedicines9040381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.
Collapse
|
12
|
Manganas LN, Durá I, Osenberg S, Semerci F, Tosun M, Mishra R, Parkitny L, Encinas JM, Maletic-Savatic M. BASP1 labels neural stem cells in the neurogenic niches of mammalian brain. Sci Rep 2021; 11:5546. [PMID: 33692421 PMCID: PMC7970918 DOI: 10.1038/s41598-021-85129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids. Mass spectrometry revealed the identity of the NSC-6 epitope as brain abundant, membrane-attached signal protein 1 (BASP1), a signaling protein that plays a key role in neurite outgrowth and plasticity. Western blot analysis using the NSC-6 antibody demonstrated multiple BASP1 isoforms with varying degrees of expression and correlating with distinct developmental stages. Herein, we describe the expression of BASP1 in NSCs in the developing and postnatal mammalian brains and human brain organoids, and demonstrate that the NSC-6 antibody may be a useful marker of these cells.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Department of Neurology, Stony Brook University Medical Center, Health Sciences Center T-12, room 020, Stony Brook, NY, 11794, USA.
| | - Irene Durá
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sivan Osenberg
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Fatih Semerci
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mehmet Tosun
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Rachana Mishra
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Luke Parkitny
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mirjana Maletic-Savatic
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Pediatrics, Neurology, and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children Hospital, 1250 Moursund St., Rm 1250, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Purinergic Receptor Blockade with Suramin Increases Survival of Postnatal Neural Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22020713. [PMID: 33445804 PMCID: PMC7828253 DOI: 10.3390/ijms22020713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.
Collapse
|
14
|
Talaverón R, Matarredona ER, Herrera A, Medina JM, Tabernero A. Connexin43 Region 266-283, via Src Inhibition, Reduces Neural Progenitor Cell Proliferation Promoted by EGF and FGF-2 and Increases Astrocytic Differentiation. Int J Mol Sci 2020; 21:ijms21228852. [PMID: 33238452 PMCID: PMC7700635 DOI: 10.3390/ijms21228852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing cells that give rise to the major cells in the nervous system and are considered to be the possible cell of origin of glioblastoma. The gap junction protein connexin43 (Cx43) is expressed by NPCs, exerting channel-dependent and -independent roles. We focused on one property of Cx43—its ability to inhibit Src, a key protein in brain development and oncogenesis. Because Src inhibition is carried out by the sequence 266–283 of the intracellular C terminus in Cx43, we used a cell-penetrating peptide containing this sequence, TAT-Cx43266–283, to explore its effects on postnatal subventricular zone NPCs. Our results show that TAT-Cx43266–283 inhibited Src activity and reduced NPC proliferation and survival promoted by epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). In differentiation conditions, TAT-Cx43266–283 increased astrocyte differentiation at the expense of neuronal differentiation, which coincided with a reduction in Src activity and β-catenin expression. We propose that Cx43, through the region 266–283, reduces Src activity, leading to disruption of EGF and FGF-2 signaling and to down-regulation of β-catenin with effects on proliferation and differentiation. Our data indicate that the inhibition of Src might contribute to the complex role of Cx43 in NPCs and open new opportunities for further research in gliomagenesis.
Collapse
Affiliation(s)
- Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
| | | | - Alejandro Herrera
- Departamento de Fisiología, Universidad de Sevilla, 41012 Sevilla, Spain; (E.R.M.); (A.H.)
| | - José M. Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
- Correspondence: ; Tel.: +34-923-29-45-00 (ext. 5311)
| |
Collapse
|
15
|
Life inter vivos: modeling regeneration in the relation between bodies and biomaterials. BIOSOCIETIES 2020. [DOI: 10.1057/s41292-020-00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zilkha-Falb R, Kaushansky N, Ben-Nun A. The Median Eminence, A New Oligodendrogenic Niche in the Adult Mouse Brain. Stem Cell Reports 2020; 14:1076-1092. [PMID: 32413277 PMCID: PMC7355143 DOI: 10.1016/j.stemcr.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
The subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus are known as neurogenic niches. We show that the median eminence (ME) of the hypothalamus comprises BrdU+ newly proliferating cells co-expressing NG2 (oligodendrocyte progenitors) and RIP (pre-myelinating oligodendrocytes), suggesting their differentiation toward mature oligodendrocytes (OLs). ME cells can generate neurospheres (NS) in vitro, which differentiate mostly to OLs compared with SVZ-NS that typically generate neurons. Interestingly, this population of oligodendrocyte progenitors is increased in the ME from experimental autoimmune encephalomyelitis (EAE)-affected mice. Notably, the thrombospondin 1 (TSP1) expressed by astrocytes, acts as negative regulator of oligodendrogenesis in vitro and is downregulated in the ME of EAE mice. Importantly, transplanted ME-NS preferentially differentiate to MBP+ OLs compared with SVZ-NS in Shiverer mice. Hence, discovering the ME as a new site for myelin-producing cells has a great importance for advising future therapy for demyelinating diseases and spinal cord injury.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B, Akbari M, Hassanzadeh G. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 2020; 35:809-818. [PMID: 32185593 DOI: 10.1007/s11011-020-00563-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ijaz
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas FJ, Riecken K, Gomez-Nicola D, Guaza C. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation 2020; 17:88. [PMID: 32192522 PMCID: PMC7081569 DOI: 10.1186/s12974-020-01734-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/β-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. Methods TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni’s post-hoc test, or a Student’s t test were used to establish statistical significance. Results The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/β-Catenin signaling in NSCs promoting an oligodendroglial fate. Conclusions We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.
Collapse
Affiliation(s)
- Miriam Mecha
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| | - Natalia Yanguas-Casás
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.,Present address: Grupo de Investigación en Linfomas, Instituto Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, Madrid, Spain
| | - Ana Feliú
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Carmen Guaza
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| |
Collapse
|
20
|
Mashkaryan V, Siddiqui T, Popova S, Cosacak MI, Bhattarai P, Brandt K, Govindarajan N, Petzold A, Reinhardt S, Dahl A, Lefort R, Kizil C. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol 2020; 8:114. [PMID: 32181251 PMCID: PMC7057913 DOI: 10.3389/fcell.2020.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that reduced neurogenesis could be one of the underlying reasons for the exacerbated neuropathology in humans, thus restoring the neural stem cell proliferation and neurogenesis could help to circumvent some pathological aspects of Alzheimer’s disease. We recently identified Interleukin-4/STAT6 signaling as a neuron–glia crosstalk mechanism that enables glial proliferation and neurogenesis in adult zebrafish brain and 3D cultures of human astroglia, which manifest neurogenic properties. In this study, by using single cell sequencing in the APP/PS1dE9 mouse model of AD, we found that IL4 receptor (Il4r) is not expressed in mouse astroglia and IL4 signaling is not active in these cells. We tested whether activating IL4/STAT6 signaling would enhance cell proliferation and neurogenesis in healthy and disease conditions. Lentivirus-mediated expression of IL4R or constitutively active STAT6VT impaired the survival capacity of mouse astroglia in vivo but not in vitro. These results suggest that the adult mouse brain generates a non-permissive environment that dictates a negative effect of IL4 signaling on astroglial survival and neurogenic properties in contrast to zebrafish brains and in vitro mammalian cell cultures. Our findings that IL4R signaling in dentate gyrus (DG) of adult mouse brain impinges on the survival of DG cells implicate an evolutionary mechanism that might underlie the loss of neuroregenerative ability of the brain, which might be utilized for basic and clinical aspects for neurodegenerative diseases.
Collapse
Affiliation(s)
- Violeta Mashkaryan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Kerstin Brandt
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Nambirajan Govindarajan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Roger Lefort
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
22
|
Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications. Front Oncol 2019; 9:779. [PMID: 31482066 PMCID: PMC6710355 DOI: 10.3389/fonc.2019.00779] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human glioblastoma is the most aggressive type of primary malignant brain tumors. Standard treatment includes surgical resection followed by radiation and chemotherapy but it only provides short-term benefits and the prognosis of these brain tumors is still very poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal ability, which are partly responsible for the tumor resistance to therapy and for the tumor recurrence after treatment. The human adult subventricular zone contains astrocyte-like neural stem cells (NSCs) that are probably reminiscent of the radial glia present in embryonic brain development. There are numerous molecules involved in the biology of subventricular zone NSCs that are also instrumental in glioblastoma development. These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription factors, and growth factors. Interestingly, genes encoding these molecules are frequently mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the subventricular zone are a potential cell of origin that contains the driver mutations of human glioblastoma. In this review we will describe common features between GSCs and subventricular zone NSCs, and we will discuss the relevance of this important finding in terms of possible future therapeutic strategies.
Collapse
|
23
|
Derivation of Neural Stem Cells from the Developing and Adult Human Brain. Results Probl Cell Differ 2019. [PMID: 30209653 DOI: 10.1007/978-3-319-93485-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive. Foetal neural stem cells can be readily derived from the foetal brain and expand in culture over time. Similarly, adult stem cells have been explored for their potential in vitro and in vivo animal models. In this chapter we identify the progress made in developing these cells as well as the advantages of taking them forward for clinical use.
Collapse
|
24
|
Nemirovich-Danchenko NM, Khodanovich MY. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? Front Neurosci 2019; 13:588. [PMID: 31275097 PMCID: PMC6591486 DOI: 10.3389/fnins.2019.00588] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous potential of adult neurogenesis is of particular interest for the development of new strategies for recovery after stroke and traumatic brain injury. These pathological conditions affect endogenous neurogenesis in two aspects. On the one hand, injury usually initiates the migration of neuronal precursors (NPCs) to the lesion area from the already existing, in physiological conditions, neurogenic niche - the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the other hand, recent studies have convincingly demonstrated the local generation of new neurons near lesion areas in different brain locations. The striatum, cortex, and hippocampal CA1 region are considered to be locations of such new neurogenic zones in the damaged brain. This review focuses on the relative contribution of two types of NPCs of different origin, resident population in new neurogenic zones and cells migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement of neurogenesis. The migratory pathways of NPCs have also been considered. In addition, the review highlights the advantages and limitations of different methodological approaches to the definition of NPC location and tracking of new neurons. In general, we suggest that despite the considerable number of studies, we still lack a comprehensive understanding of neurogenesis in the damaged brain. We believe that the advancement of methods for in vivo visualization and longitudinal observation of neurogenesis in the brain could fundamentally change the current situation in this field.
Collapse
Affiliation(s)
| | - Marina Yu. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
25
|
Blaschke S, Vay SU, Pallast N, Rabenstein M, Abraham JA, Linnartz C, Hoffmann M, Hersch N, Merkel R, Hoffmann B, Fink GR, Rueger MA. Substrate elasticity induces quiescence and promotes neurogenesis of primary neural stem cells-A biophysical in vitro model of the physiological cerebral milieu. J Tissue Eng Regen Med 2019; 13:960-972. [PMID: 30815982 DOI: 10.1002/term.2838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/18/2018] [Accepted: 02/13/2019] [Indexed: 01/17/2023]
Abstract
In the brain, neural stem cells (NSC) are tightly regulated by external signals and biophysical cues mediated by the local microenvironment or "niche." In particular, the influence of tissue elasticity, known to fundamentally affect the function of various cell types in the body, on NSC remains poorly understood. We, accordingly, aimed to characterize the effects of elastic substrates on critical NSC functions. Primary rat NSC were grown as monolayers on polydimethylsiloxane- (PDMS-) based gels. PDMS-coated cell culture plates, simulating the physiological microenvironment of the living brain, were generated in various degrees of elasticity, ranging from 1 to 50 kPa; additionally, results were compared with regular glass plates as usually used in cell culture work. Survival of NSC on the PDMS-based substrates was unimpaired. The proliferation rate on 1 kPa PDMS decreased by 45% compared with stiffer PMDS substrates of 50 kPa (p < 0.05) whereas expression of cyclin-dependent kinase inhibitor 1B/p27Kip1 increased more than two fold (p < 0.01), suggesting NSC quiescence. NSC differentiation was accelerated on softer substrates and favored the generation of neurons (42% neurons on 1 kPa PDMS vs. 25% on 50 kPa PDMS; p < 0.05). Neurons generated on 1 kPa PDMS showed 29% longer neurites compared with those on stiffer PDMS substrates (p < 0.05), suggesting optimized neuronal maturation and an accelerated generation of neuronal networks. Data show that primary NSC are significantly affected by the mechanical properties of their microenvironment. Culturing NSC on a substrate of brain-like elasticity keeps them in their physiological, quiescent state and increases their neurogenic potential.
Collapse
Affiliation(s)
- Stefan Blaschke
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Niklas Pallast
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Monika Rabenstein
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Christina Linnartz
- Biomechanics Section, Institute of Complex Systems (ICS-7), Juelich, Germany
| | - Marco Hoffmann
- Biomechanics Section, Institute of Complex Systems (ICS-7), Juelich, Germany
| | - Nils Hersch
- Biomechanics Section, Institute of Complex Systems (ICS-7), Juelich, Germany
| | - Rudolf Merkel
- Biomechanics Section, Institute of Complex Systems (ICS-7), Juelich, Germany
| | - Bernd Hoffmann
- Biomechanics Section, Institute of Complex Systems (ICS-7), Juelich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Cosacak MI, Bhattarai P, Reinhardt S, Petzold A, Dahl A, Zhang Y, Kizil C. Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Rep 2019; 27:1307-1318.e3. [DOI: 10.1016/j.celrep.2019.03.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
|
28
|
Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke. Neural Plast 2019; 2019:5271573. [PMID: 31007684 PMCID: PMC6441501 DOI: 10.1155/2019/5271573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022] Open
Abstract
Motor capability recovery after ischemic stroke involves dynamic remodeling processes of neural connectomes in the nervous system. Various neuromodulatory strategies combining direct stimulating interventions with behavioral trainings for motor recovery after ischemic stroke have been developed. However, the effectiveness of these interventions varies widely due to unspecific activation or inhibition of undefined neuronal subtypes. Optogenetics is a functional and structural connection-based approach that can selectively activate or inhibit specific subtype neurons with a higher precision, and it has been widely applied to build up neuronal plasticities of the nervous system, which shows a great potential in restoring motor functions in stroke animal models. Here, we reviewed neurobiological mechanisms of enhanced brain plasticities underlying motor recovery through the optogenetic stimulation after ischemic stroke. Several brain sites and neural circuits that have been previously proven effective for motor function rehabilitation were identified, which would be helpful for a more schematic understanding of effective neuronal connectomes in the motor function recovery after ischemic stroke.
Collapse
|
29
|
Celikkaya H, Cosacak MI, Papadimitriou C, Popova S, Bhattarai P, Biswas SN, Siddiqui T, Wistorf S, Nevado-Alcalde I, Naumann L, Mashkaryan V, Brandt K, Freudenberg U, Werner C, Kizil C. GATA3 Promotes the Neural Progenitor State but Not Neurogenesis in 3D Traumatic Injury Model of Primary Human Cortical Astrocytes. Front Cell Neurosci 2019; 13:23. [PMID: 30809125 PMCID: PMC6380212 DOI: 10.3389/fncel.2019.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are abundant cell types in the vertebrate central nervous system and can act as neural stem cells in specialized niches where they constitutively generate new neurons. Outside the stem cell niches, however, these glial cells are not neurogenic. Although injuries in the mammalian central nervous system lead to profound proliferation of astrocytes, which cluster at the lesion site to form a gliotic scar, neurogenesis does not take place. Therefore, a plausible regenerative therapeutic option is to coax the endogenous reactive astrocytes to a pre-neurogenic progenitor state and use them as an endogenous reservoir for repair. However, little is known on the mechanisms that promote the neural progenitor state after injuries in humans. Gata3 was previously found to be a mechanism that zebrafish brain uses to injury-dependent induction of neural progenitors. However, the effects of GATA3 in human astrocytes after injury are not known. Therefore, in this report, we investigated how overexpression of GATA3 in primary human astrocytes would affect the neurogenic potential before and after injury in 2D and 3D cultures. We found that primary human astrocytes are unable to induce GATA3 after injury. Lentivirus-mediated overexpression of GATA3 significantly increased the number of GFAP/SOX2 double positive astrocytes and expression of pro-neural factor ASCL1, but failed to induce neurogenesis, suggesting that GATA3 is required for enhancing the neurogenic potential of primary human astrocytes and is not sufficient to induce neurogenesis alone.
Collapse
Affiliation(s)
- Hilal Celikkaya
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | | | - Stanislava Popova
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Srijeeta Nag Biswas
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Sabrina Wistorf
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Isabel Nevado-Alcalde
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Lisa Naumann
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Violeta Mashkaryan
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Kerstin Brandt
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Uwe Freudenberg
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Carsten Werner
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
30
|
Davidoff MS. The Pluripotent Microvascular Pericytes Are the Adult Stem Cells Even in the Testis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:235-267. [PMID: 30937872 DOI: 10.1007/978-3-030-11093-2_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pericytes of the testis are part of the omnipresent population of pericytes in the vertebrate body and are the only true pluripotent adult stem cells able to produce structures typical for the tree primitive germ layers: ectoderm, mesoderm, and endoderm. They originate very early in the embryogenesis from the pluripotent epiblast. The pericytes become disseminated through the whole vertebrate organism by the growing and differentiating blood vessels where they remain in specialized periendothelial vascular niches as resting pluripotent adult stem cells for tissue generation, maintenance, repair, and regeneration. The pericytes are also the ancestors of the perivascular multipotent stromal cells (MSCs). The variable appearance of the pericytes and their progeny reflects the plasticity under the influence of their own epigenetic and the local environmental factors of the host organ. In the testis the pericytes are the ancestors of the neuroendocrine Leydig cells. After activation the pericytes start to proliferate, migrate, and build transit-amplifying cells that transdifferentiate into multipotent stromal cells. These represent progenitors for a number of different cell types in an organ. Finally, it becomes evident that the pericytes are a brilliant achievement of the biological nature aiming to supply every organ with an omnipresent population of pluripotent adult stem cells. Their fascinating features are prerequisites for future therapy concepts supporting cell systems of organs.
Collapse
Affiliation(s)
- Michail S Davidoff
- University Medical Center Hamburg-Eppendorf, Hamburg Museum of Medical History, Hamburg, Germany.
| |
Collapse
|
31
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
Papadimitriou C, Celikkaya H, Cosacak MI, Mashkaryan V, Bray L, Bhattarai P, Brandt K, Hollak H, Chen X, He S, Antos CL, Lin W, Thomas AK, Dahl A, Kurth T, Friedrichs J, Zhang Y, Freudenberg U, Werner C, Kizil C. 3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity. Dev Cell 2018; 46:85-101.e8. [DOI: 10.1016/j.devcel.2018.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
|
33
|
Kizil C. Mechanisms of Pathology-Induced Neural Stem Cell Plasticity and Neural Regeneration in Adult Zebrafish Brain. CURRENT PATHOBIOLOGY REPORTS 2018; 6:71-77. [PMID: 29938129 PMCID: PMC5978899 DOI: 10.1007/s40139-018-0158-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of the Review The purpose of this study is to review the current knowledge on the damage-induced molecular programs that underlie the regenerative ability in zebrafish brain. Recent Findings Neural stem cells are the reservoir for new neurons during development and regeneration of the vertebrate brains. Pathological conditions such as neurodegenerative diseases hamper neural stem cell plasticity and neurogenic outcome in humans, whereas adult zebrafish brain can enhance proliferation and neurogenic capacity of its neural stem cells despite the incipient pathology. Evidence suggests that zebrafish uses damage-induced molecular programs to enable neural stem cells to efficiently initiate regeneration. Since this aptitude may be harnessed for regenerative therapies in human brain, understanding the molecular programs regulating neural stem cell proliferation and quiescence in zebrafish is of utmost importance for clinical efforts. Summary Specific molecular programs that are different than those in the homeostatic conditions regulate adult zebrafish neural stem cell plasticity and the regenerative capacity after injury and neurodegeneration. These programs can serve as candidates for stem cell-based regenerative therapies in humans.
Collapse
Affiliation(s)
- Caghan Kizil
- 1German Centre for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstrasse 18, 01307 Dresden, Germany.,2Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
34
|
Taboada X, Viñas A, Adrio F. Comparative expression patterns ofSox2andSox19genes in the forebrain of developing and adult turbot (Scophthalmus maximus). J Comp Neurol 2017; 526:899-919. [DOI: 10.1002/cne.24374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xoana Taboada
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Viñas
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Functional Biology, CIBUS, Faculty of Biology; Universidade de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
35
|
Kesidou E, Touloumi O, Lagoudaki R, Nousiopoulou E, Theotokis P, Poulatsidou KN, Boziki M, Kofidou E, Delivanoglou N, Minti F, Hadjigeorgiou G, Grigoriadis N, Simeonidou C. Humoral response in experimental autoimmune encephalomyelitis targets neural precursor cells in the central nervous system of naive rodents. J Neuroinflammation 2017; 14:227. [PMID: 29162133 PMCID: PMC5697419 DOI: 10.1186/s12974-017-0995-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Neural precursor cells (NPCs) located in the subventricular zone (SVZ), a well-defined NPC niche, play a crucial role in central nervous system (CNS) homeostasis. Moreover, NPCs are involved in the endogenous reparative process both in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the possibility that NPCs may be vulnerable to immune-related components may not be ruled out. Therefore, we investigated the potential affinity of myelin oligodendrocyte glycoprotein (MOG)-induced humoral response(s) to NPCs. Methods MOG35–55-EAE was induced in C57BL/6 mice; blood-sampling was performed on days 17–21 (acute phase) along with a naive group and corresponding antisera (AS) were collected (EAE-AS, NAIVE-AS). The presence of anti-CNS autoantibodies was examined with western blotting. Furthermore, using the collected antisera and anti-MOG antibody (as positive control), immunohistochemistry and double immunofluorescence were implemented on normal neonatal, postnatal, and adult mouse brain sections. Targeted NPCs were identified with confocal microscopy. In vitro immunoreactivity assessment on NPCs challenged with autoantibodies was evaluated for apoptotic/autophagic activity. Results Western blotting verified the existence of autoantibodies in EAE mice and demonstrated bands corresponding to yet unidentified NPC surface epitopes. A dominant selective binding of EAE-AS in the subventricular zone in all age groups compared to NAIVE-AS (p < 0.001) was observed. Additionally, anti-BrdU+/EAE-AS+ colocalization was significantly higher than anti-BrdU+/anti-MOG+, a finding suggesting that the EAE humoral response colocalized with NPCs(BrdU+), cells that do not express MOG. Well-established NPC markers (Nestin, m-Musashi-1, Sox2, DCX, GFAP, NG2) were used to identify the distinct cell types which exhibited selective binding with EAE-AS. The findings verified that EAE-AS exerts cross-reactivity with NPCs which varies throughout the neonatal to adult stage, with a preference to cells of early developmental stages. Finally, increased expressions of Caspase 3 and Beclin 1 on NPCs were detected. Conclusion We provide evidence for the first time that MOG35–55 EAE induces production of antibodies with affinity to SVZ of naive mice in three different age groups. These autoantibodies target lineage-specific NPCs as brain develops and have the potential to trigger apoptotic pathways. Thus, our findings provide indication that cross-talk between immunity and NPCs may lead to functional alteration of NPCs regarding their viability and potentially oligodendrogenesis and effective remyelination. Electronic supplementary material The online version of this article (10.1186/s12974-017-0995-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki-Nepheli Poulatsidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kofidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nickoleta Delivanoglou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Minti
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
36
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
37
|
Gilbert EAB, Vickaryous MK. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius). J Comp Neurol 2017; 526:285-309. [PMID: 28980312 DOI: 10.1002/cne.24335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022]
Abstract
As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement.
Collapse
Affiliation(s)
- E A B Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Wang Y, Xu P, Qiu L, Zhang M, Huang Y, Zheng JC. CXCR7 Participates in CXCL12-mediated Cell Cycle and Proliferation Regulation in Mouse Neural Progenitor Cells. Curr Mol Med 2017; 16:738-746. [PMID: 27573194 PMCID: PMC5345320 DOI: 10.2174/1566524016666160829153453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
Abstract
Background: Cell cycle regulation of neural progenitor cells (NPCs) is an essential process for neurogenesis, neural development, and repair after brain trauma. Stromal cell-derived factor-1 (SDF-1, CXCL12) and its receptors CXCR4 and CXCR7 are well known in regulating the migration and survival of NPCs. The effects of CXCL12 on NPCs proliferation, cell cycle regulation, and their associated signaling pathways remain unclear. Cyclin D1 is a protein required for progression through the G1 phase of the cell cycle and a known downstream target of β-catenin. Therefore, cyclin D1 plays critical roles of cell cycle regulation, proliferation, and survival in NPCs. Methods: Primary mouse NPCs (mNPCs) were derived from brain tissues of wild-type, Cxcr4 knockout, or Cxcr7 knockout mice at mouse embryonic day 13.5 (E13.5). Flow cytometry was used to perform cell cycle analysis by quantitation of DNA content. Real-time PCR and Western blot were used to evaluate mRNA and protein expressions, respectively. Ki67 immunostaining and TUNEL assay were used to assess the proliferation and survival of mNPCs, respectively. Results: CXCL12 pretreatment led to the shortening of G0/G1 phase and lengthening of S phase, suggesting that CXCL12 regulates cell cycle progression in mNPCs. Consistently, CXCL12 treatment increased the expression of CyclinD1 and β-catenin, and promoted proliferation and survival of mNPCs. Cxcr7 knockout of mNPCs blocked CXCL12-mediated mNPCs proliferation, whereas Cxcr4 knockout mNPC did not significantly effect CXCL12- mediated mNPCs proliferation. Conclusion: CXCR7 plays an important role in CXCL12-mediated mNPC cell cycle regulation and proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Y Huang
- Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; 985930 University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| | | |
Collapse
|
39
|
|
40
|
Butruille L, Batailler M, Mazur D, Prévot V, Migaud M. Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Struct Funct 2017; 223:91-109. [DOI: 10.1007/s00429-017-1478-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/16/2017] [Indexed: 01/09/2023]
|
41
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
42
|
Anand SK, Mondal AC. Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 2017; 77:1188-1205. [PMID: 28589616 DOI: 10.1002/dneu.22508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter-species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188-1205, 2017.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| |
Collapse
|
43
|
Sandhu MS, Ross HH, Lee KZ, Ormerod BK, Reier PJ, Fuller DD. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 2017; 287:205-215. [PMID: 27302679 PMCID: PMC6154390 DOI: 10.1016/j.expneurol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Following spinal cord injury (SCI), intraspinal transplantation of neural progenitor cells (NPCs) harvested from the forebrain sub-ventricular zone (SVZ) can improve locomotor outcomes. Cervical SCI often results in respiratory-related impairments, and here we used an established model cervical SCI (C2 hemisection, C2Hx) to confirm the feasibility of mid-cervical transplantation of SVZ-derived NPCs and the hypothesis that that this procedure would improve spontaneous respiratory motor recovery. NPCs were isolated from the SVZ of enhanced green fluorescent protein (GFP) expressing neonatal rats, and then intraspinally delivered immediately caudal to an acute C2Hx lesion in adult non-GFP rats. Whole body plethysmography conducted at 4 and 8wks post-transplant demonstrated increased inspiratory tidal volume in SVZ vs. sham transplants during hypoxic (P=0.003) or hypercapnic respiratory challenge (P=0.019). Phrenic nerve output was assessed at 8wks post-transplant; burst amplitude recorded ipsilateral to C2Hx was greater in SVZ vs. sham rats across a wide range of conditions (e.g., quiet breathing through maximal chemoreceptor stimulation; P<0.001). Stereological analyses at 8wks post-injury indicated survival of ~50% of transplanted NPCs with ~90% of cells distributed in ipsilateral white matter at or near the injection site. Peak inspiratory phrenic bursting after NPC transplant was positively correlated with the total number of surviving cells (P<0.001). Immunohistochemistry confirmed an astrocytic phenotype in a subset of the transplanted cells with no evidence for neuronal differentiation. We conclude that intraspinal transplantation of SVZ-derived NPCs can improve respiratory recovery following high cervical SCI.
Collapse
Affiliation(s)
- M S Sandhu
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - H H Ross
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - K Z Lee
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - B K Ormerod
- University of Florida, Department of Biomedical Engineering, P.O. Box 116131, Gainesville, FL 32611-6131, United States
| | - P J Reier
- University of Florida, Department of Neuroscience, P.O. Box 100244, Gainesville, FL 32610-0244, United States
| | - D D Fuller
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States.
| |
Collapse
|
44
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
45
|
Duan H, Song W, Zhao W, Gao Y, Yang Z, Li X. Endogenous neurogenesis in adult mammals after spinal cord injury. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1313-1318. [PMID: 27796638 DOI: 10.1007/s11427-016-0205-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
Abstract
During the whole life cycle of mammals, new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles. Thanks to emerging methodologies, great progress has been made in the characterization of spinal cord endogenous neural stem cells (ependymal cells) and identification of their role in adult spinal cord development. As recently evidenced, both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis. This review introduces the concept of adult endogenous neurogenesis, the reaction of ependymal cells after adult spinal cord injury (SCI), the heterogeneity and markers of ependymal cells, the factors that regulate ependymal cells, and the niches that impact the activation or differentiation of ependymal cells.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Song
- School of Rehabilitation Medinice, China Rehabilitation Research Centre, Capital Medical University, Beijing, 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
46
|
Chrenek R, Magnotti LM, Herrera GR, Jha RM, Cardozo DL. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol 2016; 525:661-675. [PMID: 27511739 PMCID: PMC5216448 DOI: 10.1002/cne.24094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023]
Abstract
Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661–675, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan Chrenek
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Laura M. Magnotti
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Ruchira M. Jha
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - David L. Cardozo
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
47
|
Chow CL, Trivedi P, Pyle MP, Matulle JT, Fettiplace R, Gubbels SP. Evaluation of Nestin Expression in the Developing and Adult Mouse Inner Ear. Stem Cells Dev 2016; 25:1419-32. [PMID: 27474107 DOI: 10.1089/scd.2016.0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult stem cells are undifferentiated cells with the capacity to proliferate and form mature tissue-specific cell types. Nestin is an intermediate filament protein used to identify cells with stem cell characteristics. Its expression has been observed in a population of cells in developing and adult cochleae. In vitro studies using rodent cochlear tissue have documented the potential of nestin-expressing cells to proliferate and form hair and supporting cells. In this study, nestin coupled to green fluorescent protein (GFP) transgenic mice were used to provide a more complete characterization of the spatial and temporal expression of nestin in the inner ear, from organogenesis to adulthood. During development, nestin is expressed in the spiral ganglion cell region and in multiple cell types in the organ of Corti, including nascent hair and supporting cells. In adulthood, its expression is reduced but persists in the spiral ganglion, in a cell population medial to and below the inner hair cells, and in Deiters' cells in the cochlear apex. Moreover, nestin-expressing cells can proliferate in restricted regions of the inner ear during development shown by coexpression with Ki67 and MCM2 and by 5-ethynyl-2'-deoxyuridine incorporation. Results suggest that nestin may label progenitor cells during inner ear development and may not be a stem cell marker in the mature organ of Corti; however, nestin-positive cells in the spiral ganglion exhibit some stem cell characteristics. Future studies are necessary to determine if these cells possess any latent stem cell-like qualities that may be targeted as a regenerative approach to treat neuronal forms of hearing loss.
Collapse
Affiliation(s)
- Cynthia L Chow
- 1 Department of Communication Sciences and Disorders, University of Wisconsin-Madison , Madison, Wisconsin.,2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Parul Trivedi
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Madeline P Pyle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jacob T Matulle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Robert Fettiplace
- 4 Department of Neuroscience, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Samuel P Gubbels
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,5 Department of Otolaryngology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
48
|
Neuroimmunological Implications of AQP4 in Astrocytes. Int J Mol Sci 2016; 17:ijms17081306. [PMID: 27517922 PMCID: PMC5000703 DOI: 10.3390/ijms17081306] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed.
Collapse
|
49
|
Rushing G, Ihrie RA. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. FRONTIERS IN BIOLOGY 2016; 11:261-284. [PMID: 28367160 PMCID: PMC5371406 DOI: 10.1007/s11515-016-1407-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
Collapse
Affiliation(s)
- Gabrielle Rushing
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A. Ihrie
- Departments of Cancer Biology and Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
50
|
Xing L, Martyniuk CJ, Esau C, Da Fonte DF, Trudeau VL. Proteomic profiling reveals dopaminergic regulation of progenitor cell functions of goldfish radial glial cells in vitro. J Proteomics 2016; 144:123-32. [DOI: 10.1016/j.jprot.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023]
|