1
|
Quan Y, Zhang X, Butler W, Du Z, Wang M, Liu Y, Ping H. The role of N-cadherin/c-Jun/NDRG1 axis in the progression of prostate cancer. Int J Biol Sci 2021; 17:3288-3304. [PMID: 34512147 PMCID: PMC8416735 DOI: 10.7150/ijbs.63300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023] Open
Abstract
The dysregulation of androgen receptor (AR) signaling is a critical event in the progression of prostate cancer (PCa) and hormone therapy consisting of androgen deprivation (ADT) or AR inhibition is therefore used to treat advanced cases. It is known that N-cadherin becomes upregulated following ADT and can directly induce PCa transformation to the castration-resistant stage (CRPC). However, the relationship between AR and N-cadherin is unclear and may promote better understanding of CRPC pathogenesis and progression. Here, we demonstrate a new axis of N-cadherin/c-Jun/N-myc downstream regulated gene 1 (NDRG1) that N-cadherin promotes c-Jun expression and suppresses NDRG1 to promote invasion and migration of PCa cells through epithelial to mesenchymal transition (EMT). Targeting N-cadherin in combination with enzalutamide (ENZ) treatment synergistically suppressed PC3 cell proliferation in vivo and in vitro. Further studies showed that compared to lower Gleason score (GS) (GS < 7) cases, high GS (GS > 7) cases exhibited elevated N-cadherin expression and reduced NDRG1 expression, corroborating our in vitro observations. We further demonstrate that c-Jun, AR, and DNA methyltransferase-1 (DNMT1) form a complex in the 12-O-tetradecanoyl phorbol-13-acetate (TPA) response elements (TREs) region of the NDRG1 promoter, which suppresses NDRG1 transcription through DNA hypermethylation. In conclusion, we demonstrate an underlying mechanism for how N-cadherin collaborates with AR and NDRG1 to promote CRPC progression. Controlling N-cadherin/c-Jun/NDRG1 axis may help to overcome resistance to commonly used hormone therapy to improve long-term patient outcomes.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - William Butler
- Department of Pathology, Duke University School of Medicine, Durham NC 27710, USA
| | - Zhen Du
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yuexin Liu
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
2
|
Heiland DH, Ferrarese R, Claus R, Dai F, Masilamani AP, Kling E, Weyerbrock A, Kling T, Nelander S, Carro MS. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas. Oncotarget 2018; 8:6940-6954. [PMID: 28036297 PMCID: PMC5351681 DOI: 10.18632/oncotarget.14330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma.
Collapse
Affiliation(s)
- Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roberto Ferrarese
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Claus
- Department of Hematology, Oncology, and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Fangping Dai
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anie P Masilamani
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Teresia Kling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratories, University of Uppsala, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology and Science for Life Laboratories, University of Uppsala, Uppsala, Sweden
| | - Maria S Carro
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Lin SP, Chiu FY, Wang Y, Yen ML, Kao SY, Hung SC. RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells. Stem Cell Reports 2014; 3:975-86. [PMID: 25455074 PMCID: PMC4264040 DOI: 10.1016/j.stemcr.2014.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Many cell therapies currently being tested are based on mesenchymal stromal cells (MSCs). However, MSCs start to enter the senescent state upon long-term expansion. The role of retinoblastoma (RB) protein in regulating MSC properties is not well studied. Here, we show that RB levels are higher in early-passage MSCs compared with late-passage MSCs. RB knockdown induces premature senescence and reduced differentiation potentials in early-passage MSCs. RB overexpression inhibits senescence and increases differentiation potentials in late-passage MSCs. Expression of DNMT1, but not DNMT3A or DNMT3B, is also higher in early-passage MSCs than in late-passage MSCs. Furthermore, DNMT1 knockdown in early-passage MSCs induces senescence and reduces differentiation potentials, whereas DNMT1 overexpression in late-passage MSCs has the opposite effect. These results demonstrate that RB expressed in early-passage MSCs upregulates DNMT1 expression and inhibits senescence in MSCs. Therefore, genetic modification of RB could be a way to improve the efficiency of MSCs in clinical use.
Collapse
Affiliation(s)
- Shih-Pei Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Fang-Yao Chiu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC
| | - Yu Wang
- Department of Dentistry Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC
| | - Men-Luh Yen
- Departments of Primary Care Medicine and Obstetrics/Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC.
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC; Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan, ROC; Institute of Traditional Medicine, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC; Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC; Institute of Biomedical Sciences, Academia Sinica, Taipei 105, Taiwan, ROC.
| |
Collapse
|
4
|
He F, Lupu DS, Niculescu MD. Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring. Int J Dev Neurosci 2014; 36:38-44. [PMID: 24866706 DOI: 10.1016/j.ijdevneu.2014.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles on brain development, memory, and learning. However, the exact mechanisms involved are far from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the expression of genes involved in neurogenesis, memory-related molecular processes, and DNA methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 DNA methylation was decreased by maternal ALA deficiency during gestation, with a more robust effect in the lactation-deficient group. In addition, linear regression analysis revealed positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, between DNA methylation and gene expression. In summary, the interplay between ALA availability during gestation and lactation differentially altered the expression of genes involved in neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 epigenetic status was correlated with ALA availability during gestation. However, the epigenetic status of the genes investigated was not associated with transcript levels, suggesting that either the regulation of these genes is not necessarily under epigenetic control, or that the whole brain model is not adequate for the exploration of epigenetic regulation in the context of this study.
Collapse
Affiliation(s)
- Fuli He
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Daniel S Lupu
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Mihai D Niculescu
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.
| |
Collapse
|
5
|
Montoya-Durango DE, Ramos KS. Retinoblastoma family of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol Concepts 2011; 2:233-45. [DOI: 10.1515/bmc.2011.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022] Open
Abstract
AbstractThe retinoblastoma (RB) protein family in mammals is composed of three members: pRB (or RB1), p107, and p130. Although these proteins do not directly bind DNA, they associate with the E2F family of transcription factors which function as DNA sequence-specific transcription factors. RB proteins alter gene transcription via direct interference with E2F functions, as well as recruitment of transcriptional repressors and corepressors that silence gene expression through DNA and histone modifications. E2F/RB complexes shape the chromatin landscape through recruitment to CpG-rich regions in the genome, thus making E2F/RB complexes function as local and global regulators of gene expression and chromatin dynamics. Recruitment of E2F/pRB to the long interspersed nuclear element (LINE1) promoter enhances the role that RB proteins play in genome-wide regulation of heterochromatin. LINE1 elements are dispersed throughout the genome and therefore recruitment of RB to the LINE1 promoter suggests that LINE1 could serve as the scaffold on which RB builds up heterochromatic regions that silence and shape large stretches of chromatin. We suggest that mutations in RB function might lead to global rearrangement of heterochromatic domains with concomitant retrotransposon reactivation and increased genomic instability. These novel roles for RB proteins open the epigenetic-based way for new pharmacological treatments of RB-associated diseases, namely inhibitors of histone and DNA methylation, as well as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Diego E. Montoya-Durango
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth S. Ramos
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Maloku E, Kadriu B, Zhubi A, Dong E, Pibiri F, Satta R, Guidotti A. Selective α4β2 nicotinic acetylcholine receptor agonists target epigenetic mechanisms in cortical GABAergic neurons. Neuropsychopharmacology 2011; 36:1366-74. [PMID: 21368748 PMCID: PMC3096806 DOI: 10.1038/npp.2011.21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 12/12/2022]
Abstract
Nicotine improves cognitive performance and attention in both experimental animals and in human subjects, including patients affected by neuropsychiatric disorders. However, the specific molecular mechanisms underlying nicotine-induced behavioral changes remain unclear. We have recently shown in mice that repeated injections of nicotine, which achieve plasma concentrations comparable to those reported in high cigarette smokers, result in an epigenetically induced increase of glutamic acid decarboxylase 67 (GAD(67)) expression. Here we explored the impact of synthetic α(4)β(2) and α(7) nAChR agonists on GABAergic epigenetic parameters. Varenicline (VAR), a high-affinity partial agonist at α(4)β(2) and a lower affinity full agonist at α(7) neuronal nAChR, injected in doses of 1-5 mg/kg/s.c. twice daily for 5 days, elicited a 30-40% decrease of cortical DNA methyltransferase (DNMT)1 mRNA and an increased expression of GAD(67) mRNA and protein. This upregulation of GAD(67) was abolished by the nAChR antagonist mecamylamine. Furthermore, the level of MeCP(2) binding to GAD(67) promoters was significantly reduced following VAR administration. This effect was abolished when VAR was administered with mecamylamine. Similar effects on cortical DNMT1 and GAD(67) expression were obtained after administration of A-85380, an agonist that binds to α(4)β(2) but has negligible affinity for α(3)β(4) or α(7) subtypes containing nAChR. In contrast, PNU-282987, an agonist of the homomeric α(7) nAChR, failed to decrease cortical DNMT1 mRNA or to induce GAD(67) expression. The present study suggests that the α(4)β(2) nAChR agonists may be better suited to control the epigenetic alterations of GABAergic neurons in schizophrenia than the α(7) nAChR agonists.
Collapse
Affiliation(s)
- Ekrem Maloku
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bashkim Kadriu
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Adrian Zhubi
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Fabio Pibiri
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rosalba Satta
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Golding MC, Williamson GL, Stroud TK, Westhusin ME, Long CR. Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol Reprod Dev 2011; 78:306-17. [PMID: 21480430 DOI: 10.1002/mrd.21306] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/25/2011] [Indexed: 01/03/2023]
Abstract
In studies of somatic cell nuclear transfer (SCNT), the ability of factors within the oocyte to epigenetically reprogram transferred nuclei is essential for embryonic development of the clone to proceed. However, irregular patterns of X-chromosome inactivation, abnormal expression of imprinted genes, and genomic DNA hypermethylation are frequently observed in reconstructed embryos, suggesting abnormalities in this process. To better understand the epigenetic events underlying SCNT reprogramming, we sought to determine if the abnormal DNA methylation levels observed in cloned embryos result from a failure of the oocyte to properly reprogram transcription versus differential biochemical regulation of the DNA methyltransferase family of enzymes (DNMTs) between embryonic and somatic nuclei. To address this question, we conducted real-time quantitation of Dnmt transcripts in bovine preimplantation embryos generated though in vitro fertilization (IVF), parthenogenic activation, and SCNT. By the 8-cell stage, transcripts encoding Dnmt1 become significantly down-regulated in cloned embryos, likely in response to the state of genomic hypermethylation, while the de novo methyltransferases maintain an expression pattern indistinguishable from their IVF and parthenote counterparts. Depletion of embryonic/maternal Dnmt1 transcripts within IVF embryos using short-interfering RNAs, while able to lower genomic DNA methylation levels, resulted in developmental arrest at the 8/16-cell stage. In contrast, SCNT embryos derived from a stable, Dnmt1-depleted donor cell line develop to blastocyst stage, but failed to carry to term. Our results indicate an essential role for Dnmt1 during bovine preimplantation development, and suggest proper transcriptional reprogramming of this gene family in SCNT embryos.
Collapse
Affiliation(s)
- Michael C Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
| | | | | | | | | |
Collapse
|
8
|
Novakovic B, Wong NC, Sibson M, Ng HK, Morley R, Manuelpillai U, Down T, Rakyan VK, Beck S, Hiendleder S, Roberts CT, Craig JM, Saffery R. DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta. J Biol Chem 2010; 285:9583-9593. [PMID: 20071334 PMCID: PMC2843208 DOI: 10.1074/jbc.m109.064956] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The genome of extraembryonic tissue, such as the placenta, is hypomethylated relative to that in somatic tissues. However, the origin and role of this hypomethylation remains unclear. The DNA methyltransferases DNMT1, -3A, and -3B are the primary mediators of the establishment and maintenance of DNA methylation in mammals. In this study, we investigated promoter methylation-mediated epigenetic down-regulation of DNMT genes as a potential regulator of global methylation levels in placental tissue. Although DNMT3A and -3B promoters lack methylation in all somatic and extraembryonic tissues tested, we found specific hypermethylation of the maintenance DNA methyltransferase (DNMT1) gene and found hypomethylation of the DNMT3L gene in full term and first trimester placental tissues. Bisulfite DNA sequencing revealed monoallelic methylation of DNMT1, with no evidence of imprinting (parent of origin effect). In vitro reporter experiments confirmed that DNMT1 promoter methylation attenuates transcriptional activity in trophoblast cells. However, global hypomethylation in the absence of DNMT1 down-regulation is apparent in non-primate placentas and in vitro derived human cytotrophoblast stem cells, suggesting that DNMT1 down-regulation is not an absolute requirement for genomic hypomethylation in all instances. These data represent the first demonstration of methylation-mediated regulation of the DNMT1 gene in any system and demonstrate that the unique epigenome of the human placenta includes down-regulation of DNMT1 with concomitant hypomethylation of the DNMT3L gene. This strongly implicates epigenetic regulation of the DNMT gene family in the establishment of the unique epigenetic profile of extraembryonic tissue in humans.
Collapse
Affiliation(s)
- Boris Novakovic
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nick C Wong
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Mandy Sibson
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Hong-Kiat Ng
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ruth Morley
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ursula Manuelpillai
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Thomas Down
- Wellcome Trust Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Vardhman K Rakyan
- Institute of Cell and Molecular Science, Barts and the London, London E1 2AT, United Kingdom
| | - Stephan Beck
- University College London Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Stefan Hiendleder
- JS Davies Epigenetics and Genetics Group, Animal Science, Adelaide, South Australia 5005, Australia
| | - Claire T Roberts
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jeffrey M Craig
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Richard Saffery
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
9
|
Costa E, Chen Y, Dong E, Grayson DR, Kundakovic M, Maloku E, Ruzicka W, Satta R, Veldic M, Zhubi A, Guidotti A. GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Rev Neurother 2009; 9:87-98. [PMID: 19102671 DOI: 10.1586/14737175.9.1.87] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuronal GABAergic mechanisms that mediate the symptomatic beneficial effects elicited by a combination of antipsychotics with valproate (a histone deacetylase inhibitor) in the treatment of psychosis (expressed by schizophrenia or bipolar disorder patients) are unknown. This prompted us to investigate whether the beneficial action of this combination results from a modification of histone tail covalent esterification or is secondary to specific chromatin remodeling. The results suggest that clozapine, or sulpiride associated with valproate, by increasing DNA demethylation with an unknown mechanism, causes a chromatin remodeling that brings about a beneficial change in the epigenetic GABAergic dysfunction typical of schizophrenia and bipolar disorder patients.
Collapse
Affiliation(s)
- Erminio Costa
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Boominathan L. Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Mol Cancer 2007; 6:27. [PMID: 17407586 PMCID: PMC1853109 DOI: 10.1186/1476-4598-6-27] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 04/03/2007] [Indexed: 12/30/2022] Open
Abstract
The question of whether p73 is a tumor suppressor gene, is not yet answered with full confidence. The lack of spontaneous tumor formation in p73 null mice and infrequent p73 mutations seen in a variety of cancers analyzed would straightaway negate its role as a primary tumor suppressor gene. However, accumulating evidence suggest that p73 gene and its target genes are hypermethylated in the cancer of lymphoid origin. Here I discuss some facts and thoughts that support the idea that p73 could still be a tumor suppressor gene. The tumor suppressor network in which p73 appears to be a participant involves E2F1, JunB, INK4a/p16, ARF/p19, p57kip2 and BRCA1. Knock out of each gene in E2F-1-p73-JunB-p16INK4a network of tumor suppressor proteins result in lymphoma/leukemia formation. Further, I tried to explain why lymphomas are not seen in p73 null mice and why p73 gene is not prone to frequent mutation.
Collapse
|
11
|
Costa E, Dong E, Grayson DR, Ruzicka WB, Simonini MV, Veldic M, Guidotti A. Epigenetic Targets in GABAergic Neurons to Treat Schizophrenia. GABA 2006; 54:95-117. [PMID: 17175812 DOI: 10.1016/s1054-3589(06)54005-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- E Costa
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 2005; 83:296-321. [PMID: 15959557 DOI: 10.1139/o05-036] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While specific genes are hypermethylated in the genome of cancer cells, overall methylcytosine content is often decreased as a consequence of hypomethylation affecting many repetitive sequences. Hypomethylation is also observed at a number of single-copy genes. While global hypomethylation is highly prevalent across all cancer types, it often displays considerable specificity with regard to tumor type, tumor stage, and sequences affected. Following an overview of hypomethylation alterations in various cancers, this review focuses on 3 hypotheses. First, hypomethylation at a single-copy gene may occur as a 2-step process, in which selection for gene function follows upon random hypo methylation. In this fashion, hypomethylation facilitates the adaptation of cancer cells to the ever-changing tumor tissue microenvironment, particularly during metastasis. Second, the development of global hypomethylation is intimately linked to chromatin restructuring and nuclear disorganization in cancer cells, reflected in a large number of changes in histone-modifying enzymes and other chromatin regulators. Third, DNA hypomethylation may occur at least partly as a consequence of cell cycle deregulation disturbing the coordination between DNA replication and activity of DNA methyltransferases. Finally, because of their relation to tumor progression and metastasis, DNA hypomethylation markers may be particularly useful to classify cancer and predict their clinical course.
Collapse
|
13
|
Zardo G, Reale A, Passananti C, Pradhan S, Buontempo S, De Matteis G, Adams RLP, Caiafa P. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: a possible molecular mechanism. FASEB J 2002; 16:1319-21. [PMID: 12154007 DOI: 10.1096/fj.01-0827fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pattern of DNA methylation established during embryonic development is necessary for the control of gene expression and is preserved during the replicative process. DNA regions of about 1-2 kb in size, termed CpG islands and located mostly in the promoter regions of housekeeping genes, are protected from methylation, despite being about 6-10 times richer in the dinucleotide CpG than the rest of DNA. Their unmethylated state guarantees the expression of the corresponding housekeeping genes. At present, the mechanism by which CpG islands remain protected from methylation is not clear. However, some results suggest that poly(ADP-ribosyl)ation, an enzymatic process that introduces a postsynthetic modification onto chromatin proteins, might be involved. Here we show in L929 mouse fibroblast cells that inhibition of poly(ADP-ribose) polymerase(s) at different cell-cycle phases increases the mRNA and protein levels of the major maintenance DNA methyltransferase (DNMT1) in G1/S border. Increase of DNMT1 results in a premature PCNA-DNMT1 complex formation, which facilitates robust maintenance, as well as de novo DNA methylation processes during the G1/S border, which leads to abnormal hypermethylation.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Haematology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|