1
|
Gupta P, Kalvatala S, Joseph A, Panghal A, Santra S. Outline of Therapeutic Potential of Different Plants Reported Against Psoriasis via In Vitro, Pre-Clinical or Clinical Studies. Phytother Res 2025; 39:1139-1173. [PMID: 39754500 DOI: 10.1002/ptr.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development. Although there is no cure for this disease, topical, oral, and systemic whole-body treatments are available to relieve symptoms. Several plants and phytochemicals which have been found effective in the management of the psoriasis experimentally (preclinical and clinical). These plants/phytochemicals have applications in topical, oral, and systemic treatments. Traditionally, some of the plants have been utilized as the primary treatment, including their extracts and/or phytochemicals, for individuals with moderate to severe psoriasis (due to fewer side effects), while phototherapy is generally reserved for more advanced cases. This report describes various plants and phytochemicals that have been found to be effective against psoriasis in in vitro, preclinical, and clinical studies. This review summarizes the key findings from experimental studies on various pathological aspects of psoriasis and may be useful, effective, and informative for future research.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
- Research and Development Cell, Lovely Professional University, Phagwara, India
| | - Sudhakar Kalvatala
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abhinav Joseph
- Research and Development Cell, Lovely Professional University, Phagwara, India
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Panghal
- Department of Processing and Food Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Soumava Santra
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Zhang N, Zhu Y, Zhang X, Yang K, Yang X, An M, Tian C, Li J. Based on network pharmacology and experiments to explore the underlying mechanism of Mahonia bealei (Fortune) Carrière for treating alcoholic hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116919. [PMID: 37453621 DOI: 10.1016/j.jep.2023.116919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahonia bealei (Fortune) Carrière (M. bealei) is a traditional medicine widely used by the Hmong community in Guizhou. It possesses diverse biological activities and shows promise in cancer treatment; however, contemporary pharmacological research in this area is lacking. AIMS OF THE STUDY This study aimed to investigate the effects and underlying mechanisms of M. bealei on alcoholic hepatocellular carcinoma (HCC). MATERIALS AND METHODS We initially employed the LC-MS/MS method to identify the compounds present in M. bealei serum. Subsequently, its potential targets were predicted using public databases. Bioinformatics and network pharmacology approaches, such as univariate Cox regression and random forest (RF) algorithms, were utilized to identify differentially expressed genes (DEGs) associated with the prognosis of alcoholic HCC. Survival curve and receiver operating characteristic (ROC) analyses were conducted using alcoholic HCC-related data from TCGA and GEO to determine the diagnostic value of the identified DEGs. Molecular docking using the CDOCKER approach based on CHARMm was performed to validate the affinity between the predictive compounds and targets. Additionally, we evaluated the impact of M. bealei on cell proliferation, migration, and conducted western blot assays. RESULTS The LC-MS/MS approach identified 17 therapeutic components and predicted 483 component-related targets, of which 63 overlapped with alcoholic HCC targets and were considered potential therapeutic targets. GO and KEGG pathway analysis revealed significant associations between the 63 overlapping targets and alcoholic HCC progression. Through various approaches in the Cytoscape 3.9.0 software, we confirmed 9 hub genes (CDK1, CXCR4, DNMT1, ESR1, KIT, PDGFRB, SERPINE1, TOP2A, and TYMS) as core targets. TOP2A and CDK1 genes were identified as advantageous for diagnosing alcoholic HCC using univariate Cox regression, RF, survival curve, and ROC analysis. Molecular docking analysis demonstrated strong binding affinity between key bioactive components cyclamic acid, perfluoroalkyl carboxylic acid, perfluorosulfonic acid, alpha-linolenic acid, adenosine receptor antagonist (CGS 15943), and Prodigiosin and TOP2A and CDK1. In vitro experiments confirmed that M. bealei significantly suppressed cell proliferation and migration of HepG2 cells, while downregulating TOP2A and CDK1 expression. CONCLUSION This study highlights the potential of M. bealei as a natural medicine for the treatment of alcoholic HCC. Six compounds (cyclamic acid, perfluoroalkylic carboxylic acids, perfluorosulfonic acid, alpha-linolenic acid, adenosine receptor antagonist (CGS 15943), and Prodigiosin) present in M. bealei serum may exhibit therapeutic effects against alcoholic HCC by downregulating CDK1 and TOP2A expression levels in vitro.
Collapse
Affiliation(s)
- Nannan Zhang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yi Zhu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xuewu Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kaiping Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xia Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Mingyu An
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changlin Tian
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
3
|
Kakar MU, Li J, Mehboob MZ, Sami R, Benajiba N, Ahmed A, Nazir A, Deng Y, Li B, Dai R. Purification, characterization, and determination of biological activities of water-soluble polysaccharides from Mahonia bealei. Sci Rep 2022; 12:8160. [PMID: 35581215 PMCID: PMC9114413 DOI: 10.1038/s41598-022-11661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.,Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Jingyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aziz Ahmed
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan, Shandong Province, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China. .,Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.
| |
Collapse
|
4
|
Dabholkar N, Rapalli VK, Singhvi G. Potential herbal constituents for psoriasis treatment as protective and effective therapy. Phytother Res 2021; 35:2429-2444. [PMID: 33277958 DOI: 10.1002/ptr.6973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a multifactorial and chronic skin disorder. It is a recurrent disease that requires incessant therapy. Psoriasis treatment includes topical and systemic routes using synthetic drugs that lead to severe unwanted adverse effects. Herbal therapy is widely used for thousands of years in countries like China and India. The use of herbal therapy in the developed region enhanced to a great extent and showed better efficacy towards psoriasis alone or as adjuvant to synthetic therapy. Herbal medicines have gained great attention in the treatment of psoriasis due to their lesser side effects compared to synthetic drugs. In this review, the various plant sources which have been found effective in psoriasis and can be used to develop novel therapeutics have been discussed. The mechanisms by which the phytoconstituents elicit anti-psoriatic activity and various research studies that have proven the effectiveness of these natural products have also been compiled in this review.
Collapse
Affiliation(s)
- Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vamshi K Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
5
|
Damjanović A, Kolundžija B, Matić IZ, Krivokuća A, Zdunić G, Šavikin K, Janković R, Stanković JA, Stanojković TP. Mahonia aquifolium Extracts Promote Doxorubicin Effects against Lung Adenocarcinoma Cells In Vitro. Molecules 2020; 25:E5233. [PMID: 33182665 PMCID: PMC7697947 DOI: 10.3390/molecules25225233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Mahonia aquifolium and its secondary metabolites have been shown to have anticancer potential. We performed MTT, scratch, and colony formation assays; analyzed cell cycle phase distribution and doxorubicin uptake and retention with flow cytometry; and detected alterations in the expression of genes involved in the formation of cell-cell interactions and migration using quantitative real-time PCR following treatment of lung adenocarcinoma cells with doxorubicin, M. aquifolium extracts, or their combination. MTT assay results suggested strong synergistic effects of the combined treatments, and their application led to an increase in cell numbers in the subG1 phase of the cell cycle. Both extracts were shown to prolong doxorubicin retention time in cancer cells, while the application of doxorubicin/extract combination led to a decrease in MMP9 expression. Furthermore, cells treated with doxorubicin/extract combinations were shown to have lower migratory and colony formation potentials than untreated cells or cells treated with doxorubicin alone. The obtained results suggest that nontoxic M. aquifolium extracts can enhance the activity of doxorubicin, thus potentially allowing the application of lower doxorubicin doses in vivo, which may decrease its toxic effects in normal tissues.
Collapse
Affiliation(s)
- Ana Damjanović
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Branka Kolundžija
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ivana Z. Matić
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ana Krivokuća
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Gordana Zdunić
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Katarina Šavikin
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Radmila Janković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Jelena Antić Stanković
- Department for Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11 221 Belgrade, Serbia
| | - Tatjana P. Stanojković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| |
Collapse
|
6
|
Identification of cytotoxic metabolites from Mahonia aquifolium using 1 H NMR-based metabolomics approach. J Pharm Biomed Anal 2018; 150:9-14. [DOI: 10.1016/j.jpba.2017.11.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023]
|
7
|
Zhu W, Hu J, Wang X, Tian J, Komatsu S. Organ-Specific Analysis of Mahonia Using Gel-Free/Label-Free Proteomic Technique. J Proteome Res 2015; 14:2669-85. [DOI: 10.1021/acs.jproteome.5b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xin Wang
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Setsuko Komatsu
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| |
Collapse
|
8
|
Antioxidant and antiproliferative properties of water extract from Mahonia bealei (Fort.) Carr. leaves. Food Chem Toxicol 2010; 49:799-806. [PMID: 21130829 DOI: 10.1016/j.fct.2010.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/02/2010] [Accepted: 12/01/2010] [Indexed: 11/21/2022]
Abstract
Mahonia bealei (Fort.) Carr. (Berberidaceae) leaves have been widely used as a tea leaf beverage south of the Qinling Mountains of China. In this study, the antioxidant and antiproliferative properties of M. bealei leaves were investigated. Our data showed that the water extract of M. bealei leaves (WML) exhibited extremely high antioxidant properties, which were demonstrated by its ability to scavenge 50% of 1,1-diphenyll-2-2-pricylhydrazyl (DPPH) free radicals at 60.46 μg/ml, and it eliminated approximately 71.19% of superoxide radicals at 500 μg/ml. In addition, the WML showed strong reducing abilities and provided protection against oxidative protein damage induced by hydroxyl radicals. Cellular proliferation and the induction of apoptosis were also examined by cellular proliferation assay, flow cytometry, and mRNA expression analysis. These results demonstrate that WML significantly inhibited the growth of human colon cancer (HT-29) cells in a concentration-dependent manner, and it gradually increased the proportion of apoptotic cells and reduced the expression of the survivin gene. The bioactivity-guided study of WML resulted in the isolation and identification of berberine, a known isoquinoline alkaloid. Berberine exhibited strong antiproliferative activity on HT-29 cells, with IC(50) values of 36.54 μM, suggesting it is, in part, responsible of the anticancer activity of WML.
Collapse
|
9
|
Phytotherapy of cough. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1572-557x(05)02007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2005; 6:317-33. [PMID: 16428067 DOI: 10.1016/j.intimp.2005.10.005] [Citation(s) in RCA: 878] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/28/2005] [Accepted: 10/03/2005] [Indexed: 11/26/2022]
Abstract
Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
11
|
Volleková A, Kost'álová D, Kettmann V, Tóth J. Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids. Phytother Res 2003; 17:834-7. [PMID: 12916091 DOI: 10.1002/ptr.1256] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The crude extract of Mahonia aquifolium (Berberidaceae) stem bark and its components berberine, palmatine and jatrorrhizine were screened for their inhibitory activity against a variety of dermatophytes and two Candida species of human origin using the in vitro dilution agar plate method. Jatrorrhizine was found to be the most effective against all fungal species tested (MIC ranges from 62.5 to 125 micro g/mL), while the crude extract, berberine, and palmatine exhibited only marginal activity (MIC 500 to >/= 1000 micro g/mL). Dermatophytes were more susceptible to jatrorrhizine than yeasts, and Scopulariopsis brevicaulis appeared the least sensitive species to all the compounds tested. The effects of the alkaloids were compared with those of fluconazole and bifonazole for which the MIC ranges were 12.5 to >100 micro g/mL. Our results suggest that jatrorrhizine may serve as a leading compound for further studies to develop new antifungal agents with highly potent antifungal activity and low host toxicity.
Collapse
Affiliation(s)
- Anna Volleková
- Mycological Laboratory, Department of Dermatovenerology, Slovak Postgraduate Academy of Medicine, Bratislava, Slovakia
| | | | | | | |
Collapse
|