1
|
Yu H, Lin J, Wang M, Ying S, Yuan S, Guo Y, Xie Y, Yao W. Molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce (Lactuca sativa L.) after ultrasound treatment at different intensity levels. Food Microbiol 2024; 117:104387. [PMID: 37919011 DOI: 10.1016/j.fm.2023.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ultrasonic treatment is widely used for surface cleaning of vegetables in the processing of agricultural products. In the present study, the molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce was investigated after ultrasound treatment at different intensity levels. The results show that the biofilm was efficiently removed after ultrasound treatment with intensity higher than 21.06 W/cm2. However, at an intensity of less than 18.42 W/cm2, P. fluorescens was stimulated by ultrasound leading to promoted bacterial growth, extracellular protease activity, extracellular polysaccharide secretion (EPS), and synthesis of acyl-homoserine lactones (AHLs) as quorum-sensing signaling molecules. The expression of biofilm-related genes, stress response, and dual quorum sensing system was upregulated during post-treatment ultrasound. Proteomic analysis showed that ultrasound activated proteins in the flagellar system, which led to changes in bacterial tendency; meanwhile, a large number of proteins in the dual-component system began to be regulated. ABC transporters accelerated the membrane transport of substances inside and outside the cell membrane and equalized the permeability conditions of the cell membrane. In addition, the expression of proteins related to DNA repair was upregulated, suggesting that bacteria repair damaged DNA after ultrasound exposure.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - Jiang Lin
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Mengru Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Su Ying
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
2
|
Mannuronate C-5 epimerases and their use in alginate modification. Essays Biochem 2023; 67:615-627. [PMID: 36876890 DOI: 10.1042/ebc20220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Alginate is a polysaccharide consisting of β-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii (Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.
Collapse
|
3
|
Cao S, Li L, Zhu B, Yao Z. Alginate modifying enzymes: An updated comprehensive review of the mannuronan C5-epimerases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Ci F, Jiang H, Zhang Z, Mao X. Properties and potential applications of mannuronan C5-epimerase: A biotechnological tool for modifying alginate. Int J Biol Macromol 2021; 168:663-675. [PMID: 33220370 DOI: 10.1016/j.ijbiomac.2020.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Given the excellent characteristics of alginate, it is an industrially important polysaccharide. Mannuronan C5-epimerase (MC5E) is an alginate-modifying enzyme that catalyzes the conversion of β-D-mannuronate (M) to its C5 epimer α-L-guluronate (G) in alginate. Both the biological activities and physical properties of alginate are determined by M/G ratios and distribution patterns. Therefore, MC5E is regarded as a biotechnological tool for modifying and processing alginate. Various MC5Es derived from brown algae, Pseudomonas and Azotobacter have been isolated and characterized. With the rapid development of structural biology, the crystal structures and catalytic mechanisms of several MC5Es have been elucidated. It is necessary to comprehensively understand the research status of this alginate-modifying enzyme. In this review, the properties and potential applications of MC5Es isolated from different kinds of organisms are summarized and reviewed. Moreover, future research directions of MC5Es as well as strategies to enhance their properties are elucidated, highlighted, and prospected.
Collapse
Affiliation(s)
- Fangfang Ci
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Edrada-Ebel R, Ævarsson A, Polymenakou P, Hentschel U, Carettoni D, Day J, Green D, Hreggviðsson GÓ, Harvey L, McNeil B. SeaBioTech: From Seabed to Test-Bed: Harvesting the Potential of Marine Biodiversity for Industrial Biotechnology. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Maleki S, Mærk M, Hrudikova R, Valla S, Ertesvåg H. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates. N Biotechnol 2016; 37:2-8. [PMID: 27593394 DOI: 10.1016/j.nbt.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Alginate denotes a family of linear polysaccharides with a wide range of industrial and pharmaceutical applications. Presently, all commercially available alginates are manufactured from brown algae. However, bacterial alginates have advantages with regard to compositional homogeneity and reproducibility. In order to be able to design bacterial strains that are better suited for industrial alginate production, defining limiting factors for alginate biosynthesis is of vital importance. Our group has been studying alginate biosynthesis in Pseudomonas fluorescens using several complementary approaches. Alginate is synthesised and transported out of the cell by a multiprotein complex spanning from the inner to the outer membrane. We have developed an immunogold labelling procedure in which the porin AlgE, as a part of this alginate factory, could be detected by transmission electron microscopy. No time-dependent correlation between the number of such factories on the cell surface and alginate production level was found in alginate-producing strains. Alginate biosynthesis competes with the central carbon metabolism for the key metabolite fructose 6-phosphate. In P. fluorescens, glucose, fructose and glycerol, are metabolised via the Entner-Doudoroff and pentose phosphate pathways. Mutational analysis revealed that disruption of the glucose 6-phosphate dehydrogenase gene zwf-1 resulted in increased alginate production when glycerol was used as carbon source. Furthermore, alginate-producing P. fluorescens strains cultivated on glucose experience acid stress due to the simultaneous production of alginate and gluconate. The combined results from our studies strongly indicate that the availability of fructose 6-phosphate and energy requires more attention in further research aimed at the development of an optimised alginate production process.
Collapse
Affiliation(s)
- Susan Maleki
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Biotechnology and Nanomedicine, Unit of SINTEF Materials and Chemistry, N-7465 Trondheim, Norway
| | - Mali Mærk
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Radka Hrudikova
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
7
|
Zhang P, Shao Z, Jin W, Duan D. Comparative characterization of two GDP-mannose dehydrogenase genes from Saccharina japonica (Laminariales, Phaeophyceae). BMC PLANT BIOLOGY 2016; 16:62. [PMID: 26956020 PMCID: PMC4782291 DOI: 10.1186/s12870-016-0750-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/27/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Saccharina japonica is an important commercial brown seaweed, its main product is alginate, which is used in food, textile and by the cosmetic and pharmaceutical industries. GDP-mannose dehydrogenase (GMD) is the key enzyme involved in the synthesis of alginate. However, little is known about GMD in S. japonica. Here we report comparative biochemical analysis of two GMD genes in S. japonica. RESULTS Two GMD genes from S. japonica (Sjgmd1, Sjgmd2) were cloned. The open reading frame lengths of Sjgmd1, Sjgmd2 are 963 bp and 948 bp, respectively. Alignment analysis showed that the two SjGMD sequences shared 79.38 % identity. Both proteins possess the GGxCLPKDV and GxGxVG sequence motifs characteristic of the short-chain dehydrogenase/reductase superfamily. The optimum temperatures for SjGMDs were 30 °C (SjGMD1) and 20 °C (SjGMD2), and the optimum pH values were 8.0 (SjGMD1) and 8.25 (SjGMD2). Kinetic analysis demonstrated the Km values for the substrate GDP-mannose were 289 μM (SjGMD1) and 177 μM (SjGMD2), and the Km values for the cofactor NAD(+) were 139 μM (SjGMD1) and 195 μM (SjGMD2). The metal iron Zn(2+) is a potent inhibitor of SjGMD1 and SjGMD2. Real-time PCR analysis showed that heat and desiccation treatments resulted in a significant increase in Sjgmd1 and Sjgmd2 transcript abundance, suggesting that the SjGMDs are directly involved in the acclimitisation of S. japonica to abiotic stresses. CONCLUSION Our work identified two novel genes encoding GMD in S. japonica, comparatively characterized their structural characteristics and enzyme kinetics, and revealed the function of GMD in the stress adaptability of S. japonica. The knowledge obtained here enriched our understanding of the alginate synthesis mechanism in S. japonica, and may promote further research on functional differences between GMD genes.
Collapse
Affiliation(s)
- Pengyan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- State Key Laboratory of Seaweed Bioactive Substances, Qingdao, 266400, China.
| |
Collapse
|
8
|
Whitfield GB, Marmont LS, Howell PL. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 2015; 6:471. [PMID: 26029200 PMCID: PMC4432689 DOI: 10.3389/fmicb.2015.00471] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the EPS produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the EPS alginate, the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Lindsey S Marmont
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
9
|
Lien SK, Niedenführ S, Sletta H, Nöh K, Bruheim P. Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA. BMC SYSTEMS BIOLOGY 2015; 9:6. [PMID: 25889900 PMCID: PMC4351692 DOI: 10.1186/s12918-015-0148-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
Background The bacterium Pseudomonas fluorescens switches to an alginate-producing phenotype when the pleiotropic anti-sigma factor MucA is inactivated. The inactivation is accompanied by an increased biomass yield on carbon sources when grown under nitrogen-limited chemostat conditions. A previous metabolome study showed significant changes in the intracellular metabolite concentrations, especially of the nucleotides, in mucA deletion mutants compared to the wild-type. In this study, the P. fluorescens SBW25 wild-type and an alginate non-producing mucA- ΔalgC double-knockout mutant are investigated through model-based 13C-metabolic flux analysis (13C-MFA) to explore the physiological consequences of MucA inactivation at the metabolic flux level. Intracellular metabolite extracts from three carbon labelling experiments using fructose as the sole carbon source are analysed for 13C-label incorporation in primary metabolites by gas and liquid chromatography tandem mass spectrometry. Results From mass isotopomer distribution datasets, absolute intracellular metabolic reaction rates for the wild type and the mutant are determined, revealing extensive reorganisation of carbon flux through central metabolic pathways in response to MucA inactivation. The carbon flux through the Entner-Doudoroff pathway was reduced in the mucA- ΔalgC mutant, while flux through the pentose phosphate pathway was increased. Our findings also indicated flexibility of the anaplerotic reactions through down-regulation of the pyruvate shunt in the mucA- ΔalgC mutant and up-regulation of the glyoxylate shunt. Conclusions Absolute metabolic fluxes and metabolite levels give detailed, integrated insight into the physiology of this industrially, medically and agriculturally important bacterial species and suggest that the most efficient way of using a mucA- mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0148-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stina K Lien
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway.
| | - Sebastian Niedenführ
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Håvard Sletta
- Department of Bioprocess technology, SINTEF Materials and Chemistry, Sem Sælands vei 2a, N-7465, Trondheim, Norway.
| | - Katharina Nöh
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Per Bruheim
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway.
| |
Collapse
|
10
|
Wolfram F, Kitova EN, Robinson H, Walvoort MTC, Codée JDC, Klassen JS, Howell PL. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG. J Biol Chem 2014; 289:6006-19. [PMID: 24398681 DOI: 10.1074/jbc.m113.533158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.
Collapse
Affiliation(s)
- Francis Wolfram
- From the Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G, Valla S. Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases. J Bacteriol 2006; 188:5551-60. [PMID: 16855245 PMCID: PMC1540039 DOI: 10.1128/jb.00236-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alginate is a linear copolymer of beta-d-mannuronic acid and its C-5-epimer, alpha-l-guluronic acid. During biosynthesis, the polymer is first made as mannuronan, and various fractions of the monomers are then epimerized to guluronic acid by mannuronan C-5-epimerases. The Azotobacter vinelandii genome encodes a family of seven extracellular such epimerases (AlgE1 to AlgE7) which display motifs characteristic for proteins secreted via a type I pathway. Putative ATPase-binding cassette regions from the genome draft sequence of the A. vinelandii OP strain and experimentally verified type I transporters from other species were compared. This analysis led to the identification of one putative A. vinelandii type I system (eexDEF). The corresponding genes were individually disrupted in A. vinelandii strain E, and Western blot analysis using polyclonal antibodies against all AlgE epimerases showed that these proteins were present in wild-type culture supernatants but absent from the eex mutant supernatants. Consistent with this, the wild-type strain and the eex mutants produced alginate with about 20% guluronic acid and almost pure mannuronan (< or =2% guluronic acid), respectively. The A. vinelandii wild type is able to enter a particular desiccation-tolerant resting stage designated cyst. At this stage, the cells are surrounded by a rigid coat in which alginate is a major constituent. Such a coat was formed by wild-type cells in a particular growth medium but was missing in the eex mutants. These mutants were also found to be unable to survive desiccation. The reason for this is probably that continuous stretches of guluronic acid residues are needed for alginate gel formation to take place.
Collapse
Affiliation(s)
- Martin Gimmestad
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
13
|
Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, Suh SJ, Skjåk-Braek G, Ellingsen TE, Ohman DE, Valla S. The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 2003; 185:3515-23. [PMID: 12775688 PMCID: PMC156231 DOI: 10.1128/jb.185.12.3515-3523.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial alginates are produced as 1-4-linked beta-D-mannuronan, followed by epimerization of some of the mannuronic acid residues to alpha-L-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-L-erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex.
Collapse
Affiliation(s)
- Martin Gimmestad
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE. The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 2003; 47:1123-33. [PMID: 12581364 DOI: 10.1046/j.1365-2958.2003.03361.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa strains causing chronic pulmonary infections in cystic fibrosis patients produce high levels of alginate, an exopolysaccharide that confers a mucoid phenotype. Alginate is a linear polymer of d-mannuronate (M) and variable amounts of its C-5-epimer, l-guluronate (G). AlgG is a periplasmic C-5-epimerase that converts poly d-mannuronate to the mixed M+G sequence of alginate. To understand better the role and mechanism of AlgG activity, a mutant was constructed in the mucoid strain FRD1 with a defined non-polar deletion of algG. Instead of producing poly mannuronate, the algG deletion mutant secreted dialysable uronic acids, as does a mutant lacking the periplasmic protein AlgK. High levels of unsaturated ends and the nuclear magnetic resonance spectroscopy pattern revealed that the small, secreted uronic acids were the products of extensive polymer digestion by AlgL, a periplasmic alginate lyase co-expressed with AlgG and AlgK. Thus, AlgG is bifunctional with (i) epimerase activity and (ii) a role in protecting alginate from degradation by AlgL during transport through the periplasm. AlgK appears to share the second role. AlgG and AlgK may be part of a periplasmic protein complex, or scaffold, that guides alginate polymers to the outer membrane secretin (AlgE). To characterize the epimerase activity of AlgG further, the algG4 allele of poly mannuronate-producing FRD462 was shown to encode a protein lacking only the epimerase function. The sequence of algG4 has a Ser-272 to Asn substitution in a serine-threonine-rich and conserved region of AlgG, which revealed a critical residue for C-5-epimerase activity.
Collapse
Affiliation(s)
- Sumita Jain
- Department of Microbiology, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall St., Rm. 5-051, Richmond, VA 23298-0678, USA
| | | | | | | | | |
Collapse
|