1
|
Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet Mol Biol 2022; 45:e20220071. [DOI: 10.1590/1678-4685-gmb-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
|
2
|
Telomeric-Like Repeats Flanked by Sequences Retrotranscribed from the Telomerase RNA Inserted at DNA Double-Strand Break Sites during Vertebrate Genome Evolution. Int J Mol Sci 2021; 22:ijms222011048. [PMID: 34681704 PMCID: PMC8537989 DOI: 10.3390/ijms222011048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are stretches of telomeric-like repeats located at internal chromosomal sites. We previously demonstrated that ITSs have been inserted during the repair of DNA double-strand breaks in the course of evolution and that some rodent ITSs, called TERC-ITSs, are flanked by fragments retrotranscribed from the telomerase RNA component (TERC). In this work, we carried out an extensive search of TERC-ITSs in 30 vertebrate genomes and identified 41 such loci in 22 species, including in humans and other primates. The fragment retrotranscribed from the TERC RNA varies in different lineages and its sequence seems to be related to the organization of TERC. Through comparative analysis of TERC-ITSs with orthologous empty loci, we demonstrated that, at each locus, the TERC-like sequence and the ITS have been inserted in one step in the course of evolution. Our findings suggest that telomerase participated in a peculiar pathway of DNA double-strand break repair involving retrotranscription of its RNA component and that this mechanism may be active in all vertebrate species. These results add new evidence to the hypothesis that RNA-templated DNA repair mechanisms are active in vertebrate cells.
Collapse
|
3
|
Clemente L, Mazzoleni S, Pensabene Bellavia E, Augstenová B, Auer M, Praschag P, Protiva T, Velenský P, Wagner P, Fritz U, Kratochvíl L, Rovatsos M. Interstitial Telomeric Repeats Are Rare in Turtles. Genes (Basel) 2020; 11:genes11060657. [PMID: 32560114 PMCID: PMC7348932 DOI: 10.3390/genes11060657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023] Open
Abstract
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
Collapse
Affiliation(s)
- Lorenzo Clemente
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Eleonora Pensabene Bellavia
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Markus Auer
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | | | | | - Petr Velenský
- Prague Zoological Garden, 17100 Prague, Czech Republic;
| | | | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
- Correspondence:
| |
Collapse
|
4
|
Santagostino M, Piras FM, Cappelletti E, Del Giudice S, Semino O, Nergadze SG, Giulotto E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int J Mol Sci 2020; 21:E2838. [PMID: 32325780 PMCID: PMC7215372 DOI: 10.3390/ijms21082838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are short stretches of telomeric-like repeats (TTAGGG)n at nonterminal chromosomal sites. We previously demonstrated that, in the genomes of primates and rodents, ITSs were inserted during the repair of DNA double-strand breaks. These conclusions were derived from sequence comparisons of ITS-containing loci and ITS-less orthologous loci in different species. To our knowledge, insertion polymorphism of ITSs, i.e., the presence of an ITS-containing allele and an ITS-less allele in the same species, has not been described. In this work, we carried out a genome-wide analysis of 2504 human genomic sequences retrieved from the 1000 Genomes Project and a PCR-based analysis of 209 human DNA samples. In spite of the large number of individual genomes analyzed we did not find any evidence of insertion polymorphism in the human population. On the contrary, the analysis of ITS loci in the genome of a single horse individual, the reference genome, allowed us to identify five heterozygous ITS loci, suggesting that insertion polymorphism of ITSs is an important source of genetic variability in this species. Finally, following a comparative sequence analysis of horse ITSs and of their orthologous empty loci in other Perissodactyla, we propose models for the mechanism of ITS insertion during the evolution of this order.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.S.); (F.M.P.); (E.C.); (S.D.G.); (O.S.); (S.G.N.)
| |
Collapse
|
5
|
Machado CR, Glugoski L, Domit C, Pucci MB, Goldberg DW, Marinho LA, da Costa GW, Nogaroto V, Vicari MR. Comparative Cytogenetics of Four Sea Turtle Species (Cheloniidae): G-Banding Pattern and in situ Localization of Repetitive DNA Units. Cytogenet Genome Res 2020; 160:531-538. [DOI: 10.1159/000511118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/19/2020] [Indexed: 02/04/2023] Open
Abstract
Sea turtles are considered flagship species for marine biodiversity conservation and are considered to be at varying risk of extinction globally. Cases of hybridism have been reported in sea turtles, but chromosomal analyses are limited to classical karyotype descriptions and a few molecular cytogenetic studies. In order to compare karyotypes and understand evolutive mechanisms related to chromosome differentiation in this group, <i>Chelonia mydas</i>, <i>Caretta caretta</i>, <i>Eretmochelys imbricata</i>, and <i>Lepidochelys olivacea</i> were cytogenetically characterized in the present study. When the obtained cytogenetic data were compared with the putative ancestral Cryptodira karyotype, the studied species showed the same diploid number (2n) of 56 chromosomes, with some variations in chromosomal morphology (karyotypic formula) and minor changes in longitudinal band locations. In situ localization using a 18S ribosomal DNA probe indicated a homeologous microchromosome pair bearing a 45S ribosomal DNA locus and size heteromorphism in all 4 species. Interstitial telomeric sites were identified in a microchromosome pair in <i>C. mydas</i> and <i>C. caretta</i>. The data showed that interspecific variations occurred in chromosomal sets among the Cheloniidae species, in addition to other Cryptodira karyotypes. These variations generated lineage-specific karyotypic diversification in sea turtles, which will have considerable implications for hybrid recognition and for the study, the biology, ecology, and evolutionary history of regional and global populations. Furthermore, we demonstrated that some chromosome rearrangements occurred in sea turtle species, which is in conflict with the hypothesis of conserved karyotypes in this group.
Collapse
|
6
|
Assortative mating for telomere length and antioxidant capacity in barn swallows (Hirundo rustica). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2352-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:51-65. [PMID: 28927537 DOI: 10.1016/j.mrrev.2017.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina.
| |
Collapse
|
8
|
Noronha RCR, Barros LMR, Araújo REF, Marques DF, Nagamachi CY, Martins C, Pieczarka JC. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae). Mol Cytogenet 2016; 9:73. [PMID: 27708713 PMCID: PMC5039792 DOI: 10.1186/s13039-016-0281-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cytogenetic studies were conducted in the Brazilian Amazon turtles, Podocnemis expansa Schweigger, 1912 (PEX) and Podocnemis unifilis Troschel, 1848 (PUN) to understand their karyoevolution. Their chromosomal complements were compared using banding techniques (C, G-, Ag-NOR and Chromomycin A3) and fluorescence in situ hybridization (FISH), and efforts were made to establish evolutionary chromosomal relationships within the Podocnemidae family. RESULTS Our results revealed that both species have a chromosome complement of 2n = 28. For PEX and PUN, the fundamental numbers (FNs) were 54 and 52, respectively and the karyotypic formulas (KFs) were 24 m/sm + 2st + 2a and 22 m/sm + 2st + 4a, respectively. G-banding evidenced homologies between the two species and allowed identify a heteromorphic pair (chromosome pair 10) in PUN. In PEX, constitutive heterochromatin (CH) was found in the centromeric regions of pairs 1, 2, 4, 6 and 11 and on 9p. In PUN, CH was observed in the centromeric regions of all chromosomes, and in small proximal bands on 1p, 2p, 3q, 4q, 5q, 9q, 10q and 11q. Moreover, CH amplification was seen in one of the homologs of pair 10 (the heteromorphic pair). The CMA3 staining results were consistent with the CH findings. Ag-NOR staining showed that nucleolar organizing regions (NORs) were localized in the pericentromeric region of pair 1 in both species, and this result was confirmed by the 18S rDNA FISH probe. FISH with telomeric probes identified telomeric sequences in the distal regions of all chromosomes. In addition, interstitial telomeric sequences (ITSs) were present in seven chromosome pairs of PUN, perhaps reflecting the amplification of telomere-like sequences. FISH with a probe against the transposable element (TE), Rex 6, revealed that it is dispersed in euchromatic regions of the first chromosome pairs of both species. This is the first report describing the FISH-based analysis of PEX and PUN for the 18S rDNA, Rex 6 and human telomeric sequences. CONCLUSIONS Our results contribute to clarifying the chromosomal homologies and rearrangement mechanisms that occurred during the evolution of these species, and may help researchers uncover new markers that will improve our understanding of the taxonomy and systematic classification of Podocnemidae. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- R C R Noronha
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - L M R Barros
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - R E F Araújo
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - D F Marques
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil
| | - C Y Nagamachi
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - C Martins
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - J C Pieczarka
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| |
Collapse
|
9
|
Schmid M, Steinlein C. Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura. Cytogenet Genome Res 2016; 148:211-26. [PMID: 27233250 DOI: 10.1159/000446298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)n repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed.
Collapse
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Wx00FC;rzburg, Wx00FC;rzburg, Germany
| | | |
Collapse
|
10
|
Dumas F, Cuttaia H, Sineo L. Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): possible implications in evolution and phylogeny. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche; Università degli Studi Palermo; Palermo Italy
| | - Helenia Cuttaia
- Azienda ospedaliera Ospedali Riuniti Villa Sofia - Cervello; Laboratorio di Citogenetica Medica; Palermo Italy
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche; Università degli Studi Palermo; Palermo Italy
| |
Collapse
|
11
|
Early-Life Telomere Dynamics Differ between the Sexes and Predict Growth in the Barn Swallow (Hirundo rustica). PLoS One 2015; 10:e0142530. [PMID: 26565632 PMCID: PMC4643985 DOI: 10.1371/journal.pone.0142530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual’s siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio.
Collapse
|
12
|
Bruschi DP, Rivera M, Lima AP, Zúñiga AB, Recco-Pimentel SM. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura). Mol Cytogenet 2014; 7:22. [PMID: 24602295 PMCID: PMC3975639 DOI: 10.1186/1755-8166-7-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus. RESULTS With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes. CONCLUSION A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an important component of this heterochromatin. We propose that the ITSs originated independently during the chromosomal evolution of these species and may provide important insights into the role of these repeats in vertebrate karyotype diversification.
Collapse
Affiliation(s)
- Daniel Pacheco Bruschi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-863 Campinas, São Paulo, Brazil
| | - Miryan Rivera
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | | | - Ailín Blasco Zúñiga
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Shirlei Maria Recco-Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-863 Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Solovjeva LV, Demin SJ, Pleskach NM, Kuznetsova MO, Svetlova MP. Characterization of telomeric repeats in metaphase chromosomes and interphase nuclei of Syrian Hamster Fibroblasts. Mol Cytogenet 2012; 5:37. [PMID: 22938505 PMCID: PMC3488537 DOI: 10.1186/1755-8166-5-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Rodents have been reported to contain large arrays of interstitial telomeric sequences (TTAGGG)n (ITS) located in pericentromeric heterochromatin. The relative sizes of telomeric sequences at the ends of chromosomes (TS) and ITS in Syrian hamster (Mesocricetus auratus) cells have not been evaluated yet, as well as their structural organization in interphase nuclei. Results FISH signal distribution analysis was performed on DAPI-banded metaphase chromosomes of Syrian hamster fibroblasts, and relative lengths of telomere signals were estimated. Besides well-distinguished FISH signals from ITS located on chromosomes ##2, 4, 14, 20 and X that we reported earlier, low-intensity FISH signals were visualized with different frequency of detection on all other metacentric chromosomes excluding chromosome #21. The analysis of 3D-distribution of TS in interphase nuclei demonstrated that some TS foci formed clearly distinguished associations (2–3 foci in a cluster) in the nuclei of cells subjected to FISH or transfected with the plasmid expressing telomeric protein TRF1 fused with GFP. In G0 and G1/early S-phase, the average total number of GFP-TRF1 foci per nucleus was less than that of PNA FISH foci in the corresponding cell cycle phases suggesting that TRF1 overexpression might contribute to the fusion of neighboring telomeres. The mean total number of GFP-TRF1 and FISH foci per nucleus was increased during the transition from G0 to G1/early S-phase that might be the consequence of duplication of some TS. Conclusions The relative lengths of TS in Syrian hamster cells were found to be moderately variable. All but one metacentric chromosomes contain ITS in pericentromeric heterochromatin indicating that significant rearrangements of ancestral genome occurred in evolution. Visualization of GFP-TRF1 fibrils that formed bridges between distinct telomeric foci allowed suggesting that telomere associations observed in interphase cells are reversible. The data obtained in the study provide the further insight in the structure and dynamics of telomeric sequences in somatic mammalian cells.
Collapse
|
14
|
Badenhorst D, Dobigny G, Robinson TJ. Karyotypic evolution of hapalomys inferred from chromosome painting: a detailed characterization contributing new insights into the ancestral murinae karyotype. Cytogenet Genome Res 2012; 136:83-8. [PMID: 22222239 DOI: 10.1159/000335286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
We report on the construction of a comparative chromosome map between the emblematic laboratory rat, Rattus norvegicus (RNO), and Delacour's Marmoset rat, Hapalomys delacouri (HDE), based on cross-species fluorescence in situ hybridization with R. norvegicus painting probes. Sixteen R. norvegicus chromosomes (RNO 3-6, 8, 10-15, 17-20, and X) were retained in their entirety (as a conserved block or as a single chromosome) in the H. delacouri genome. The remaining 5 R. norvegicus chromosomes (RNO 1, 2, 7, 9, and 16) produced 2 signals in the H. delacouri karyotype. Our analysis allowed the detection of an X-autosome translocation between RNO X and 11 that occurred convergently in an unrelated species, Bandicota savilei, and a single B chromosome that accounts for the 2n = 48 karyotype observed in this specimen. In total, the rat chromosome paints revealed 27 segments of conserved synteny in H. delacouri. The analysis showed 7 NOR bearing pairs in H. delacouri (HDE 1, 3, 6, 7, 8, 10, and 13) and the occurrence of an interstitial telomeric signal at the centromeric regions of 8 H. delacouri chromosomes (HDE 3, 10, 11, 12, 13, 16, 19, and 22). These data, together with published comparative maps, enabled a revision of the previously postulated murine ancestral condition suggesting that it probably comprised a wholly acrocentric karyotype with 2n = 46-50.
Collapse
Affiliation(s)
- D Badenhorst
- Evolutionary Genomics Group, University of Stellenbosch, Botany and Zoology Department, Stellenbosch, South Africa
| | | | | |
Collapse
|
15
|
Rovatsos MT, Marchal JA, Romero-Fernández I, Fernández FJ, Giagia-Athanosopoulou EB, Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 2011; 19:869-82. [PMID: 21979796 DOI: 10.1007/s10577-011-9242-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
The distribution of telomeric repeats was analyzed by fluorescence in situ hybridization in 15 species of arvicoline rodents, included in three different genera: Chionomys, Arvicola, and Microtus. The results demonstrated that in most or the analyzed species, telomeric sequences are present, in addition to normal telomeres localization, as large blocks in pericentromeric regions. The number, localization, and degree of amplification of telomeric sequences blocks varied with the karyotype and the morphology of the chromosomes. Also, in some cases telomeric amplification at non-pericentromeric regions is described. The interstitial telomeric sequences are evolutionary modern and have rapidly colonized and spread in pericentromeric regions of chromosomes by different mechanisms and probably independently in each species. Additionally, we colocalized telomeric repeats and the satellite DNA Msat-160 (also located in pericentromeric regions) in three species and cloned telomeric repeats in one of them. Finally, we discuss about the possible origin and implication of telomeric repeats in the high rate of karyotypic evolution reported for this rodent group.
Collapse
Affiliation(s)
- M Th Rovatsos
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | | | | | | | | | | |
Collapse
|
16
|
Gámez-Arjona FM, López-López C, Vaquero-Sedas MI, Vega-Palas MA. On the organization of the nucleosomes associated with telomeric sequences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1058-61. [PMID: 20381544 DOI: 10.1016/j.bbamcr.2010.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
Abstract
The functions of telomeres and, probably, of interstitial telomeric sequences (ITSs) are influenced by their chromatin structure and organization. Telomeres in higher eukaryotes fold into nucleosomes that are about 20-40 bp shorter than the nucleosomes associated with bulk chromatin. Although the functional relevance of this short nucleosomal organization remains unknown, it is believed that short nucleosomes should contribute to telomere function. Whereas telomeric nucleosomes have been widely studied in different organisms, very little is known about the nucleosomal organization of ITSs. Chinese hamster ITSs have been found to associate with short nucleosomes. However, we have found that Arabidopsis thaliana ITSs fold into nucleosomes that have a repeat length similar to bulk chromatin. We discuss how the primary sequence of telomeres and ITSs could influence their nucleosomal organization.
Collapse
Affiliation(s)
- Francisco M Gámez-Arjona
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | |
Collapse
|
17
|
Tomilin NV. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 2008; 30:338-48. [PMID: 18348251 DOI: 10.1002/bies.20741] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomes of higher eukaryotes contain abundant non-coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon-derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene-rich regions and are found in promoters of genes while LINEs are concentrated in gene-poor regions and are depleted from promoters. The second class consists of non-coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, heterochromatin and telomeres. Terminal TTAGGG arrays are involved in telomere capping and satellite DNAs are located in heterochromatin, which is implicated in transcription silencing by gene repositioning (relocalization). It is unknown whether interstitial TTAGGG sequences, which are present in many vertebrates, have a function. Here, evidence will be presented that retroelements and TTAGGG arrays are involved in regulation of gene expression. Retroelements can provide binding sites for transcription factors and protect promoter CpG islands from repressive chromatin modifications, and may be also involved in nuclear compartmentalization of transcriptionally active and inactive domains. Interstitial telomere-like sequences can form dynamically maintained three-dimensional nuclear networks of transcriptionally inactive domains, which may be involved in transcription silencing like classic heterochromatin.
Collapse
Affiliation(s)
- Nikolai V Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.Petersburg, Tikchoretskii Av. 4, Russia.
| |
Collapse
|
18
|
Nergadze SG, Santagostino MA, Salzano A, Mondello C, Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 2008; 8:R260. [PMID: 18067655 PMCID: PMC2246262 DOI: 10.1186/gb-2007-8-12-r260] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/28/2007] [Accepted: 12/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, tandem arrays of TTAGGG hexamers are present at both telomeres and intrachromosomal sites (interstitial telomeric sequences (ITSs)). We previously showed that, in primates, ITSs were inserted during the repair of DNA double-strand breaks and proposed that they could arise from either the capture of telomeric fragments or the action of telomerase. RESULTS An extensive comparative analysis of two primate (Homo sapiens and Pan troglodytes) and two rodent (Mus musculus and Rattus norvegicus) genomes allowed us to describe organization and insertion mechanisms of all the informative ITSs present in the four species. Two novel observations support the hypothesis of telomerase involvement in ITS insertion: in a highly significant fraction of informative loci, the ITSs were introduced at break sites where a few nucleotides homologous to the telomeric hexamer were exposed; in the rodent genomes, complex ITS loci are present in which a retrotranscribed fragment of the telomerase RNA, far away from the canonical template, was inserted together with the telomeric repeats. Moreover, mutational analysis of the TTAGGG arrays in the different species suggests that they were inserted as exact telomeric hexamers, further supporting the participation of telomerase in ITS formation. CONCLUSION These results strongly suggest that telomerase was utilized, in some instances, for the repair of DNA double-strand breaks occurring in the genomes of rodents and primates during evolution. The presence, in the rodent genomes, of sequences retrotranscribed from the telomerase RNA strengthens the hypothesis of the origin of telomerase from an ancient retrotransposon.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia 'Adriano Buzzati-Traverso', Università degli Studi di Pavia, Via Ferrata, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
19
|
Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res 2007; 658:95-110. [PMID: 17921045 DOI: 10.1016/j.mrrev.2007.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 01/24/2023]
Abstract
Interstitial telomeric sequences (ITSs) consist of tandem repeats of the canonical telomeric repeat and are common in mammals. They are localized at intrachromosomal sites, including those repeats located close to the centromeres and those found at interstitial sites, i.e., between the centromeres and the telomeres. ITSs might originate from ancestral intrachromosomal rearrangements (inversions and fusions), from differential crossing-over or from the repair of double-strand break during evolution. Three classes of ITSs have been described in the human genome, namely, short ITSs, long subtelomeric ITSs and fusion ITSs. The fourth class of ITSs, pericentromeric ITSs, has been found in other species. The function of ITSs can be inferred from the association of heritable diseases with ITS polymorphic variants, both in copy number and sequence. This is one of the most attractive aspects of ITS studies because it leads to new and useful markers for genetic linkage studies, forensic applications, and detection of genetic instability in tumors. Some ITSs also might be hotspots of chromosome breakage, rearrangement and amplification sites, based on the type of clastogens and the nature of ITSs. This study will contribute new knowledge with respect to ITSs' biology and mechanism, prevalence of diseases, risk evaluation and prevention of related diseases, thus facilitates the design of early detection markers for diseases caused by genomic instability.
Collapse
|
20
|
Zhdanova NS, Rubtsov NB, Minina YM. Terminal regions of mammal chromosomes: Plasticity and role in evolution. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 2007; 446:208-12. [PMID: 17344853 DOI: 10.1038/nature05560] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise approximately 17% of human DNA. The average human genome contains approximately 80-100 retrotransposition-competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription. We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (EN(i)) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair. Here we have characterized EN(i) retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, approximately 30% of EN(i) retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among EN(i) retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 (also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated EN(i) retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of EN(i) retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends. Thus, we propose that EN(i) retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non-LTR retrotransposons that may have been used before the acquisition of an endonuclease domain.
Collapse
Affiliation(s)
- Tammy A Morrish
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Ortiz MI, Pinna-Senn E, Rosa C, Lisanti JA. Localization of Telomeric Sequences in the Chromosomes of Three Species of Calomys (Rodentia, Sigmodontinae). CYTOLOGIA 2007. [DOI: 10.1508/cytologia.72.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- María Isabel Ortiz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - Elsa Pinna-Senn
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - Carolina Rosa
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - José Antonio Lisanti
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina
| |
Collapse
|
23
|
Camats N, Ruiz-Herrera A, Parrilla JJ, Acien M, Payá P, Giulotto E, Egozcue J, García F, Garcia M. Genomic instability in rat: breakpoints induced by ionising radiation and interstitial telomeric-like sequences. Mutat Res 2006; 595:156-66. [PMID: 16413932 DOI: 10.1016/j.mrfmmm.2005.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/27/2005] [Accepted: 11/18/2005] [Indexed: 11/16/2022]
Abstract
The Norwegian rat (Rattus norvegicus) is the most widely studied experimental species in biomedical research although little is known about its chromosomal structure. The characterisation of possible unstable regions of the karyotype of this species would contribute to the better understanding of its genomic architecture. The cytogenetic effects of ionising radiation have been widely used for the study of genomic instability, and the importance of interstitial telomeric-like sequences (ITSs) in instability of the genome has also been reported in previous studies in vertebrates. In order to describe the unstable chromosomal regions of R. norvegicus, the distribution of breakpoints induced by X-irradiation and ITSs in its karyotype were analysed in this work. For the X-irradiation analysis, 52 foetuses (from 14 irradiated rats) were studied, 4803 metaphases were analysed, and a total of 456 breakpoints induced by X-rays were detected, located in 114 chromosomal bands, with 25 of them significantly affected by X-irradiation (hot spots). For the analysis of ITSs, three foetuses (from three rats) were studied, 305 metaphases were analysed and 121 ITSs were detected, widely distributed in the karyotype of this species. Seventy-six percent of all hot spots analysed in this study were co-localised with ITSs.
Collapse
Affiliation(s)
- Núiria Camats
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
25
|
Dynamic Binding of the Human Telomeric Protein TRF1 to Intrachromosomal Blocks (TTAGGG)n in Live Chinese Hamster Cells Found to Depend on Transcription. Mol Biol 2005. [DOI: 10.1007/s11008-005-0106-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Ruiz-Herrera A, García F, Giulotto E, Attolini C, Egozcue J, Ponsà M, Garcia M. Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet Genome Res 2005; 108:234-47. [PMID: 15545736 DOI: 10.1159/000080822] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/22/2003] [Indexed: 01/22/2023] Open
Abstract
The concentration of evolutionary breakpoints in primate karyotypes in some particular regions or chromosome bands suggests that these chromosome regions are more prone to breakage. This is the first extensive comparative study which investigates a possible relationship of two genetic markers (intrachromosomal telomeric sequences [TTAGGG]n, [ITSs] and fragile sites [FSs]), which are implicated in the evolutionary process as well as in chromosome rearrangements. For this purpose, we have analyzed: (a) the cytogenetic expression of aphidicolin-induced FSs in Cebus apella and Cebus nigrivittatus (F. Cebidae, Platyrrhini) and Mandrillus sphinx (F. Cercopithecidae, Catarrhini), and (b) the intrachromosomal position of telomeric-like sequences by FISH with a synthetic (TTAGGG)n probe in C. apella chromosomes. The multinomial FSM statistical model allowed us to determinate 53 FSs in C. apella, 16 FSs in C. nigrivittatus and 50 FSs in M. sphinx. As expected, all telomeres hybridized with the probe, and 55 intrachromosomal loci were also detected in the Cebus apella karyotype. The chi(2) test indicates that the coincidence of the location of Cebus and Mandrillus FSs with the location of human FSs is significant (P < 0.005). Based on a comparative cytogenetic study among different primate species we have identified (or described) the chromosome bands in the karyotypes of Papionini and Cebus species implicated in evolutionary reorganizations. More than 80% of these evolutionary breakpoints are located in chromosome bands that express FSs and/or contain ITSs.
Collapse
Affiliation(s)
- A Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Losada R, Rivero MT, Slijepcevic P, Goyanes V, Fernández JL. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells. Mutat Res 2005; 570:119-28. [PMID: 15680409 DOI: 10.1016/j.mrfmmm.2004.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 01/29/2023]
Abstract
The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process.
Collapse
Affiliation(s)
- Raquel Losada
- Sección de Genética y Unidad de Investigación, Complejo Hospitalario Universitario Juan Canalejo (CHUJC), As Xubias 84, 15006-A Coruña, Spain
| | | | | | | | | |
Collapse
|
28
|
Viera A, Ortiz MI, Pinna-Senn E, Dalmasso G, Bella JL, Lisanti JA. Chromosomal localization of telomeric sequences in three species of Akodon (Rodentia, Sigmodontinae). Cytogenet Genome Res 2005; 107:99-102. [PMID: 15305062 DOI: 10.1159/000079577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 04/15/2004] [Indexed: 11/19/2022] Open
Abstract
The distribution of the vertebrate telomeric sequence T2AG3 in three species of the rodent genus Akodon was examined by FISH with a peptide nucleic acid probe. In addition to the expected telomeric hybridization, non-telomeric signals were observed in the three species. In A. dolores, centromeric signals were visible in two of the four biarmed autosome pairs featuring Robertsonian polymorphism, indicating the retention of at least part of the telomeric sequences during the fusion process, and an interstitial signal of lower intensity was observed in the short arm of another. In A. boliviensis, a strong signal was observed near the centromeric end of the first chromosome pair. The first pair of A. azarae (homologous to the first pair of A. boliviensis) showed a similar but markedly amplified signal, and a subcentromeric signal in the X chromosome corresponding to a heterochromatic region; additionally, interstitial signals of lower intensity were present in one to four chromosomes in the majority of cells examined.
Collapse
Affiliation(s)
- A Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
López-Fernández C, Pradillo E, Zabal-Aguirre M, Fernández JL, García de la Vega C, Gosálvez J. Telomeric and interstitial telomeric-like DNA sequences in Orthoptera genomes. Genome 2005; 47:757-63. [PMID: 15284881 DOI: 10.1139/g03-143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A (TTAGG)n-specific telomeric DNA probe was hybridized to 11 orthopteroid insect genomes by fluorescence in situ hybridization. Nine different genera, mainly distributed within two evolutionary branches with male chromosome numbers 2n = 23 and 2n = 17 were included in the analysis. Telomere sequences yielded positive signals in every telomere and there was a considerable number of interstitial telomeric-like sequences, mainly located at the distal end of some, but not all, subterminal chromosome regions. One of the species, Pyrgomorpha conica, showed massive hybridization signals associated with constitutive heterochromatin. The results are discussed along two lines: (i) the chromosomal evolutionary trends within this group of insects and (ii) the putative role that ITs may play in a genome when they are considered telomere-derived, but not telomere-functional, DNA sequences.
Collapse
Affiliation(s)
- C López-Fernández
- Department of Biology, Unit of Genetics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Mosquera A, Gosálvez J, Sabatier L, Fernández JL. Interstitial telomeric DNA sequences of Chinese hamster cells are hypersensitive to nitric oxide damage, and DNA-PKcs has a specific local role in its repair. Genes Chromosomes Cancer 2005; 44:76-84. [PMID: 15940692 DOI: 10.1002/gcc.20221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was used to analyze DNA single-strand breaks (SSBs) and alkali-labile sites induced by exposure to the nitric oxide (NO) donors sodium nitroprusside (SNP) and 3-morpholinosydnomine hydrochloride (SIN-1) in the whole genome and in long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cells. The relative density of DNA damage generated in the ITRS by X-rays was similar to that induced in the genome overall, whereas it was 1.7 times higher when the alkylating agent MNNG was assayed. Nevertheless, after SNP or SIN-1 treatment, ITRSs proved to be 2.8 and 2.7 times relatively more damaged, respectively, than the whole genome. When the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was not active, as in XR-C1 mutant cells, the repair kinetics in the whole genome did not differ from that in the parental cell line with X-ray or SNP exposure. However, whereas the SSBs and alkali-labile sites induced in the ITRS by X-rays exhibited rejoining kinetics similar to that of the parental cell line, the damage induced by SNP was more slowly rejoined. This implies a role for DNA-PKcs in the repair of DNA damage induced by NO, especially in ITRSs. The results demonstrated intragenomic heterogeneity of NO-induced DNA damage and repair; there was a higher density of DNA damage in the ITRS blocks, possibly because of their guanine richness. This suggests that a parallel process may occur in the terminal telomeres, which has implications for premature aging and neoplastic development by chronic NO exposure in vivo.
Collapse
Affiliation(s)
- Alejandro Mosquera
- Sección de Genética y Unidad de Investigación, Complejo Hospitalario Universitario Juan Canalejo (CHUJC), As Xubias, Coruña, Spain
| | | | | | | |
Collapse
|
31
|
Ruiz-Herrera A, García F, Mora L, Egozcue J, Ponsà M, Garcia M. Evolutionary conserved chromosomal segments in the human karyotype are bounded by unstable chromosome bands. Cytogenet Genome Res 2004; 108:161-74. [PMID: 15545726 DOI: 10.1159/000080812] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 04/26/2004] [Indexed: 11/19/2022] Open
Abstract
In this paper an ancestral karyotype for primates, defining for the first time the ancestral chromosome morphology and the banding patterns, is proposed, and the ancestral syntenic chromosomal segments are identified in the human karyotype. The chromosomal bands that are boundaries of ancestral segments are identified. We have analyzed from data published in the literature 35 different primate species from 19 genera, using the order Scandentia, as well as other published mammalian species as out-groups, and propose an ancestral chromosome number of 2n = 54 for primates, which includes the following chromosomal forms: 1(a+c(1)), 1(b+c(2)), 2a, 2b, 3/21, 4, 5, 6, 7a, 7b, 8, 9, 10a, 10b, 11, 12a/22a, 12b/22b, 13, 14/15, 16a, 16b, 17, 18, 19a, 19b, 20 and X and Y. From this analysis, we have been able to point out the human chromosome bands more "prone" to breakage during the evolutionary pathways and/or pathology processes. We have observed that 89.09% of the human chromosome bands, which are boundaries for ancestral chromosome segments, contain common fragile sites and/or intrachromosomal telomeric-like sequences. A more in depth analysis of twelve different human chromosomes has allowed us to determine that 62.16% of the chromosomal bands implicated in inversions and 100% involved in fusions/fissions correspond to fragile sites, intrachromosomal telomeric-like sequences and/or bands significantly affected by X irradiation. In addition, 73% of the bands affected in pathological processes are co-localized in bands where fragile sites, intrachromosomal telomeric-like sequences, bands significantly affected by X irradiation and/or evolutionary chromosomal bands have been described. Our data also support the hypothesis that chromosomal breakages detected in pathological processes are not randomly distributed along the chromosomes, but rather concentrate in those important evolutionary chromosome bands which correspond to fragile sites and/or intrachromosomal telomeric-like sequences.
Collapse
MESH Headings
- Alouatta/genetics
- Animals
- Cebidae/genetics
- Cebus/genetics
- Cercopithecidae/genetics
- Chromosomal Instability/genetics
- Chromosome Banding/methods
- Chromosomes, Human/genetics
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Mammalian/genetics
- Conserved Sequence/genetics
- Evolution, Molecular
- Gorilla gorilla/genetics
- Humans
- Karyotyping
- Pan troglodytes/genetics
- Pongo pygmaeus/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Jin G, Ikushima T. Frequent occurrence of UVB-induced sister chromatid exchanges in telomere regions and its implication to telomere maintenance. Cytogenet Genome Res 2004; 104:310-4. [PMID: 15162057 DOI: 10.1159/000077508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 12/05/2003] [Indexed: 11/19/2022] Open
Abstract
Sister chromatid exchanges (SCEs) are symmetrical exchanges between newly replicated chromatids and their sisters. While homologous recombination may be one of the principal mechanisms responsible for SCEs, the full details of their molecular basis and biological significance remain to be elucidated. Following exposure to ultraviolet light B (UVB), mitomycin C (MMC) and cisplatin, we analyzed the location of SCEs on metaphase chromosomes in Chinese hamster CHO cells. The frequency of SCEs increased over the spontaneous level in proportion to the agent's dose. UVB-induced SCEs occurred frequently in telomere regions, as cisplatin-induced SCEs did, differing from MMC-induced ones. The remarkable difference of intrachromosomal distribution among the three mutagens may be attributed to the specificity of induced DNA lesions and structures of different chromosome regions. Telomeric DNA at the end of chromosomes is composed of multiple copies of a repeated motif, 5'-TTAGGG-3' in mammalian cells. Telomeric repeats may be potential targets for UVB and cisplatin, which mainly form pyrimidine dimers and intrastrand d(GpG) cross-links, respectively, resulting in SCE formation. UVB irradiation shortened telomeres and augmented the telomerase activity. The possible implications of the frequent occurrence of SCEs in telomere regions are discussed in connection with the maintenance of telomere integrity.
Collapse
Affiliation(s)
- G Jin
- Laboratory of Molecular Genetics, Biology Division, Kyoto University of Education, Fushimi, Kyoto, Japan
| | | |
Collapse
|
33
|
Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 2004; 14:1704-10. [PMID: 15310657 PMCID: PMC515315 DOI: 10.1101/gr.2778904] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Short blocks of telomeric-like DNA (Interstitial Telomeric Sequences, ITSs) are found far from chromosome ends. We addressed the question as to how such sequences arise by comparing the loci of 10 human ITSs with their genomic orthologs in 12 primate species. The ITSs did not derive from expansion of pre-existing TTAGGG units, as described for other microsatellites, but appeared suddenly during evolution. Nine insertion events were dated along the primate evolutionary tree, the dates ranging between 40 and 6 million years ago. Sequence comparisons suggest that in each case the block of (TTAGGG)n DNA arose as a result of double-strand break repair. In fact, ancestral sequences were either interrupted precisely by the tract of telomeric-like repeats or showed the typical modifications observed at double-strand break repair sites such as short deletions, addition of random sequences, or duplications. Similar conclusions were drawn from the analysis of a chimpanzee-specific ITS. We propose that telomeric sequences were inserted by the capture of a telomeric DNA fragment at the break site or by the telomerase enzyme. Our conclusions indicate that human ITSs are relics of ancient breakage rather than fragile sites themselves, as previously suggested.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
34
|
Krutilina RI, Smirnova AN, Mudrak OS, Pleskach NM, Svetlova MP, Oei SL, Yau PM, Bradbury EM, Zalensky AO, Tomilin NV. Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1. Oncogene 2003; 22:6690-8. [PMID: 14555982 DOI: 10.1038/sj.onc.1206745] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chinese hamster cells have large interstitial (TTAGGG) bands (ITs) which are unstable and should be protected by an unknown mechanism. Here, we expressed in Chinese hamster V79 cells green fluorescent protein (GFP)-tagged human TRF1, and found that a major fraction of GFP-TRF1 bound to ITs is diffusionally mobile. This fraction strongly decreases after treatment of cells with wortmannin, a protein kinase inhibitor, and this drug also increases the frequency of chromosome aberrations. Ionizing radiation does not induce detectable translocation of GFP-TRF1 to the sites of random double-strand breaks visualized using antibodies against histone gamma-H2AX. TRF1 is known to be eliminated from telomeres by overexpression of tankyrase 1 which induces TRF1 poly(ADP-ribosyl)ation. We transfected V79 cells by plasmid encoding tankyrase 1 and found that the frequency of chromosome rearrangements is increased in these cells independently of their treatment by IR. Taken together, our results suggest that TRF1 is involved in sequence-specific protection of internal nontelomeric (TTAGGG)n repeats.
Collapse
Affiliation(s)
- Raisa Ivanovna Krutilina
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Faria KDC, Morielle-Versute E. In situ hybridization of bat chromosomes with human (TTAGGG)n probe, after previous digestion with Alu I. Genet Mol Biol 2002. [DOI: 10.1590/s1415-47572002000400003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|