1
|
Gunjkar S, Gupta U, Nair R, Paul P, Aalhate M, Mahajan S, Maji I, Chourasia MK, Guru SK, Singh PK. The Neoteric Paradigm of Biomolecule-Functionalized Albumin-Based Targeted Cancer Therapeutics. AAPS PharmSciTech 2024; 25:265. [PMID: 39500822 DOI: 10.1208/s12249-024-02977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Albumin is a nature-derived, versatile protein carrier, that has been explored extensively by researchers for anticancer drug delivery due to its role in enhancing drug stability, solubility, circulation time, targeting capabilities, and overall therapeutic efficacy. Albumin nanoparticles possess inherent biocompatibility, biodegradability, and passive tumor-targeting ability due to the enhanced permeability and retention effect. However, non-specific accumulation of cytotoxic agents in healthy tissues remains a challenge. In this paper, the functionalization of albumin nanoparticles using various biomolecules including antibodies, nucleic acids, proteins and peptides, vitamins, chondroitin sulfate, hyaluronic acid, and lactobionic acid have been discussed which enables specific recognition and binding to cancer cells. Furthermore, we highlight the supremacy of such a targeted approach in tumor-specific drug delivery, minimization of off-target effects, potential improvement in therapeutic efficacy, cellular internalization, reduced side effects, and better clinical outcomes. This review centers on how they have revolutionized the field of biomedical research and tuned into an excellent targeted approach. In conclusion, this review highlights in detail the role of albumin as a nanocarrier for tumor-targeted delivery using biomolecules as ligands.
Collapse
Affiliation(s)
- Swati Gunjkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Brukman NG, Valansi C, Podbilewicz B. Sperm induction of somatic cell-cell fusion as a novel functional test. eLife 2024; 13:e94228. [PMID: 38265078 PMCID: PMC10883674 DOI: 10.7554/elife.94228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Clari Valansi
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | | |
Collapse
|
3
|
Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, Dey A. Ligand-based active targeting strategies for cancer theranostics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3417-3441. [PMID: 37466702 DOI: 10.1007/s00210-023-02612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Synudeen Sahib
- S.S. Cottage, Njarackal,, P.O.: Perinad, Kollam, 691601, Kerala, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053, Ulrika, Sweden
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
4
|
Vichare R, Crelli C, Liu L, McCallin R, Cowan A, Stratimirovic S, Herneisey M, Pollock JA, Janjic JM. Folate-conjugated near-infrared fluorescent perfluorocarbon nanoemulsions as theranostics for activated macrophage COX-2 inhibition. Sci Rep 2023; 13:15229. [PMID: 37709807 PMCID: PMC10502124 DOI: 10.1038/s41598-023-41959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.
Collapse
Affiliation(s)
- Riddhi Vichare
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Caitlin Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Rebecca McCallin
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Abree Cowan
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Stefan Stratimirovic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
5
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
6
|
Maniates KA, Singson A. Where are all the egg genes? Front Cell Dev Biol 2023; 11:1107312. [PMID: 36819103 PMCID: PMC9936096 DOI: 10.3389/fcell.2023.1107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Complementary forward and reverse genetic approaches in several model systems have resulted in a recent burst of fertilization gene discovery. The number of genetically validated gamete surface molecules have more than doubled in the last few years. All the genetically validated sperm fertilization genes encode transmembrane or secreted molecules. Curiously, the discovery of genes that encode oocyte molecules have fallen behind that of sperm genes. This review discusses potential experimental biases and inherent biological reasons that could slow egg fertilization gene discovery. Finally, we shed light on current strategies to identify genes that may result in further identification of egg fertilization genes.
Collapse
Affiliation(s)
- Katherine A. Maniates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | | |
Collapse
|
7
|
Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, Nemunaitis J. Folate Receptor as a Biomarker and Therapeutic Target in Solid Tumors. Curr Probl Cancer 2023; 47:100917. [PMID: 36508886 DOI: 10.1016/j.currproblcancer.2022.100917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Folate is a B vitamin necessary for basic biological functions, including rapid cell turnover occurring in cancer cell proliferation. Though the role of folate as a causative versus protective agent in carcinogenesis is debated, several studies have indicated that the folate receptor (FR), notably subtype folate receptor alpha (FRα), could be a viable biomarker for diagnosis, progression, and prognosis. Several cancers, including gastrointestinal, gynecological, breast, lung, and squamous cell head and neck cancers overexpress FR and are currently under investigation to correlate receptor status to disease state. Traditional chemotherapies have included antifolate medications, such as methotrexate and pemetrexed, which generate anticancer activity during the synthesis phase of the cell cycle. Increasingly, the repertoire of pharmacotherapies is expanding to include FR as a target, with a heterogenous pool of directed therapies. Here we discuss the FR, expression and effect in cancer biology, and relevant pharmacologic inhibitors.
Collapse
Affiliation(s)
- Olivia Young
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nealie Ngo
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
8
|
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022; 29:1959-1970. [PMID: 35762636 PMCID: PMC9246174 DOI: 10.1080/10717544.2022.2089296] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.
Collapse
Affiliation(s)
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hye-Mi Noh
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
9
|
Steinz MM, Ezdoglian A, Khodadust F, Molthoff CFM, Srinivasarao M, Low PS, Zwezerijnen GJC, Yaqub M, Beaino W, Windhorst AD, Tas SW, Jansen G, van der Laken CJ. Folate Receptor Beta for Macrophage Imaging in Rheumatoid Arthritis. Front Immunol 2022; 13:819163. [PMID: 35185910 PMCID: PMC8849105 DOI: 10.3389/fimmu.2022.819163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor β (FRβ), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRβ, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA.
Collapse
Affiliation(s)
- Maarten M Steinz
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Aiarpi Ezdoglian
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Carla F M Molthoff
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Gerben J C Zwezerijnen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, AMC, Amsterdam, Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| |
Collapse
|
10
|
Rivera AM, Swanson WJ. The Importance of Gene Duplication and Domain Repeat Expansion for the Function and Evolution of Fertilization Proteins. Front Cell Dev Biol 2022; 10:827454. [PMID: 35155436 PMCID: PMC8830517 DOI: 10.3389/fcell.2022.827454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The process of gene duplication followed by gene loss or evolution of new functions has been studied extensively, yet the role gene duplication plays in the function and evolution of fertilization proteins is underappreciated. Gene duplication is observed in many fertilization protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating fertilization are part of larger gene families expressed in a variety of tissues, but gene duplication followed by structural modifications has often facilitated their cooption into a fertilization function. Repeat expansions of functional domains within a gene also provide opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat expansions are linked to species-specificity in fertilization and TFP proteins that experienced domain duplications were coopted into a novel sperm function. This review outlines the importance of gene duplications and repeat domain expansions in the evolution of fertilization proteins.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
11
|
Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J Pers Med 2021; 11:jpm11080710. [PMID: 34442354 PMCID: PMC8398778 DOI: 10.3390/jpm11080710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb’s association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.
Collapse
|
12
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
13
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
14
|
Halik PK, Koźmiński P, Gniazdowska E. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Mol Pharm 2020; 18:33-43. [PMID: 33251808 PMCID: PMC7788572 DOI: 10.1021/acs.molpharmaceut.0c00740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methotrexate is a gold standard among
disease modifying antirheumatic
drugs and is also extensively used clinically in combination with
oncological therapies. Thus, it is not surprising that nuclear medicine
found an interest in methotrexate in the search for diagnostic and
therapeutic solutions. Numerous folate-related radiopharmaceuticals
have been proposed for nuclear medicine purposes; however, methotrexate
radioagents represent only a minority. This imbalance results from
the fact that methotrexate has significantly weaker affinity for folate
receptors than folic acid. Nevertheless, radiolabeled methotrexate
agents utilized as a tool for early detection and imaging of inflammation
in rheumatoid arthritis patients gave promising results. Similarly,
the use of multimodal MTX-release nanosystems may find potential applications
in radiosynovectomy and theranostic approaches in folate receptor
positive cancers.
Collapse
Affiliation(s)
- Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Przemysław Koźmiński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
15
|
Seelan RS, Mukhopadhyay P, Philipose J, Greene RM, Pisano MM. Gestational folate deficiency alters embryonic gene expression and cell function. Differentiation 2020; 117:1-15. [PMID: 33302058 DOI: 10.1016/j.diff.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Folic acid is a nutrient essential for embryonic development. Folate deficiency can cause embryonic lethality or neural tube defects and orofacial anomalies. Folate receptor 1 (Folr1) is a folate binding protein that facilitates the cellular uptake of dietary folate. To better understand the biological processes affected by folate deficiency, gene expression profiles of gestational day 9.5 (gd9.5) Folr1-/- embryos were compared to those of gd9.5 Folr1+/+ embryos. The expression of 837 genes/ESTs was found to be differentially altered in Folr1-/- embryos, relative to those observed in wild-type embryos. The 837 differentially expressed genes were subjected to Ingenuity Pathway Analysis. Among the major biological functions affected in Folr1-/- mice were those related to 'digestive system development/function', 'cardiovascular system development/function', 'tissue development', 'cellular development', and 'cell growth and differentiation', while the major canonical pathways affected were those associated with blood coagulation, embryonic stem cell transcription and cardiomyocyte differentiation (via BMP receptors). Cellular proliferation, apoptosis and migration were all significantly affected in the Folr1-/- embryos. Cranial neural crest cells (NCCs) and neural tube explants, grown under folate-deficient conditions, exhibited marked reduction in directed migration that can be attributed, in part, to an altered cytoskeleton caused by perturbations in F-actin formation and/or assembly. The present study revealed that several developmentally relevant biological processes were compromised in Folr1-/- embryos.
Collapse
Affiliation(s)
- R S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - P Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - J Philipose
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - R M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA.
| | - M M Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| |
Collapse
|
16
|
Didion CA, Henne WA. A Bibliometric analysis of folate receptor research. BMC Cancer 2020; 20:1109. [PMID: 33198687 PMCID: PMC7667792 DOI: 10.1186/s12885-020-07607-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The objective of this study was to conduct a bibliometric analysis of the entire field of folate receptor research. Folate receptor is expressed on a wide variety of cancers and certain immune cells. METHODS A Web of Science search was performed on folate receptor or folate binding protein (1969-to June 28, 2019). The following information was examined: publications per year, overall citations, top 10 authors, top 10 institutions, top 10 cited articles, top 10 countries, co-author collaborations and key areas of research. RESULTS In total, 3248 documents for folate receptor or folate binding protein were retrieved for the study years outlined in the methods section search query. The range was 1 per year in 1969 to 264 for the last full year studied (2018). A total of 123,720 citations for the 3248 documents retrieved represented a mean citation rate per article of 38.09 and range of 1667 citations (range 0 to 1667). Researchers in 71 countries authored publications analyzed in this study. The US was the leader in publications and had the highest ranking institution. The top 10 articles have been cited 7270 times during the time frame of this study. The top cited article had an average citation rate of 110 citations per year. Network maps revealed considerable co-authorship among several of the top 10 authors. CONCLUSION Our study presents several important insights into the features and impact of folate receptor research. To our knowledge, this is the first bibliometric analysis of folate receptor.
Collapse
Affiliation(s)
- Cari A Didion
- Governors State University, 1 University Parkway, University Park, IL, 60484, USA.
| | - Walter A Henne
- Governors State University, 1 University Parkway, University Park, IL, 60484, USA
| |
Collapse
|
17
|
Boss SD, Ametamey SM. Development of Folate Receptor-Targeted PET Radiopharmaceuticals for Tumor Imaging-A Bench-to-Bedside Journey. Cancers (Basel) 2020; 12:cancers12061508. [PMID: 32527010 PMCID: PMC7352234 DOI: 10.3390/cancers12061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023] Open
Abstract
The folate receptor-α (FR-α) is overexpressed in many epithelial cancers, including ovary, uterus, kidneys, breast, lung, colon and prostate carcinomas, but shows limited expression in normal tissues such as kidneys, salivary glands, choroid plexus and placenta. FR-α has therefore emerged as a promising target for the delivery of therapeutic and imaging agents to FR-positive tumors. A series of folate-based PET (positron emission tomography) radiopharmaceuticals have been developed for the selective targeting of FR-positive malignancies. This review provides an overview on the research progress made so far regarding the design, radiosynthesis and the utility of the folate-derived PET radioconjugates for targeting FR-positive tumors. For the most part, results from folate radioconjugates labeled with fluorine-18 (t1/2 = 109.8 min) and gallium-68 (t1/2 = 67.7 min) have been presented but folates labeled with "exotic" and new PET radionuclides such as copper-64 (t1/2 = 12.7 h), terbium-152 (t1/2 = 17.5 h), scandium-44 (t1/2 = 3.97 h), cobalt-55 (t1/2 = 17.5 h) and zirconium-89 (t1/2 = 78.4 h) are also discussed. For tumor imaging, none of the reported PET radiolabeled folates reported to date has made the complete bench-to-bedside journey except [18F]AzaFol, which made it to patients with metastatic ovarian and lung cancers in a multicenter first-in-human trial. In the near future, however, we expect more clinical trials with folate-based PET radiopharmaceuticals given the increasing clinical interest in imaging and the treatment of FR-related malignancies.
Collapse
Affiliation(s)
- Silvan D. Boss
- SWAN Isotopen AG, University Hospital Bern, 3010 Bern, Switzerland;
| | - Simon Mensah Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Tie Y, Zheng H, He Z, Yang J, Shao B, Liu L, Luo M, Yuan X, Liu Y, Zhang X, Li H, Wu M, Wei X. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther 2020; 5:6. [PMID: 32296026 PMCID: PMC6976681 DOI: 10.1038/s41392-020-0115-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) facilitate cancer progression by promoting tumor invasion, angiogenesis, metastasis, inflammatory responses, and immunosuppression. Folate receptor β (FRβ) is overexpressed in TAMs. However, the clinical significance of FRβ-positive macrophages in lung cancer remains poorly understood. In this study, we verified that FRβ overexpression in lung cancer TAMs was associated with poor prognosis. We utilized a folate-modified lipoplex comprising a folate-modified liposome (F-PLP) delivering a BIM-S plasmid to target both lung cancer cells and FRβ-positive macrophages in the tumor microenvironment. Transfection of LL/2 cells and MH-S cells with F-PLP/pBIM induced cell apoptosis. Injection of F-PLP/pBIM into LL/2 and A549 lung cancer models significantly depleted FRβ-positive macrophages and reduced tumor growth. Treatment of tumor-bearing mice with F-PLP/pBIM significantly inhibited tumor growth in vivo by inducing tumor cell and macrophage apoptosis, reducing tumor proliferation, and inhibiting tumor angiogenesis. In addition, a preliminary safety evaluation demonstrated a good safety profile of F-PLP/pBIM as a gene therapy administered intravenously. This work describes a novel application of lipoplexes in lung cancer targeted therapy that influences the tumor microenvironment by targeting TAMs.
Collapse
Affiliation(s)
- Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, PR China
| | - Heng Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhiyao He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Li Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hongyi Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
19
|
Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics 2019; 11:E381. [PMID: 31382369 PMCID: PMC6722551 DOI: 10.3390/pharmaceutics11080381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
The folate receptor (FR) is a tumor-associated antigen that can bind with folic acid (FA) and its conjugates with high affinity and ingests the bound molecules inside the cell via the endocytic mechanism. A wide variety of payloads can be delivered to FR-overexpressed cells using folate as the ligand, ranging from small drug molecules to large DNA-containing macromolecules. A broad range of folate attached liposomes have been proven to be highly effective as the targeted delivery system. For the rational design of folate-targeted liposomes, an intense conceptual understanding combining chemical and biomedical points of view is necessary because of the interdisciplinary nature of the field. The fabrication of the folate-conjugated liposomes basically involves the attachment of FA with phospholipids, cholesterol or peptides before liposomal formulation. The present review aims to provide detailed information about the design and fabrication of folate-conjugated liposomes using FA attached uncleavable/cleavable phospholipids, cholesterol or peptides. Advances in the area of folate-targeted liposomes and their biomedical applications have also been discussed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
20
|
Folic acid deficiency and vision: a review. Graefes Arch Clin Exp Ophthalmol 2019; 257:1573-1580. [PMID: 30919078 DOI: 10.1007/s00417-019-04304-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 03/20/2019] [Indexed: 02/03/2023] Open
Abstract
Folic acid (FA), also termed folate, is an essential vitamin for health at all ages since it participates in the biosynthesis of nucleotides, amino acids, neurotransmitters, and certain vitamins. It is therefore crucial for rapidly growing tissues such as those of the fetus. It is becoming clear that FA deficiency and impaired folate pathways are implicated in many diseases of both early life and old age. FA can be transported into the cell by the folate receptor, the reduced folate transporter, and proton-coupled folate transporter. Folate transport proteins are present in certain eye tissues, which explains why FA plays an important role in eye development. The purpose of this literature review is to investigate the evidence relating FA deficiency to eye diseases.
Collapse
|
21
|
Liang Z, Yang Y, Jia F, Sai K, Ullah S, Fidelis C, Lin Z, Li F. Intrathecal Delivery of Folate Conjugated near-Infrared Quantum Dots for Targeted in Vivo Imaging of Gliomas in Mice Brains. ACS APPLIED BIO MATERIALS 2019; 2:1432-1439. [DOI: 10.1021/acsabm.8b00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yaqi Yang
- Department of Anatomy and Neurobiology, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | | | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | | | | | | | | |
Collapse
|
22
|
García EV, Oliva ME, LeBlanc JG, Barrera AD. Epi-nutrients in the oviductal environment: Folate levels and differential gene expression of its receptors and transporters in the bovine oviduct. Theriogenology 2018; 119:189-197. [PMID: 30025295 DOI: 10.1016/j.theriogenology.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Recent studies have demonstrated that the oviductal environment plays an active role in modulating the epigenetic marks of the preimplantation embryo genome, but the molecular factors that mediate this epigenetic effect are unknown. Folate is a well-known epi-nutrient that can impact on cell epigenetic machinery during embryonic and fetal development. However, the study of this epi-nutrient in the oviduct is still limited. The present study was conducted to confirm the presence and physiological concentration of folate in bovine oviductal fluid (OF) and to determine if bovine oviduct epithelial cells (BOECs) are able to regulate the uptake of this micronutrient. Samples of OF from ipsi- and contralateral oviducts were collected at different stages of the estrous cycle and folate levels were determined using a competitive receptor binding immunoassay. In addition, gene expression of folate receptors (FOLR1, FOLR2) and transporters (SLC19A1, SLC46A1) were analyzed in BOECs from ampulla and isthmus regions during different stages of the estrous cycle using RT-qPCR. In vitro culture assays were also performed to evaluate whether expression of these genes responds to hormonal stimulation. Our results demonstrated presence of folate in the OF, showing changes of its concentration in the ipsilateral oviduct during the estrous cycle and significantly lower levels at the postovulatory stage. Moreover, gene expression of folate receptors and transporters was detected in BOECs, showing regional and cycle-dependent changes. In particular, differential expression of FOLR1 mRNA was observed in BOECs from the isthmus region, reaching significantly higher levels during the postovulatory stage. Under in vitro culture conditions, gene expression of folate receptors and transporters was maintained in BOEC explants and a particular susceptibility to steroid hormone stimulation was observed. In conclusion, the present study confirms the presence of folate in the bovine oviduct and proves the existence of a fine-tuned regulation of the expression of its receptors and transporters, highlighting the importance to expand the knowledge about this epi-nutrient in the oviductal context.
Collapse
Affiliation(s)
- Elina V García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María E Oliva
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Antonio D Barrera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
23
|
Silvola JMU, Li XG, Virta J, Marjamäki P, Liljenbäck H, Hytönen JP, Tarkia M, Saunavaara V, Hurme S, Palani S, Hakovirta H, Ylä-Herttuala S, Saukko P, Chen Q, Low PS, Knuuti J, Saraste A, Roivainen A. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci Rep 2018; 8:9720. [PMID: 29946129 PMCID: PMC6018703 DOI: 10.1038/s41598-018-27618-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/07/2018] [Indexed: 11/09/2022] Open
Abstract
Inflammation plays an important role in the development of atherosclerosis and its complications. Because the folate receptor β (FR-β) is selectively expressed on macrophages, an FR targeted imaging agent could be useful for assessment of atherosclerotic inflammation. We investigated aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate (18F-FOL) for the detection of atherosclerotic plaque inflammation. We studied atherosclerotic plaques in mice, rabbits, and human tissue samples using 18F-FOL positron emission tomography/computed tomography (PET/CT). Compound 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) was used as a comparison. Firstly, we found that the in vitro binding of 18F-FOL co-localized with FR-β-positive macrophages in carotid endarterectomy samples from patients with recent ischemic symptoms. We then demonstrated specific accumulation of intravenously administered 18F-FOL in atherosclerotic plaques in mice and rabbits using PET/CT. We noticed that the 18F-FOL uptake correlated with the density of macrophages in plaques and provided a target-to-background ratio as high as 18F-FDG, but with considerably lower myocardial uptake. Thus, 18F-FOL PET/CT targeting of FR-β-positive macrophages presents a promising new tool for the in vivo imaging of atherosclerotic inflammation.
Collapse
Affiliation(s)
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jarkko P Hytönen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Miikka Tarkia
- Turku PET Centre, University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku, Turku, Finland
| | | | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Qingshou Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland.,Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland. .,Turku Center for Disease Modeling, University of Turku, Turku, Finland. .,Turku PET Centre, Turku University Hospital, Turku, Finland.
| |
Collapse
|
24
|
Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2017; 129:237-250. [PMID: 29175113 DOI: 10.1016/j.phrs.2017.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are substances used to enhance the efficacy of vaccines. They influence the magnitude and alter the quality of the adaptive immune response to vaccine antigens by amplifying or modulating different signals involved in the innate immune response. The majority of known adjuvants have been empirically identified. The limited immunogenicity of new vaccine antigens and the need for safer vaccines have increased the importance of identifying single, well-defined adjuvants with known cellular and molecular mechanisms for rational vaccine design. Depletion or functional inhibition of CD4+CD25+FoxP3+ regulatory T cells (Tregs) by molecular adjuvants has become an emergent approach in this field. Different successful results have been obtained for specific vaccines, but there are still unresolved issues such as the risk of autoimmune disease induction, the involvement of cells other than Tregs and optimization for different conditions. This work provides a comprehensive analysis of current approaches to inhibit Tregs with molecular adjuvants for vaccine improvement, highlights the progress being made, and describes ongoing challenges.
Collapse
|
25
|
Strandgaard T, Foder S, Heuck A, Ernst E, Nielsen MS, Lykke-Hartmann K. Maternally Contributed Folate Receptor 1 Is Expressed in Ovarian Follicles and Contributes to Preimplantation Development. Front Cell Dev Biol 2017; 5:89. [PMID: 29034232 PMCID: PMC5625018 DOI: 10.3389/fcell.2017.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1.
Collapse
Affiliation(s)
| | - Solveig Foder
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erik Ernst
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Yi YS. Folate Receptor-Targeted Diagnostics and Therapeutics for Inflammatory Diseases. Immune Netw 2016; 16:337-343. [PMID: 28035209 PMCID: PMC5195843 DOI: 10.4110/in.2016.16.6.337] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023] Open
Abstract
Inflammation, an innate immune response mediated by macrophages, forms the first line of defence to protect our body from the invasion of various pathogens. Although inflammation is a defensive response, chronic inflammation has been regarded as the major cause of many types of human diseases such as inflammatory/autoimmune diseases, cancers, neurological diseases, and cardiovascular diseases. Folate receptor (FR) is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein, and its three isoforms, FR-α, FR-β, and FR-γ, are found in humans. Interestingly, FRs are highly expressed on a variety of cells, including cancer cells and activated macrophages, whereas their expression on normal cells is undetectable, indicating that FR-targeting could be a good selective strategy for the diagnosis and therapeutic treatment of cancers and activated macrophage-mediated inflammatory diseases. Previous studies successfully showed FR-targeted imaging of many types of cancers in animal models as well as human patients. Recently, a number of emerging studies have found that activated macrophages, which are critical players for a variety of inflammatory diseases, highly express FRs, and selective targeting of these FR-positive activated macrophages is a good approach to diagnose and treat inflammatory diseases. In this review, we describe the characteristics and structure of FRs, and further discuss FR-targeted diagnostics and therapeutics of human diseases, in particular, activated macrophage-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| |
Collapse
|
27
|
Abstract
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| |
Collapse
|
28
|
Machacek C, Supper V, Leksa V, Mitulovic G, Spittler A, Drbal K, Suchanek M, Ohradanova-Repic A, Stockinger H. Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen. THE JOURNAL OF IMMUNOLOGY 2016; 197:2229-38. [PMID: 27534550 DOI: 10.4049/jimmunol.1501878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRβ in the plasma membrane of human FRβ(+) macrophages and FRβ-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRβ: that is, we report functional interactions of FRβ with receptors mediating cellular adhesion, in particular the CD11b/CD18 β2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRβ(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRβ(-) counterparts. We further show that FRβ is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRβ as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen.
Collapse
Affiliation(s)
- Christian Machacek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Supper
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Goran Mitulovic
- Department of Clinical Chemistry and Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria; and
| | | | | | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
29
|
Folate-targeted nanoparticles for rheumatoid arthritis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1113-1126. [DOI: 10.1016/j.nano.2015.12.365] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/25/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022]
|
30
|
Grayson P. Izumo1 and Juno: the evolutionary origins and coevolution of essential sperm-egg binding partners. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150296. [PMID: 27019721 PMCID: PMC4807442 DOI: 10.1098/rsos.150296] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/17/2015] [Indexed: 05/29/2023]
Abstract
Reproductive proteins are among the most rapidly evolving classes of proteins. For a subset of these, rapid evolution is driven by positive Darwinian selection despite vital, well-conserved, reproductive functions. Izumo1 is the only essential sperm-egg fusion protein currently known on mammalian sperm, and its egg receptor (Juno; formerly Folr4) was recently discovered. Male knockout mice for Izumo1 and female knockout mice for Juno are both healthy but sterile. Here, both sperm-egg binding proteins are shown to be evolving under positive selection. Within mammals, coevolution of Izumo1 and Juno is also uncovered, suggesting that similar forces have shaped the evolutionary histories of these binding partners within Mammalia. Additionally, genomic analyses reveal an ancient origin for the Izumo gene family, initially reported as conserved exclusively in mammals. Newly identified Izumo1 orthologues could serve reproductive functions in birds, fish and reptiles. Surprisingly, these same analyses support Juno's presence in mammals alone, suggesting a recent mammalian-specific duplication and neofunctionalization of the ancestral folate receptor. Despite the indispensability of their reproductive interaction, and their apparent coevolution within Mammalia, this binding pair arose through strikingly different evolutionary forces.
Collapse
|
31
|
Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther Adv Med Oncol 2015; 7:206-18. [PMID: 26136852 DOI: 10.1177/1758834015584763] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, limited improvements in overall survival have been noted among many cancer patients with solid tumors, primarily due to development of drug resistance. Accordingly, there is an unmet need for new targeted therapies and treatment approaches for cancer, especially for overcoming resistance. Expression of the folate receptor is upregulated in many tumor types and thus represents an ideal target for cancer treatment. Several folate receptor targeted therapies are in development, including the small molecule drug conjugate vintafolide, the monoclonal antibody farletuzumab, and the antibody-drug conjugate IMGN853. The role of the folate receptor as a target in cancer progression and resistance as well as emerging preclinical and clinical data from studies on those folate receptor targeted agents that are in development with a focus on vintafolide are reviewed. The folate receptor has several unique properties, such as high expression in several tumor types, that make it a rational target for cancer treatment, and allow for selective delivery of folate receptor targeted agents. Early-stage clinical data in lung and ovarian cancer suggest that vintafolide has the potential for combination with other standard approved agents.
Collapse
|
32
|
Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: in vitro and in vivo studies. Sci Rep 2015; 5:11187. [PMID: 26056802 PMCID: PMC4460902 DOI: 10.1038/srep11187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis.
Collapse
|
33
|
Tofzikovskaya Z, Casey A, Howe O, O’Connor C, McNamara M. In vitro evaluation of the cytotoxicity of a folate-modified β-cyclodextrin as a new anti-cancer drug delivery system. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0436-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Marchetti C, Palaia I, Giorgini M, De Medici C, Iadarola R, Vertechy L, Domenici L, Di Donato V, Tomao F, Muzii L, Benedetti Panici P. Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. Onco Targets Ther 2014; 7:1223-36. [PMID: 25031539 PMCID: PMC4096491 DOI: 10.2147/ott.s40947] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related mortality, with the majority of women presenting with advanced disease; although chemotherapeutic advances have improved progression-free survival, conventional treatments offer limited results in terms of long-term responses and survival. Research has recently focused on targeted therapies, which represent a new, promising therapeutic approach, aimed to maximize tumor kill and minimize toxicity. Besides antiangiogenetic agents and poly (ADP-ribose) polymerase inhibitors, the folate, with its membrane-bound receptor, is currently one of the most investigated alternatives. In particular, folate receptor (FR) has been shown to be frequently overexpressed on the surface of almost all epithelial ovarian cancers, making this receptor an excellent tumor-associated antigen. There are two basic strategies to targeting FRs with therapeutic intent: the first is based on anti-FR antibody (ie, farletuzumab) and the second is based on folate–chemotherapy conjugates (ie, vintafolide/etarfolatide). Both strategies have been investigated in Phase III clinical trials. The aim of this review is to analyze the research regarding the activity of these promising anti-FR agents in patients affected by ovarian cancer, including anti-FR antibodies and folate–chemotherapy conjugates.
Collapse
Affiliation(s)
- Claudia Marchetti
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Innocenza Palaia
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Margherita Giorgini
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Caterina De Medici
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Iadarola
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Laura Vertechy
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lavinia Domenici
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Violante Di Donato
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Tomao
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecology, Obstetrics and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
35
|
Benchaala I, Mishra MK, Wykes SM, Hali M, Kannan RM, Whittum-Hudson JA. Folate-functionalized dendrimers for targeting Chlamydia-infected tissues in a mouse model of reactive arthritis. Int J Pharm 2014; 466:258-65. [PMID: 24607214 DOI: 10.1016/j.ijpharm.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis is an intracellular human pathogen that causes a sexually transmitted disease which may result in an inflammatory arthritis designated Chlamydia-induced reactive arthritis (ReA). The arthritis develops after dissemination of infected cells from the initial site of chlamydial infection. During Chlamydia-associated ReA, the organism may enter into a persistent infection state making treatment with antibiotics a challenge. We hypothesize that folate receptors (FR), which are overexpressed in Chlamydia-infected cells, and the associated inflammation would allow folate-targeted nanodevices to better treat infections. To investigate this, we developed a folate-PAMAM dendrimer-Cy5.5 conjugate (D-FA-Cy5.5), where Cy5.5 is used as the near-IR imaging agent. Uptake of D-FA-Cy5.5 upon systemic administration was assessed and compared to non-folate conjugated controls (D-Cy5.5), using a mouse model of Chlamydia-induced ReA, and near-IR imaging. Our results suggested that there was a higher concentration of folate-based nanodevice in sites of infection and inflammation compared to that of the control nanodevice. The folate-conjugated nanodevices localized to infected paws and genital tracts (major sites of inflammation and infection) at 3-4 fold higher concentrations than were dendrimer alone, suggesting that the overexpression of folate receptors in infected and inflamed tissues enables higher dendrimer uptake. There was an increase in uptake into thymus, spleen, and lung, but no significant differences in the uptake of the folate nanodevices in other organs including kidney and heart, indicating the 'relative specificity' of the D-FA-Cy5.5 conjugate nanodevices. These results suggest that folate targeting dendrimers are able to deliver drugs to attenuate infection and associated inflammation in Chlamydia-induced ReA.
Collapse
Affiliation(s)
- Ilyes Benchaala
- Department of Immunology & Microbiology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, United States
| | - Manoj K Mishra
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, MI 48202, United States
| | - Susan M Wykes
- Department of Immunology & Microbiology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, United States
| | - Mirabela Hali
- Department of Immunology & Microbiology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, United States
| | - Rangaramanujam M Kannan
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, MI 48202, United States.
| | - Judith A Whittum-Hudson
- Department of Immunology & Microbiology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, United States.
| |
Collapse
|
36
|
Childress MO, Dhawan D, Leamon CP, Miller MA, Ramos-Vara JA, Naughton JF, Low PS, Knapp DW. Assessment of folate receptor expression and folate uptake in multicentric lymphomas in dogs. Am J Vet Res 2014; 75:187-94. [DOI: 10.2460/ajvr.75.2.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Serpe L, Gallicchio M, Canaparo R, Dosio F. Targeted treatment of folate receptor-positive platinum-resistant ovarian cancer and companion diagnostics, with specific focus on vintafolide and etarfolatide. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:31-42. [PMID: 24516337 PMCID: PMC3917542 DOI: 10.2147/pgpm.s58374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the gynecological malignancies, ovarian cancer is the leading cause of mortality in developed countries. Treatment of ovarian cancer is based on surgery integrated with chemotherapy. Platinum-based drugs (cisplatin and carboplatin) comprise the core of first-line chemotherapy for patients with advanced ovarian cancer. Platinum-resistant ovarian cancer can be treated with cytotoxic chemotherapeutics such as paclitaxel, topotecan, PEGylated liposomal doxorubicin, or gemcitabine, but many patients eventually relapse on treatment. Targeted therapies based on agents specifically directed to overexpressed receptors, or to selected molecular targets, may be the future of clinical treatment. In this regard, overexpression of folate receptor-α on the surface of almost all epithelial ovarian cancers makes this receptor an excellent "tumor-associated antigen". With appropriate use of spacers/linkers, folate-targeted drugs can be distributed within the body, where they preferentially bind to ovarian cancer cells and are released inside their target cells. Here they can exert their desired cytotoxic function. Based on this strategy, 12 years after it was first described, a folate-targeted vinblastine derivative has now reached Phase III clinical trials in ovarian cancer. This review examines the importance of folate targeting, the state of the art of a vinblastine folate-targeted agent (vintafolide) for treating platinum-resistant ovarian cancer, and its diagnostic companion (etarfolatide) as a prognostic agent. Etarfolatide is a valuable noninvasive diagnostic imaging agent with which to select ovarian cancer patient populations that may benefit from this specific targeted therapy.
Collapse
Affiliation(s)
- Loredana Serpe
- Department of Drug Science and Technology, University of Turin, Italy
| | | | - Roberto Canaparo
- Department of Drug Science and Technology, University of Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Italy
| |
Collapse
|
38
|
Chen J, Huang L, Lai H, Lu C, Fang M, Zhang Q, Luo X. Methotrexate-Loaded PEGylated Chitosan Nanoparticles: Synthesis, Characterization, and in Vitro and in Vivo Antitumoral Activity. Mol Pharm 2013; 11:2213-23. [DOI: 10.1021/mp400269z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Chen
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Liuqing Huang
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Huixian Lai
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Chenghao Lu
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Ming Fang
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Qiqing Zhang
- Research
Center of Biomedical Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Xuetao Luo
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
39
|
Iyer SS, Latner DR, Zilliox MJ, McCausland M, Akondy RS, Penaloza-Macmaster P, Hale JS, Ye L, Mohammed AUR, Yamaguchi T, Sakaguchi S, Amara RR, Ahmed R. Identification of novel markers for mouse CD4(+) T follicular helper cells. Eur J Immunol 2013; 43:3219-32. [PMID: 24030473 DOI: 10.1002/eji.201343469] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/29/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022]
Abstract
CD4(+) T follicular helper (TFH) cells are central for generation of long-term B-cell immunity. A defining phenotypic attribute of TFH cells is the expression of the chemokine R CXCR5, and TFH cells are typically identified by co-expression of CXCR5 together with other markers such as PD-1, ICOS, and Bcl-6. Herein, we report high-level expression of the nutrient transporter folate R 4 (FR4) on TFH cells in acute viral infection. Distinct from the expression profile of conventional TFH markers, FR4 was highly expressed by naive CD4(+) T cells, was downregulated after activation and subsequently re-expressed on TFH cells. Furthermore, FR4 expression was maintained, albeit at lower levels, on memory TFH cells. Comparative gene expression profiling of FR4(hi) versus FR4(lo) Ag-specific CD4(+) effector T cells revealed a molecular signature consistent with TFH and TH1 subsets, respectively. Interestingly, genes involved in the purine metabolic pathway, including the ecto-enzyme CD73, were enriched in TFH cells compared with TH1 cells, and phenotypic analysis confirmed expression of CD73 on TFH cells. As there is now considerable interest in developing vaccines that would induce optimal TFH cell responses, the identification of two novel cell surface markers should be useful in characterization and identification of TFH cells following vaccination and infection.
Collapse
Affiliation(s)
- Smita S Iyer
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kularatne SA, Bélanger MJ, Meng X, Connolly BM, Vanko A, Suresch DL, Guenther I, Wang S, Low PS, McQuade P, Trotter DG. Comparative Analysis of Folate Derived PET Imaging Agents with [18F]-2-Fluoro-2-deoxy-d-glucose Using a Rodent Inflammatory Paw Model. Mol Pharm 2013; 10:3103-11. [PMID: 23819524 DOI: 10.1021/mp4001684] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumith A. Kularatne
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Marie-José Bélanger
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Xiangjun Meng
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Brett M. Connolly
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Amy Vanko
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Donna L. Suresch
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Ilonka Guenther
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shubing Wang
- Biometrics Research Department, Merck Research Laboratories, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Paul McQuade
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Dinko González Trotter
- Imaging Department, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
41
|
Müller C. Folate-based radiotracers for PET imaging--update and perspectives. Molecules 2013; 18:5005-31. [PMID: 23629756 PMCID: PMC6269920 DOI: 10.3390/molecules18055005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/13/2013] [Accepted: 04/19/2013] [Indexed: 11/17/2022] Open
Abstract
The folate receptor (FR) is expressed in many tumor types, among those ovarian and lung cancer. Due to the high FR affinity of folic acid, it has been used for targeting of FR-positive tumors, allowing specific delivery of attached probes to the malignant tissue. Therefore, nuclear imaging of FR-positive cancer is of clinical interest for selecting patients who could benefit from innovative therapy concepts based on FR-targeting. Positron emission computed tomography (PET) has become an established technique in clinical routine because it provides an increased spatial resolution and higher sensitivity compared to single photon emission computed tomography (SPECT). Therefore, it is of critical importance to develop folate radiotracers suitable for PET imaging. This review article updates on the design, preparation and pre-clinical investigation of folate derivatives for radiolabeling with radioisotopes for PET. Among those the most relevant radionuclides so far are fluorine-18 (t1/2: 110 min, Eavβ+: 250 keV) and gallium-68 (t1/2: 68 min, Eav β+: 830 keV). Recent results obtained with new PET isotopes such as terbium-152 (t1/2: 17.5 h, Eβ+: 470 keV) or scandium-44 (t1/2: 3.97 h, Eav β+: 632 keV) are also presented and discussed. Current endeavors for clinical implementation of PET agents open new perspectives for identification of FR-positive malignancies in patients.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland.
| |
Collapse
|
42
|
Abstract
The eye is a highly protected organ, and designing an effective therapy is often considered a challenging task. The anatomical and physiological barriers result in low ocular bioavailability of drugs. Due to these constraints, less than 5% of the administered dose is absorbed from the conventional ophthalmic dosage forms. Further, physicochemical properties such as lipophilicity, molecular weight and charge modulate the permeability of drug molecules. Vision-threatening diseases such as glaucoma, diabetic macular edema, cataract, wet and dry age-related macular degeneration, proliferative vitreoretinopathy, uveitis, and cytomegalovirus retinitis alter the pathophysiological and molecular mechanisms. Understanding these mechanisms may result in the development of novel treatment modalities. Recently, transporter/receptor targeted prodrug approach has generated significant interest in ocular drug delivery. These transporters and receptors are involved in the transport of essential nutrients, vitamins, and xenobiotics across biological membranes. Several influx transporters (peptides, amino acids, glucose, lactate and nucleosides/nucleobases) and receptors (folate and biotin) have been identified on conjunctiva, cornea, and retina. Structural and functional delineation of these transporters will enable more drugs targeting the posterior segment to be successfully delivered topically. Prodrug derivatization targeting transporters and receptors expressed on ocular tissues has been the subject of intense research. Several prodrugs have been designed to target these transporters and enhance the absorption of poorly permeating parent drug. Moreover, this approach might be used in gene delivery to modify cellular function and membrane receptors. This review provides comprehensive information on ocular drug delivery, with special emphasis on the use of transporters and receptors to improve drug bioavailability.
Collapse
|
43
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
44
|
|
45
|
Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release 2012; 161:884-92. [DOI: 10.1016/j.jconrel.2012.05.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/20/2012] [Accepted: 05/05/2012] [Indexed: 11/17/2022]
|
46
|
Tian Y, Wu G, Xing JC, Tang J, Zhang Y, Huang ZM, Jia ZC, Zhao R, Tian ZQ, Wang SF, Chen XL, Wang L, Wu YZ, Ni B. A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells. BMC Immunol 2012; 13:30. [PMID: 22694797 PMCID: PMC3724506 DOI: 10.1186/1471-2172-13-30] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are required for proper maintenance of immunological self-tolerance and immune homeostasis. Folate receptor 4 (FR4) is expressed at high levels in transforming growth factor-beta (TGF-β)-induced Tregs and natural Tregs. Moreover, antibody-mediated targeting of FR4 is sufficient to mediate Treg depletion. RESULTS In this study, we describe a novel FR4 transcript variant, FR4D3, in which exon 3 is deleted. The mRNA of FR4D3 encodes a FR4 variant truncated by 189 bp. FR4D3 was found to be predominantly expressed in CD4(+)CD25(+) Treg cells. Overexpression of FR4D3 in CD4(+)CD25(+) Treg cells in vitro stimulated proliferation, which may modulate the ability of these cells to bind and incorporate folic acid. CONCLUSIONS Our results suggested that high levels of FR4D3 may be critical to support the substantial proliferative capacity of Treg cells.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, Peoples Republic China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Thomas TP, Goonewardena SN, Majoros I, Kotlyar A, Cao Z, Leroueil PR, Baker JR. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. ARTHRITIS AND RHEUMATISM 2011; 63:2671-80. [PMID: 21618461 PMCID: PMC3168725 DOI: 10.1002/art.30459] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the uptake of a poly(amidoamine) dendrimer (generation 5 [G5]) nanoparticle covalently conjugated to polyvalent folic acid (FA) as the targeting ligand into macrophages, and to investigate the activity of an FA- and methotrexate (MTX)-conjugated dendrimer (G5-FA-MTX) as a therapeutic for the inflammatory disease of arthritis. METHODS In vitro studies were performed in macrophage cell lines and in isolated mouse macrophages to check the cellular uptake of fluorescence-tagged G5-FA nanoparticles, using flow cytometry and confocal microscopy. In vivo studies were conducted in a rat model of collagen-induced arthritis to evaluate the therapeutic potential of G5-FA-MTX. RESULTS Folate-targeted dendrimer bound and internalized in a receptor-specific manner into both folate receptor β-expressing macrophage cell lines and primary mouse macrophages. The conjugate G5-FA-MTX acted as a potent antiinflammatory agent and reduced arthritis-induced parameters of inflammation such as ankle swelling, paw volume, cartilage damage, bone resorption, and body weight decrease. CONCLUSION The use of folate-targeted nanoparticles to specifically target MTX into macrophages may provide an effective clinical approach for antiinflammatory therapy in rheumatoid arthritis.
Collapse
Affiliation(s)
- Thommey P. Thomas
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - Sascha N. Goonewardena
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - Istvan Majoros
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - Alina Kotlyar
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - Zhengyi Cao
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - Pascale R. Leroueil
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Division of Allergy, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109
| |
Collapse
|
49
|
Jwala J, Boddu SHS, Paturi DK, Shah S, Smith SB, Pal D, Mitra AK. Functional characterization of folate transport proteins in Staten's Seruminstitut rabbit corneal epithelial cell line. Curr Eye Res 2011; 36:404-16. [PMID: 21501073 DOI: 10.3109/02713683.2011.566411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The overall objective of this study was to investigate and characterize the expression of folate transport proteins in Staten's Seruminstitut rabbit corneal (SIRC) epithelial cell line. METHODS [(3)H]Folic acid uptake was studied with respect to time, pH, temperature, sodium, and chloride ion dependency. Inhibition studies were conducted with structural analogs, vitamins, and metabolic inhibitors. [(3)H]Folic acid uptake was also determined with varying concentrations of cold folic acid. Uptake kinetics was studied in the presence of various modulators of intracellular regulatory pathways, protein kinases A and C (PKA and PKC), protein tyrosine kinase (PTK), and calcium-calmodulin modulators. Ex vivo corneal permeability studies were carried out with [(3)H]folic acid in the presence and absence of 1 mM cold folic acid. RESULTS Linear increase in [(3)H]folic acid uptake was observed over 30 min. The process followed saturation kinetics with apparent K(m) of 14.2 ± 0.2 nM, V(max) of (1.5 ± 0.1)*10(-5) micro.moles/min/mg protein, and K(d) of (2.1 ± 0.2)*10(-6) min(-1). The uptake process was found to be dependent on pH, sodium ions, chloride ions, temperature, and energy. Uptake was inhibited in the presence of structural analogs (cold folic acid, methyltetrahydro folate, and methotrexate), but structurally unrelated vitamins did not show any effect. Membrane transport inhibitors SITS, DIDS, probenecid and endocytic inhibitor, colchicine significantly inhibited the [(3)H]folic acid uptake indicating the involvement of receptor/transporter mediated process. PKA, PTK, and Ca(2+)/calmodulin pathways significantly regulate the process. RT-PCR and Western blot analysis confirmed the presence of folate receptor-α (FR-alpha) and proton-coupled folate transporter (PCFT). Permeability of [(3)H]folic acid across the rabbit cornea was (1.48 ± 0.13)*10(-05) cm/sec, and in the presence of cold folic acid it was (1.08 ± 0.10)*10(-05) cm/sec. CONCLUSIONS This work demonstrated the functional and molecular presence of FR-alpha and PCFT in SIRC epithelial cell line.
Collapse
Affiliation(s)
- J Jwala
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Jia Z, Zhao R, Tian Y, Huang Z, Tian Z, Shen Z, Wang Q, Wang J, Fu X, Wu Y. A novel splice variant of FR4 predominantly expressed in CD4+CD25+ regulatory T cells. Immunol Invest 2010; 38:718-29. [PMID: 19860584 DOI: 10.3109/08820130903171003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Folate receptor 4 (FR4) is recently found as a lymphoid tissue specific protein. In this study, we have identified an alternative splicing variant of the FR4 gene from murine splenocytes, termed FR4v, which is almost identical to FR4 cDNA sequence except with the retained 108 bp intron 3 between exon 3 and 4 of FR4 gene. FR4v mRNA encodes a larger protein than FR4 and is constitutively expressed on CD4(+)CD25(+) regulatory T cell (Treg) membrane via a GPI anchor mechanism. Whether FR4v plays a redundant or unique functional role in Tregs should be investigated further in the future.
Collapse
Affiliation(s)
- Zhengcai Jia
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|