1
|
Saleem AB, Busse L. Interactions between rodent visual and spatial systems during navigation. Nat Rev Neurosci 2023; 24:487-501. [PMID: 37380885 DOI: 10.1038/s41583-023-00716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany.
- Bernstein Centre for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
2
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
3
|
Abstract
Eye movements provide insights about a wide range of brain functions, from sensorimotor integration to cognition; hence, the measurement of eye movements is an important tool in neuroscience research. We describe a method, based on magnetic sensing, for measuring eye movements in head-fixed and freely moving mice. A small magnet was surgically implanted on the eye, and changes in the magnet angle as the eye rotated were detected by a magnetic field sensor. Systematic testing demonstrated high resolution measurements of eye position of <0.1°. Magnetic eye tracking offers several advantages over the well-established eye coil and video-oculography methods. Most notably, it provides the first method for reliable, high-resolution measurement of eye movements in freely moving mice, revealing increased eye movements and altered binocular coordination compared to head-fixed mice. Overall, magnetic eye tracking provides a lightweight, inexpensive, easily implemented, and high-resolution method suitable for a wide range of applications.
Collapse
Affiliation(s)
- Hannah L Payne
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, United States
| |
Collapse
|
4
|
Harvey DR, McGauran AMT, Murphy J, Burns L, McMonagle E, Commins S. Emergence of an egocentric cue guiding and allocentric inferring strategy that mirrors hippocampal brain-derived neurotrophic factor (BDNF) expression in the Morris water maze. Neurobiol Learn Mem 2008; 89:462-79. [DOI: 10.1016/j.nlm.2007.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 12/15/2022]
|
5
|
Young GS, Choleris E, Kirkland JB. Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze. Physiol Behav 2006; 87:794-9. [PMID: 16516936 DOI: 10.1016/j.physbeh.2006.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/13/2006] [Accepted: 01/23/2006] [Indexed: 11/30/2022]
Abstract
In the Morris Water Maze (MWM), an animal learns the location of a hidden platform relative to distal visual cues in a process known as spatial learning. The visual cues used in MWM experiments are invariably salient in nature, and non-salient cues, such as subtle environmental variations, have not traditionally been considered to play a significant role. However, the role of non-salient cues in spatial navigation has not been adequately investigated experimentally. The objective of this experiment was therefore to determine the relative contribution of salient and non-salient visual cues to spatial navigation in the MWM. Animals were presented with an environment containing both types of visual cues, and were tested in three successive phases of water maze testing, each with a new platform location. Probe tests were used to assess spatial accuracy, and several cue variation trials were run in which both salient and non-salient visual cues were manipulated. It was observed that removal of the salient visual cues did not cause a significant deterioration in performance unless accompanied by disruption of the non-salient visual cues, and that spatial navigation was unimpaired when only the salient visual cues were removed from view. This suggests that during place learning in Long-Evans rats, non-salient visual cues may play a dominant role, at least when salient cue presentation is limited to four cues.
Collapse
Affiliation(s)
- Genevieve S Young
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
6
|
Craig S, Cunningham L, Kelly L, Commins S. Long-term retention and overshadowing of proximal and distal cues following habituation in an object exploration task. Behav Processes 2005; 68:117-28. [PMID: 15686822 DOI: 10.1016/j.beproc.2004.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 12/01/2004] [Indexed: 11/28/2022]
Abstract
The object displacement task is a popular tool used to investigate spatial learning and memory. However, little attention has previously been given to long-term retention of spatial information following habituation to this task. Furthermore, the role of both proximal and distal cues in this type of passive retention of spatial information is controversial. In Study 1, we examined habituation in the object displacement task across 4 days and examined reactivity to spatial change 7 days post-acquisition. We found that rats habituated rapidly to the environment and retained this environment for the 7 days. Furthermore, this experiment shows that both proximal and distal spatial cues are important in the encoding of the environment during object displacement learning task. In Study 2, we examined the effect of overshadowing and demonstrate that proximal visual spatial cues can overshadow distal spatial cues if a conflict arises between both set.
Collapse
Affiliation(s)
- Sarah Craig
- Department of Psychology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
7
|
Latham N, Mason G. From house mouse to mouse house: the behavioural biology of free-living Mus musculus and its implications in the laboratory. Appl Anim Behav Sci 2004. [DOI: 10.1016/j.applanim.2004.02.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Abstract
To elucidate pathways from specific genes to complex behaviors, assays of mouse behavior need to be valid, reliable and replicable across laboratories. Behavioral assays are proving to be as complex as the intricate cellular and molecular pathways that are the main interest of many mouse users. There is no perfect behavioral test, but we propose some aphorisms to stimulate discussion that is necessary for continued progress in task development. For maximal utility, a behavioral test should yield valid data for most of the commonly used inbred mouse strains. Tests of simple, ubiquitous behaviors usually yield meaningful data for most mice, especially when based on automated scoring or on simple physical measures that are likely to be replicable across laboratories. Extreme test scores resulting from non-performance on a task can inflate the apparent reliability of a test, and devious adaptations to a task can undermine its validity. The optimal apparatus configuration for certain genetic or pharmacological analyses might depend on the particular laboratory environment. Despite our best efforts, the mice will continue to win some innings.
Collapse
Affiliation(s)
- Douglas Wahlsten
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| | | | | | | |
Collapse
|
9
|
Begega A, Cienfuegos S, Rubio S, Santín JL, Miranda R, Arias JL. Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behav Processes 2001; 53:75-85. [PMID: 11254994 DOI: 10.1016/s0376-6357(00)00150-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was designed to assess the effect of ageing on spatial (allocentric and egocentric) strategies in rats. Two different tasks were designed for this purpose: one involving Morris' circular pool (distal extramaze cues) and another using the T water maze (egocentric cues). In the first task, the aged rats showed some difficulty in acquiring allocentric spatial learning skills. After increasing the number of trials in this task, there was no significant improvement in the performance of the aged group of rats compared to the adult group. However, in the second spatial task (using egocentric cues), both age groups gave a similar performance. Therefore, the effect of ageing on spatial learning depends on the strategy required to acquire this learning.
Collapse
Affiliation(s)
- A Begega
- Laboratory of Neuroscience, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
We compared the learning performances of BALB/c mice subjected to the Morris water spatial task under two different lighting conditions. In the first one, the experimental room was lit by neon tubes (direct and bright illumination) and in the second one by a halogen lamp directed to the roof (diffuse illumination). The scores of BALB/c mice in the diffuse illumination condition clearly demonstrated that these mice could learn to escape to a hidden platform while they could not under direct illumination condition. Moreover, they were able to acquire the task by means of spatial cues. These results are interpreted in terms of a decrease of anxiety levels.
Collapse
Affiliation(s)
- P Chapillon
- UPRES EA 1780 Laboratoire de Neurobiologie de l'Apprentissage, Faculté des Sciences, Université de Rouen, F-76821 Cedex, Mont Saint Aignan, France.
| | | |
Collapse
|
11
|
|