1
|
Thompson CE, Freitas LB, Salzano FM. Molecular evolution and functional divergence of alcohol dehydrogenases in animals, fungi and plants. Genet Mol Biol 2018; 41:341-354. [PMID: 29668010 PMCID: PMC5913725 DOI: 10.1590/1678-4685-gmb-2017-0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Alcohol dehydrogenases belong to the large superfamily of medium-chain
dehydrogenases/reductases, which occur throughout the biological world and are
involved with many important metabolic routes. We considered the phylogeny of
190 ADH sequences of animals, fungi, and plants. Non-class III
Caenorhabditis elegans ADHs were seen closely related to
tetrameric fungal ADHs. ADH3 forms a sister group to amphibian, reptilian, avian
and mammalian non-class III ADHs. In fishes, two main forms are identified: ADH1
and ADH3, whereas in amphibians there is a new ADH form (ADH8). ADH2 is found in
Mammalia and Aves, and they formed a monophyletic group. Additionally, mammalian
ADH4 seems to result from an ADH1 duplication, while in Fungi, ADH formed
clusters based on types and genera. The plant ADH isoforms constitute a basal
clade in relation to ADHs from animals. We identified amino acid residues
responsible for functional divergence between ADH types in fungi, mammals, and
fishes. In mammals, these differences occur mainly between ADH1/ADH4 and
ADH3/ADH5, whereas functional divergence occurred in fungi between ADH1/ADH5,
ADH5/ADH4, and ADH5/ADH3. In fishes, the forms also seem to be functionally
divergent. The ADH family expansion exemplifies a neofunctionalization process
where reiterative duplication events are related to new activities.
Collapse
Affiliation(s)
- Claudia E Thompson
- Departamento de Farmacociências, Unidade de Genômica e Bioinformática Clínica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.,Unidade de Biologia Teórica e Computacional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Ulrich A, Wahl MC. Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27. ACTA ACUST UNITED AC 2014; 70:3110-23. [PMID: 25478830 DOI: 10.1107/s1399004714021695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Cwc27 is a spliceosomal cyclophilin-type peptidyl-prolyl cis-trans isomerase (PPIase). Here, the crystal structure of a relatively protease-resistant N-terminal fragment of human Cwc27 containing the PPIase domain was determined at 2.0 Å resolution. The fragment exhibits a C-terminal appendix and resides in a reduced state compared with the previous oxidized structure of a similar fragment. By combining multiple sequence alignments spanning the eukaryotic tree of life and secondary-structure prediction, Cwc27 proteins across the entire eukaryotic kingdom were identified. This analysis revealed the specific loss of a crucial active-site residue in higher eukaryotic Cwc27 proteins, suggesting that the protein evolved from a prolyl isomerase to a pure proline binder. Noting a fungus-specific insertion in the PPIase domain, the 1.3 Å resolution crystal structure of the PPIase domain of Cwc27 from Chaetomium thermophilum was also determined. Although structurally highly similar in the core domain, the C. thermophilum protein displayed a higher thermal stability than its human counterpart, presumably owing to the combined effect of several amino-acid exchanges that reduce the number of long side chains with strained conformations and create new intramolecular interactions, in particular increased hydrogen-bond networks.
Collapse
Affiliation(s)
- Alexander Ulrich
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
3
|
Liang JJ, Zhang ML, Ding M, Mai ZM, Wu SX, Du Y, Feng JX. Alcohol dehydrogenases from Kluyveromyces marxianus: heterologous expression in Escherichia coli and biochemical characterization. BMC Biotechnol 2014; 14:45. [PMID: 24885162 PMCID: PMC4062290 DOI: 10.1186/1472-6750-14-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background Kluyveromyces marxianus has recently become a species of interest for ethanol production since it can produce ethanol at high temperature and on a wide variety of substrates. However, the reason why this yeast can produce ethanol at high temperature is largely unknown. Results The ethanol fermentation capability of K. marxianus GX-UN120 at 40°С was found to be the same as that of Saccharomyces cerevisiae at 34°С. Zymogram analysis showed that alcohol dehydrogenase 1 (KmAdh1) was largely induced during ethanol production, KmAdh4 was constitutively expressed at a lower level and KmAdh2 and KmAdh3 were almost undetectable. The genes encoding the four alcohol dehydrogenases (ADHs) were cloned from strain GX-UN120. Each KmADH was expressed in Escherichia coli and each recombinant protein was digested with enterokinase to remove the fusion protein. The optimum pH of the purified recombinant KmAdh1 was 8.0 and that of KmAdh2, KmAdh3 and KmAdh4 was 7.0. The optimum temperatures of KmAdh1, KmAdh2, KmAdh3 and KmAdh4 were 50, 45, 55 and 45°C, respectively. The Km values of the recombinant KmAdh1 and KmAdh2 were 4.0 and 1.2 mM for acetaldehyde and 39.7 and 49.5 mM for ethanol, respectively. The Vmax values of the recombinant KmAdh1 and KmAdh2 were 114.9 and 21.6 μmol min-1 mg-1 for acetaldehyde and 57.5 and 1.8 μmol min-1 mg-1 for ethanol, respectively. KmAdh3 and KmAdh4 catalyze the oxidation reaction of ethanol to acetaldehyde but not the reduction reaction of acetaldehyde to ethanol, and the Km values of the recombinant KmAdh3 and KmAdh4 were 26.0 and 17.0 mM for ethanol, respectively. The Vmax values of the recombinant KmAdh3 and KmAdh4 were 12.8 and 56.2 μmol min-1 mg-1 for ethanol, respectively. Conclusion These data in this study collectively indicate that KmAdh1 is the primary ADH responsible for the production of ethanol from the reduction of acetaldehyde in K. marxianus. The relatively high optimum temperature of KmAdh1 may partially explain the ability of K. marxianus to produce ethanol at high temperature. Understanding the biochemical characteristics of KmAdhs will enhance our fundamental knowledge of the metabolism of ethanol fermentation in K. marxianus.
Collapse
Affiliation(s)
- Jing-juan Liang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P, R, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
de Smidt O, du Preez JC, Albertyn J. The alcohol dehydrogenases ofSaccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 2008; 8:967-78. [DOI: 10.1111/j.1567-1364.2008.00387.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 2008; 79:339-54. [PMID: 18427804 DOI: 10.1007/s00253-008-1458-6] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 11/26/2022]
Abstract
Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes (beta-galactosidase, beta-glucosidase, inulinase, and polygalacturonases, among others), of single-cell protein, of aroma compounds, and of ethanol (including high-temperature and simultaneous saccharification-fermentation processes); reduction of lactose content in food products; production of bioingredients from cheese-whey; bioremediation; as an anticholesterolemic agent; and as a host for heterologous protein production. Compared to its congener and model organism, Kluyveromyces lactis, the accumulated knowledge on K. marxianus is much smaller and spread over a number of different strains. Although there is no publicly available genome sequence for this species, 20% of the CBS 712 strain genome was randomly sequenced (Llorente et al. in FEBS Lett 487:71-75, 2000). In spite of these facts, K. marxianus can envisage a great biotechnological future because of some of its qualities, such as a broad substrate spectrum, thermotolerance, high growth rates, and less tendency to ferment when exposed to sugar excess, when compared to K. lactis. To increase our knowledge on the biology of this species and to enable the potential applications to be converted into industrial practice, a more systematic approach, including the careful choice of (a) reference strain(s) by the scientific community, would certainly be of great value.
Collapse
|
6
|
Peinado RA, Moreno JJ, Maestre O, Ortega JM, Medina M, Mauricio JC. Gluconic acid consumption in wines by Schizosaccharomyces pombe and its effect on the concentrations of major volatile compounds and polyols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:493-497. [PMID: 14759138 DOI: 10.1021/jf035030a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Schizosaccharomyces pombe 1379 (ATCC 26760) yeast strain in wine substantially increases acetaldehyde and 1,1-diethoxyethane concentrations and to decreases levo-2,3-butanediol, glycerol, acetoin, and gluconic acid concentrations. In this study, S. pombe has been used for the first time to reduce gluconic acid in wine under aerobic conditions. Only acetaldehyde and acetoin exhibited significantly higher levels in the wines containing gluconic acid. The high in vitro specific activity of alcohol dehydrogenase observed may be directly related to the high production of acetaldehyde by the studied fission yeast.
Collapse
Affiliation(s)
- Rafael A Peinado
- Departamento Química Agrícola y Edafología, Edificio C-3, Edificio C-6, Universidad de Córdoba, Campus Universitario Rabanales, 14014 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Corpillo D, Valetti F, Giuffrida MG, Conti A, Rossi A, Finazzi-Agrò A, Giunta C. Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus. Yeast 2003; 20:369-79. [PMID: 12673620 DOI: 10.1002/yea.969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An amine oxidase from the yeast Kluyveromyces marxianus was induced, purified and completely characterized; it was shown to belong to the class of copper-containing amine oxidases (E.C. 1.4.3.6). The enzyme was induced by putrescine and, very strongly, by copper(II); structural-functional characterization of the enzyme was performed, including determination of molecular weight, glycosylation, copper and TPQ content, isoelectric point, K(M) and k(CAT) (with benzylamine as substrate), pH, temperature and ionic strength effect on catalysis, substrate and inhibitor specificity. A 700 bp clone was isolated containing the cDNA that encodes for the C-terminus of the enzyme; the amino acid sequence deduced (the first available for a benzylamine oxidase from yeast) was compared to that of other copper amine oxidases from microorganisms and higher organisms. From the results obtained, the putrescine/benzylamine oxidase from Kluyveromyces marxianus was found to have a good homology with other enzymes of this class from microorganisms, and particularly with AO I from Aspergillus niger. Nonetheless, some features resulted closer to those of animal amine oxidases and histaminases. Some potential biotechnological applications are proposed. The cDNA Accession No. is AJ320485.
Collapse
Affiliation(s)
- Davide Corpillo
- LIMA, BioIndustry Park del Canavese, Colleretto Giacosa, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Wong S, Butler G, Wolfe KH. Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc Natl Acad Sci U S A 2002; 99:9272-7. [PMID: 12093907 PMCID: PMC123130 DOI: 10.1073/pnas.142101099] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The wealth of comparative genomics data from yeast species allows the molecular evolution of these eukaryotes to be studied in great detail. We used "proximity plots" to visually compare chromosomal gene order information from 14 hemiascomycetes, including the recent Génolevures survey, to Saccharomyces cerevisiae. Contrary to the original reports, we find that the Génolevures data strongly support the hypothesis that S. cerevisiae is a degenerate polyploid. Using gene order information alone, 70% of the S. cerevisiae genome can be mapped into "sister" regions that tile together with almost no overlap. This map confirms and extends the map of sister regions that we constructed previously by using duplicated genes, an independent source of information. Combining gene order and gene duplication data assigns essentially the whole genome into sister regions, the largest gap being only 36 genes long. The 16 centromere regions of S. cerevisiae form eight pairs, indicating that an ancestor with eight chromosomes underwent complete doubling; alternatives such as segmental duplications can be ruled out. Gene arrangements in Kluyveromyces lactis and four other species agree quantitatively with what would be expected if they diverged from S. cerevisiae before its polyploidization. In contrast, Saccharomyces exiguus, Saccharomyces servazzii, and Candida glabrata show higher levels of gene adjacency conservation, and more cases of imperfect conservation, suggesting that they split from the S. cerevisiae lineage after polyploidization. This finding is confirmed by sequences around the C. glabrata TRP1 and IPP1 loci, which show that it contains sister regions derived from the same duplication event as that of S. cerevisiae.
Collapse
Affiliation(s)
- Simon Wong
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
9
|
|
10
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447194 DOI: 10.1002/cfg.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
11
|
Seoighe C, Federspiel N, Jones T, Hansen N, Bivolarovic V, Surzycki R, Tamse R, Komp C, Huizar L, Davis RW, Scherer S, Tait E, Shaw DJ, Harris D, Murphy L, Oliver K, Taylor K, Rajandream MA, Barrell BG, Wolfe KH. Prevalence of small inversions in yeast gene order evolution. Proc Natl Acad Sci U S A 2000; 97:14433-7. [PMID: 11087826 PMCID: PMC18936 DOI: 10.1073/pnas.240462997] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene order evolution in two eukaryotes was studied by comparing the Saccharomyces cerevisiae genome sequence to extensive new data from whole-genome shotgun and cosmid sequencing of Candida albicans. Gene order is substantially different between these two yeasts, with only 9% of gene pairs that are adjacent in one species being conserved as adjacent in the other. Inversion of small segments of DNA, less than 10 genes long, has been a major cause of rearrangement, which means that even where a pair of genes has been conserved as adjacent, the transcriptional orientations of the two genes relative to one another are often different. We estimate that about 1,100 single-gene inversions have occurred since the divergence between these species. Other genes that are adjacent in one species are in the same neighborhood in the other, but their precise arrangement has been disrupted, probably by multiple successive multigene inversions. We estimate that gene adjacencies have been broken as frequently by local rearrangements as by chromosomal translocations or long-distance transpositions. A bias toward small inversions has been suggested by other studies on animals and plants and may be general among eukaryotes.
Collapse
Affiliation(s)
- C Seoighe
- Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland; Stanford DNA Sequencing and Technology Center, 855 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|