1
|
Liu Y, Wu Y, Lv X, Li K, Xiong J, Liu X, Li J, Liu L, Du G, Chen J, Liu Y. Improving Cellular Protein Content of Saccharomyces cerevisiae Based on Adaptive Evolution and Flow Cytometry-Aided High Throughput Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:706-717. [PMID: 39723951 DOI: 10.1021/acs.jafc.4c09632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Enhancing the protein content and production efficiency of Saccharomyces cerevisiae is crucial as an alternative protein source. This study screened nongenetically modified yeast strains with high protein content for food ingredient production and explored the underlying mechanisms. Yeast protein levels were found to correlate with RNA, leading to a high-throughput screening method using RNA fluorescence and flow cytometry. Four mutant libraries (∼200,000 cells) were generated through adaptive laboratory evolution in protein synthesis inhibitors, resulting in the high protein mutant content B1, with a protein content of 65.8 g/100 g dry cell weight in shake flasks. In a 45 L bioreactor using fed-batch fermentation with ethanol below 1.5 g/L, B1's protein content increased to 70.3 g/100 g dry cell weight, an 18.5% rise. Mannan and β-glucan levels in the cell wall decreased by 21.7 and 30.5%, potentially enhancing protein extraction for food production. Transcriptome analysis revealed that increased protein content results from down-regulating the cell cycle and meiosis-related genes. Validation of differentially expressed genes demonstrated that up-regulating SUT1 and down-regulating CNM67 are key for enhancing protein synthesis and accumulation. This study proposes a nongenetic screening method for high protein content S. cerevisiae strains, achieving the highest reported protein content.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Ku Li
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
| | - Jian Xiong
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
| | - Xiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Baldin C, Segreto R, Bazafkan H, Schenk M, Millinger J, Schreiner U, Flatschacher D, Speckbacher V, Pierson S, Alilou M, Atanasova L, Zeilinger S. Are1-mediated nitrogen metabolism is associated with iron regulation in the mycoparasite Trichoderma atroviride. Microbiol Res 2024; 289:127907. [PMID: 39348793 DOI: 10.1016/j.micres.2024.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Trichoderma atroviride is a mycoparasitic fungus with antagonistic activity against fungal pathogens and is used as a pathogen control agent alternative to synthetic fungicides. Sensing nutrient availability in the environment and adjusting metabolism for optimal growth, development and reproduction is essential for adaptability and is relevant to its mycoparasitic activity. During mycoparasitism, secondary metabolites are produced to weaken the fungal prey and support the attack. Are1-like proteins act as major GATA-type transcription factors in the activation of genes subject to nitrogen catabolite repression. Since the quality and quantity of nitrogen has been proven particularly relevant in remodeling the biosynthesis of secondary metabolites in fungi, we decided to functionally characterize Are1, the ortholog of Aspergillus nidulans AreA, in T. atroviride. We show that the growth of the T. atroviride ∆are1 mutant is impaired in comparison to the wild type on several nitrogen sources. Deletion of are1 enhanced sensitivity to oxidative and cell-wall stressors and altered the mycoparasitic activity. We were able to identify for the first time a link between Are1 and iron homeostasis via a regulatory mechanism that does not appear to be strictly linked to the nitrogen source, but rather to an independent role of the transcription factor.
Collapse
Affiliation(s)
- Clara Baldin
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hoda Bazafkan
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Martina Schenk
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Julia Millinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Siebe Pierson
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mostafa Alilou
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Science (BOKU), Vienna, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Yang Y, Li Y, Zhu J. Research progress on the function and regulatory pathways of amino acid permeases in fungi. World J Microbiol Biotechnol 2024; 40:392. [PMID: 39581943 DOI: 10.1007/s11274-024-04199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
Collapse
Affiliation(s)
- Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
4
|
Li Z, Zhang S, Guo S, Li A, Wang Y. Regulation of MareA Gene on Monascus Growth and Metabolism Under Different Nitrogen Sources. J Basic Microbiol 2024:e2400611. [PMID: 39538412 DOI: 10.1002/jobm.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Monascus is a widely used natural microorganism in our country, which can produce useful secondary metabolites. Studies have shown that the nitrogen source directly affects the growth, reproduction, and secondary metabolites of Monascus. As a global transcriptional regulator of nitrogen metabolism, MareA gene is involved in the regulation of secondary metabolism. In this study, we found the MareA gene that is highly homologous to the AreA gene sequence, and used MareA to obtain ΔMareA and OE-MareA. Three strains were cultured with glutamine, urea, NaNO3, and (NH4)2SO4 nitrogen sources. The Monascus pigments and related genes were analyzed by solid-state fermentation under different nitrogen sources. The results showed that the pigment production of the ΔMareA decreased, but the OE-MareA did the opposite. The secondary metabolites of the three strains were analyzed by HPLC and expression level of pigment biosytnthesis gene was determined by RT-qPCR. The relative expression levels of four key Monascus pigment genes in ΔMareA were significantly upregulated in mppE gene, but downregulated in MpPKS5, mppG, and mppD genes. Monascus pigment genes were increased in OE-MareA. In terms of growth regulation, the expression of VosA and LaeA genes was significantly reduced in ΔMareA, while OE-MareA significantly promoted the expression of GprD genes. The pigment production and gene expression in ΔMareA were significantly lower than that of C100, while the opposite was true of OE-MareA when NaNO3 was added to the culture medium. In conclusion, MareA gene had different regulatory effects on Monascus growth and pigments metabolism under different nitrogen sources.
Collapse
Affiliation(s)
- Zhuolan Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Sicheng Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Shixin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Ailing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Yurong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Santos LDF, Lautru S, Pernodet JL. Genetic Engineering Approaches for the Microbial Production of Vanillin. Biomolecules 2024; 14:1413. [PMID: 39595589 PMCID: PMC11591617 DOI: 10.3390/biom14111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Vanilla flavour is widely used in various industries and is the most broadly used flavouring agent in the food industry. The demand for this flavour is, therefore, extremely high, yet vanilla bean extracts can only meet about 1% of the overall demand. Vanillin, the main constituent of vanilla flavour, can easily be obtained through chemical synthesis. Nonetheless, consumer demands for natural products and environmentally friendly industrial processes drive the development of biotechnological approaches for its production. Some microorganisms can naturally produce vanillin when fed with various substrates, including eugenol, isoeugenol, and ferulic acid. The characterisation of the genes and enzymes involved in these bioconversion pathways, as well as progress in the understanding of vanillin biosynthesis in Vanilla orchids, allowed the development of genetic engineering and synthetic biology approaches to increase vanillin production in naturally vanillin-producing microorganisms, or to implement novel vanillin biosynthetic pathways in microbial chassis. This review summarises and discusses these genetic engineering and synthetic biology approaches for the microbial production of vanillin.
Collapse
Affiliation(s)
| | - Sylvie Lautru
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Jean-Luc Pernodet
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
6
|
Ohsawa S, Schwaiger M, Iesmantavicius V, Hashimoto R, Moriyama H, Matoba H, Hirai G, Sodeoka M, Hashimoto A, Matsuyama A, Yoshida M, Yashiroda Y, Bühler M. Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast. EMBO J 2024; 43:4604-4624. [PMID: 39256560 PMCID: PMC11480445 DOI: 10.1038/s44318-024-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.
Collapse
Affiliation(s)
- Shin Ohsawa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 4056, Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Rio Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | - Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Basel, Petersplatz 10, 4003, Basel, Switzerland.
| |
Collapse
|
7
|
Matoba H, Oba K, Li H, Mizuno Y, Wang Q, Yoritate M, Aso M, Sodeoka M, Yoshida M, Yashiroda Y, Hirai G. Structure-activity relationship study of nitrogen signaling factors. Bioorg Med Chem Lett 2024; 109:129857. [PMID: 38909706 DOI: 10.1016/j.bmcl.2024.129857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.
Collapse
Affiliation(s)
- Hiroaki Matoba
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Oba
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Huanlin Li
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Yuta Mizuno
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Qianqian Wang
- RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Makoto Yoritate
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mariko Aso
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan.
| | - Go Hirai
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
8
|
García-Ríos E, Pardo J, Su Y, Guillamón JM. Different Nitrogen Consumption Patterns in Low Temperature Fermentations in the Wine Yeast Saccharomyces cerevisiae. Foods 2024; 13:2522. [PMID: 39200449 PMCID: PMC11354071 DOI: 10.3390/foods13162522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Nowadays, the wine industry carries out fermentations at low temperatures because this oenological practice clearly improves the aromatic complexity of the final wines. In addition, nitrogen content of the must also influences the quality of the wine. In this study, we carried out a phenotypic and fermentative analysis of two industrial wine Saccharomyces cerevisiae strains (P5 and P24) at 15 and 28 °C and three nitrogen concentrations (60, 140 and 300 mg N/L) in synthetic must. Our results show that both parameters, temperature and nitrogen, are interrelated and clearly determine the competitiveness of the wine strains and their ability to adapt at low temperatures. The best adapted strain at low temperatures decreased its competitiveness at lower nitrogen concentrations. In addition, our results show that it is not only the quantity of nitrogen transported that is important but also the quality of the nitrogen source used for wine yeast adaptation at low temperatures. The presence of some amino acids, such as arginine, branched chain amino acids, and some aromatic amino acids can improve the growth and fermentation activity of wine yeasts at low temperatures. These results allow us to better understand the basis of wine yeast adaptation to fermentation conditions, providing important information for winemakers to help them select the most appropriate yeast strain, thus reducing the economic costs associated with long and sluggish fermentations. The correlation between some amino acids and better yeast fermentation performance could be used in the future to design inactive dry yeast enriched in some of these amino acids, which could be added as a nutritional supplement during low temperature fermentations.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Judit Pardo
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Ying Su
- College of Enology, Northwest A&F University, Xianyang 712100, China;
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| |
Collapse
|
9
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
10
|
Karapanagioti F, Atlason ÚÁ, Slotboom DJ, Poolman B, Obermaier S. Fitness landscape of substrate-adaptive mutations in evolved amino acid-polyamine-organocation transporters. eLife 2024; 13:RP93971. [PMID: 38916596 PMCID: PMC11198987 DOI: 10.7554/elife.93971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.
Collapse
Affiliation(s)
| | | | - Dirk J Slotboom
- Department of Biochemistry, University of GroningenGroningenNetherlands
| | - Bert Poolman
- Department of Biochemistry, University of GroningenGroningenNetherlands
| | | |
Collapse
|
11
|
Chen Y, Gao S, Zhou J, Zeng W. Chromatin regulator Eaf3p regulates nitrogen metabolism in Saccharomyces cerevisiae as a trans-acting factor. Appl Environ Microbiol 2023; 89:e0145723. [PMID: 38047643 PMCID: PMC10734424 DOI: 10.1128/aem.01457-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE In this study, the mechanism of chromatin regulator Eaf3p regulating nitrogen metabolism in S. cerevisiae was investigated. It provides theoretical support for epigenetic modifications of cells to alter the level of histone modifications, coordinate the expression of multiple genes, and make it more conducive to the co-metabolism of multiple nitrogen sources. Moreover, it provides new ideas for industrial brewing yeast strains to achieve nitrogen source metabolism balance, reduce the accumulation of harmful nitrogen metabolites, and improve fermentation efficiency. This study provides a reference for changing the performance of microbial strains and improving the quality of traditional fermentation products and provides a theoretical basis for studying epigenetic modification and nitrogen metabolism regulation. It has an important theoretical explanation and practical application value. In addition, this study also provides useful clues for the study.
Collapse
Affiliation(s)
- Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Habenicht T, Weidenbach K, Velazquez-Campoy A, Buey RM, Balsera M, Schmitz RA. Small protein mediates inhibition of ammonium transport in Methanosarcina mazei-an ancient mechanism? Microbiol Spectr 2023; 11:e0281123. [PMID: 37909787 PMCID: PMC10714827 DOI: 10.1128/spectrum.02811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.
Collapse
Affiliation(s)
- Tim Habenicht
- Institut für allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katrin Weidenbach
- Institut für allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ruben M. Buey
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Spanish National Research Council (IRNASA-CSIC), Salamanca, Spain
| | - Ruth A. Schmitz
- Institut für allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
13
|
Rojo MC, Talia PM, Lerena MC, Ponsone ML, Gonzalez ML, Becerra LM, Mercado LA, Martín-Arranz V, Rodríguez-Gómez F, Arroyo-López FN, Combina M. Evaluation of different nitrogen sources on growth and fermentation performance for enhancing ethanol production by wine yeasts. Heliyon 2023; 9:e22608. [PMID: 38213578 PMCID: PMC10782155 DOI: 10.1016/j.heliyon.2023.e22608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
The utilization of grape juice from low oenological value grape varieties for bioethanol production represent an alternative for diversification and value addition in viticulture. Optimizing Very High Gravity (VHG) fermentation can significantly increase ethanol productivity while reducing water and energy consumption. In this study, the impact of different nitrogen sources on growth and fermentative performance of locally selected yeast strains was investigated. Five yeast strains of species Saccharomyces cerevisiae and Zygosaccharomyces rouxii were cultured in both synthetic culture media and natural grape juice supplemented with ammonium sulfate (NH), yeast extract (YE), Fermaid K (FERM), and urea (U) at varying concentrations. Due to the very low fermentation rate, the Z. rouxii strain was excluded from the selection. The results obtained in synthetic medium showed that nitrogen sources that promoted growth (NH and YE) had minimal effects on fermentative performance and were highly dependent on the specific yeast strain. However, the combination of urea and ammonium favored the rate of sugar consumption. When validated in natural grape juice, urea combined with ammonium (U + NH 300 + 75 mg/L) improved both growth parameters and ethanol yield. Doubling the concentration (U + NH 600 + 150 mg/L) further enhanced sugar consumption and ethanol production while reducing unwanted by-products. The combined use of urea and ammonium exhibited a synergistic effect, making it a cost-effective nitrogen supplement for VHG fermentations.
Collapse
Affiliation(s)
- María Cecilia Rojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Paola Mónica Talia
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Lerena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - María Lorena Ponsone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo) Padre Jorge Contreras 1300, Parque Gral San Martin (M5502JMA), Mendoza, Argentina
| | - Magalí Lucía Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Lucía Maribel Becerra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Laura Analía Mercado
- Wine Research Center, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mza INTA), San Martín 3853, Luján de Cuyo, Mendoza 5507, Argentina
| | - Virginia Martín-Arranz
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Rodríguez-Gómez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Berg HY, Arju G, Becerra-Rodríguez C, Galeote V, Nisamedtinov I. Unlocking the secrets of peptide transport in wine yeast: insights into oligopeptide transporter functions and nitrogen source preferences. Appl Environ Microbiol 2023; 89:e0114123. [PMID: 37843270 PMCID: PMC10686055 DOI: 10.1128/aem.01141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.
Collapse
Affiliation(s)
- Hidde Yaël Berg
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Center of Food and Fermentation Technologies, Tallinn, Estonia
| | - Georg Arju
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Ildar Nisamedtinov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Lallemand, Inc., Montreal, Canada
| |
Collapse
|
15
|
Stanchev LD, Møller-Hansen I, Lojko P, Rocha C, Borodina I. Screening of Saccharomyces cerevisiae metabolite transporters by 13C isotope substrate labeling. Front Microbiol 2023; 14:1286597. [PMID: 38116525 PMCID: PMC10729909 DOI: 10.3389/fmicb.2023.1286597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
The transportome of Saccharomyces cerevisiae comprises approximately 340 membrane-bound proteins, of which very few are well-characterized. Elucidating transporter proteins' function is essential not only for understanding central cellular processes in metabolite exchange with the external milieu but also for optimizing the production of value-added compounds in microbial cell factories. Here, we describe the application of 13C-labeled stable isotopes and detection by targeted LC-MS/MS as a screening tool for identifying Saccharomyces cerevisiae metabolite transporters. We compare the transport assay's sensitivity, reproducibility, and accuracy in yeast transporter mutant cell lines and Xenopus oocytes. As proof of principle, we analyzed the transport profiles of five yeast amino acid transporters. We first cultured yeast transporter deletion or overexpression mutants on uniformly labeled 13C-glucose and then screened their ability to facilitate the uptake or export of an unlabeled pool of amino acids. Individual transporters were further studied by heterologous expression in Xenopus oocytes, followed by an uptake assay with 13C labeled yeast extract. Uptake assays in Xenopus oocytes showed higher reproducibility and accuracy. Although having lower accuracy, the results from S. cerevisiae indicated the system's potential for initial high-throughput screening for native metabolite transporters. We partially confirmed previously reported substrates for all five amino acid transporters. In addition, we propose broader substrate specificity for two of the transporter proteins. The method presented here demonstrates the application of a comprehensive screening platform for the knowledge expansion of the transporter-substrate relationship for native metabolites in S. cerevisiae.
Collapse
Affiliation(s)
| | | | | | | | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
17
|
Yu HT, Shang YJ, Zhu HY, Han PJ, Wang QM, Santos ARO, Barros KO, Souza GFL, Alvarenga FBM, Abegg MA, Rosa CA, Bai FY. Yueomyces silvicola sp. nov., a novel ascomycetous yeast species unable to utilize ammonium, glutamate, and glutamine as sole nitrogen sources. Yeast 2023; 40:540-549. [PMID: 37818980 DOI: 10.1002/yea.3901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Five yeast strains isolated from tree bark and rotten wood collected in central and southwestern China, together with four Brazilian strains (three from soil and rotting wood collected in an Amazonian rainforest biome and one from Bromeliad collected in Alagoas state) and one Costa Rican strain isolated from a flower beetle, represent a new species closely related with Yueomyces sinensis in Saccharomycetaceae, as revealed by the 26S ribosomal RNA gene D1/D2 domain and the internal transcribed spacer region sequence analysis. The name Yueomyces silvicola sp. nov. is proposed for this new species with the holotype China General Microbiological Culture Collection Center 2.6469 (= Japan Collection of Microorganisms 34885). The new species exhibits a whole-genome average nucleotide identity value of 77.8% with Y. sinensis. The two Yueomyces species shared unique physiological characteristics of being unable to utilize ammonium and the majority of the amino acids, including glutamate and glutamine, as sole nitrogen sources. Among the 20 amino acids tested, only leucine and tyrosine can be utilized by the Yueomyces species. Genome sequence comparison showed that GAT1, which encodes a GATA family protein participating in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae, is absent in the Yueomyces species. However, the failure of the Yueomyces species to utilize ammonium, glutamate, and glutamine, which are generally preferred nitrogen sources for microorganisms, implies that more complicated alterations in the central nitrogen metabolism pathway might occur in the genus Yueomyces.
Collapse
Affiliation(s)
- Hong-Tao Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jie Shang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Amazonas, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Meng J, Liu S, Gao L, Hong K, Liu S, Wu X. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale. Microb Cell Fact 2023; 22:198. [PMID: 37770920 PMCID: PMC10540378 DOI: 10.1186/s12934-023-02198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Methanol, synthesized from CO2, is a potentially sustainable one-carbon (C1) resource for biomanufacturing. The use of methanol as a feedstock to produce single cell protein (SCP) has been investigated for decades as an alternative to alleviate the high global demand for animal-derived proteins. The methylotrophic yeast Pichia pastoris is an ideal host for methanol-based SCP synthesis due to its natural methanol assimilation ability. However, improving methanol utilization, tolerance to higher temperature, and the protein content of P. pastoris are also current challenges, which are of great significance to the economical industrial application using methanol as a feedstock for SCP production. RESULTS In the present work, adaptive laboratory evolution (ALE) has been employed to overcome the low methanol utilization efficiency and intolerance to a higher temperature of 33 °C in P. pastoris, associated with reduced carbon loss due to the lessened detoxification of intracellular formaldehyde through the dissimilation pathway and cell wall rearrangement to temperature stress resistance following long-term evolution as revealed by transcriptomic and phenotypic analysis. By strengthening nitrogen metabolism and impairing cell wall synthesis, metabolic engineering further increased protein content. Finally, the engineered strain via multi-strategy produced high levels of SCP from methanol in a pilot-scale fed-batch culture at 33 °C with a biomass of 63.37 g DCW/L, methanol conversion rate of 0.43 g DCW/g, and protein content of 0.506 g/g DCW. SCP obtained from P. pastoris contains a higher percentage of protein compared to conventional foods like soy, fish, meat, whole milk, and is a source of essential amino acids, including methionine, lysine, and branched-chain amino acids (BCAAs: valine, isoleucine, leucine). CONCLUSIONS This study clarified the unique mechanism of P. pastoris for efficient methanol utilization, higher temperature resistance, and high protein synthesis, providing a P. pastoris cell factory for SCP production with environmental, economic, and nutritional benefits.
Collapse
Affiliation(s)
- Jiao Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Shufan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Shuguang Liu
- Ningxia Future Biotechnology Co., Ltd, Jingsan Road, Ningdong Linhe Industrial Zone, Ningdong Town, Ningxia, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China.
| |
Collapse
|
19
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
20
|
MacCready JS, Roggenkamp EM, Gdanetz K, Chilvers MI. Elucidating the Obligate Nature and Biological Capacity of an Invasive Fungal Corn Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:411-424. [PMID: 36853195 DOI: 10.1094/mpmi-10-22-0213-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Emily M Roggenkamp
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Kristi Gdanetz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
21
|
Liu M, Wang H, Yan X, Zhang S, Ji C, Chen Y, Zhu B, Lin X. Multi-omics analysis reveals the mechanism of torularhodin accumulation in the mutant Rhodosporidium toruloides A1-15 under nitrogen-limited conditions. Food Funct 2023. [PMID: 37325941 DOI: 10.1039/d3fo01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A carotenoid production strain Rhodosporidium toruloides NP11 and its mutant strain R. toruloides A1-15 were studied under chemostat nitrogen-limited cultivation. Multi-omics analysis (metabolomics, lipidomics and transcriptomics) was used to investigate the different mechanisms of torularhodin accumulation between NP11 and A1-15. The results showed that the carotenoid synthesis pathway was significantly enhanced in A1-15 compared to NP11 under nitrogen limitation, due to the significant increase of torularhodin. Under nitrogen-limited conditions, higher levels of β-oxidation were present in A1-15 compared to those in NP11, which provided sufficient precursors for carotenoid synthesis. In addition, ROS stress accelerated the intracellular transport of iron ions, promoted the expression of CRTI and CRTY genes, and reduced the transcript levels of FNTB1 and FNTB2 in the bypass pathway, and these factors may be responsible for the regulation of high torularhodin production in A1-15. This study provided insights into the selective production of torularhodin.
Collapse
Affiliation(s)
- Mengyang Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Haitao Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
22
|
Lin CL, Petersen MA, Gottlieb A. Increasing Higher Alcohols and Acetates in Low-Alcohol Beer by Proteases. Molecules 2023; 28:molecules28114419. [PMID: 37298894 DOI: 10.3390/molecules28114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The market of non-alcoholic and low-alcohol beer has grown continuously thanks to the advocacy for healthy and responsible drinking. Non-alcoholic and low-alcohol products usually possess less higher alcohols and acetates and more aldehyde off-flavors due to the manufacturing processes. The employment of non-conventional yeasts partially mitigates this problem. In this study, we used proteases to optimize the wort amino acid profile for better aroma production during yeast fermentation. The design of experiments was applied to increase the leucine molar fraction, aiming to boost 3-methylbutan-1-ol and 3-methylbutyl acetate (banana-like aromas). This led to an increase from 7% to 11% leucine in wort after protease treatment. The aroma output in the subsequent fermentation, however, was yeast-dependent. An 87% increase of 3-methylbutan-1-ol and a 64% increase of 3-methylbutyl acetate were observed when Saccharomycodes ludwigii was used. When Pichia kluyveri was employed, higher alcohols and esters from valine and isoleucine were increased: 58% more of 2-methylpropyl acetate, 67% more of 2-methylbutan-1-ol, and 24% more of 2-methylbutyl acetate were observed. Conversely, 3-methylbutan-1-ol decreased by 58% and 3-methylbutyl acetate largely remained the same. Apart from these, the amounts of aldehyde intermediates were increased to a varying extent. The impact of such increases in aromas and off-flavors on the perception of low-alcohol beer remains to be evaluated by sensory analysis in future studies.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Andrea Gottlieb
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Tapia SM, Macías LG, Pérez-Torrado R, Daroqui N, Manzanares P, Querol A, Barrio E. A novel aminotransferase gene and its regulator acquired in Saccharomyces by a horizontal gene transfer event. BMC Biol 2023; 21:102. [PMID: 37158891 PMCID: PMC10169451 DOI: 10.1186/s12915-023-01566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Laura G Macías
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | | | - Noemi Daroqui
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain.
- Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
24
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
25
|
Guittin C, Maçna F, Barreau A, Poitou X, Sablayrolles JM, Mouret JR, Farines V. The aromatic profile of wine distillates from Ugni blanc grape musts is influenced by the nitrogen nutrition (organic vs. inorganic) of Saccharomyces cerevisiae. Food Microbiol 2023; 111:104193. [PMID: 36681397 DOI: 10.1016/j.fm.2022.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families. Then, at the end of the alcoholic fermentation, the wines were micro-distilled. A first interesting observation was that the aroma profiles of both wines and distillates were close, indicating that the concentration factor is rather similar for the different aromas studied. Secondly, the fermentation kinetics and aroma results have shown that the nitrogen concentration effect prevailed over the nature of nitrogen. Although the lipid concentration was in excess, an interaction between the assimilable nitrogen and lipid contents was still observed in wines or in micro-distillates. Alanine is involved in the synthesis of acetaldehyde, isobutanol, isoamyl alcohol and isoamyl acetate. Finally, it was demonstrated that modifying the ratio of assimilable nitrogen in musts is not an interesting technological response to improve the aromatic profile of wines and brandies. Indeed, unbalance the physiological ratio of the must by adding a single source of assimilable nitrogen (organic or inorganic) has been shown to deregulate the synthesis of most of the fermentation aromas produced by the yeast. Wine metabolomic analysis confirmed the results that had been observed in micro-distillates but also in the other aromatic families, especially on terpenes. The contribution of solid particles, but also yeast biosynthesis (via sterol management in must) to wine terpenes is discussed. Indeed, the synthesis of terpenes in this oenological context seems to be favored, especially since the concentration of assimilable nitrogen (in addition to the lipid content) favor their accumulation in the medium. A non-negligible vintage effect on the terpene profile was also demonstrated with variations in their distribution depending on the years. Thus, the present study focuses on the metabolism of wine yeasts under different environmental conditions (nitrogen and lipid content) and on the impact of distillation on the fate of flavor compounds. The results highlight once again the complexity of metabolic fluxes and of the impact of nitrogen source (nature and amount) and of lipids. Furthermore, this study demonstrates that beyond the varietal origin of terpenes, the part resulting from the de novo synthesis by the yeast during the fermentation cannot be neglected in the context of cognac winemaking with high levels of turbidity.
Collapse
Affiliation(s)
- Charlie Guittin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Faïza Maçna
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | | | | | | | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Vincent Farines
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
26
|
Maseko NN, Steenkamp ET, Wingfield BD, Wilken PM. An in Silico Approach to Identifying TF Binding Sites: Analysis of the Regulatory Regions of BUSCO Genes from Fungal Species in the Ceratocystidaceae Family. Genes (Basel) 2023; 14:848. [PMID: 37107606 PMCID: PMC10137650 DOI: 10.3390/genes14040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation controls gene expression through regulatory promoter regions that contain conserved sequence motifs. These motifs, also known as regulatory elements, are critically important to expression, which is driving research efforts to identify and characterize them. Yeasts have been the focus of such studies in fungi, including in several in silico approaches. This study aimed to determine whether in silico approaches could be used to identify motifs in the Ceratocystidaceae family, and if present, to evaluate whether these correspond to known transcription factors. This study targeted the 1000 base-pair region upstream of the start codon of 20 single-copy genes from the BUSCO dataset for motif discovery. Using the MEME and Tomtom analysis tools, conserved motifs at the family level were identified. The results show that such in silico approaches could identify known regulatory motifs in the Ceratocystidaceae and other unrelated species. This study provides support to ongoing efforts to use in silico analyses for motif discovery.
Collapse
Affiliation(s)
| | | | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa (E.T.S.); (P.M.W.)
| | | |
Collapse
|
27
|
Liu S, Dong H, Hong K, Meng J, Lin L, Wu X. Improving Methanol Utilization by Reducing Alcohol Oxidase Activity and Adding Co-Substrate of Sodium Citrate in Pichia pastoris. J Fungi (Basel) 2023; 9:422. [PMID: 37108877 PMCID: PMC10142128 DOI: 10.3390/jof9040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Methanol, which produced in large quantities from low-quality coal and the hydrogenation of CO2, is a potentially renewable one-carbon (C1) feedstock for biomanufacturing. The methylotrophic yeast Pichia pastoris is an ideal host for methanol biotransformation given its natural capacity as a methanol assimilation system. However, the utilization efficiency of methanol for biochemical production is limited by the toxicity of formaldehyde. Therefore, reducing the toxicity of formaldehyde to cells remains a challenge to the engineering design of a methanol metabolism. Based on genome-scale metabolic models (GSMM) calculations, we speculated that reducing alcohol oxidase (AOX) activity would re-construct the carbon metabolic flow and promote balance between the assimilation and dissimilation of formaldehyde metabolism processes, thereby increasing the biomass formation of P. pastoris. According to experimental verification, we proved that the accumulation of intracellular formaldehyde can be decreased by reducing AOX activity. The reduced formaldehyde formation upregulated methanol dissimilation and assimilation and the central carbon metabolism, which provided more energy for the cells to grow, ultimately leading to an increased conversion of methanol to biomass, as evidenced by phenotypic and transcriptome analysis. Significantly, the methanol conversion rate of AOX-attenuated strain PC110-AOX1-464 reached 0.364 g DCW/g, representing a 14% increase compared to the control strain PC110. In addition, we also proved that adding a co-substrate of sodium citrate could further improve the conversion of methanol to biomass in the AOX-attenuated strain. It was found that the methanol conversion rate of the PC110-AOX1-464 strain with the addition of 6 g/L sodium citrate reached 0.442 g DCW/g, representing 20% and 39% increases compared to AOX-attenuated strain PC110-AOX1-464 and control strain PC110 without sodium citrate addition, respectively. The study described here provides insight into the molecular mechanism of efficient methanol utilization by regulating AOX. Reducing AOX activity and adding sodium citrate as a co-substrate are potential engineering strategies to regulate the production of chemicals from methanol in P. pastoris.
Collapse
Affiliation(s)
- Shufan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haofan Dong
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kai Hong
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
28
|
Bi W, Chen C, Wang T, Ye P, Li N. Efficient bio-production of glutaric acid by a metabolically engineered Escherichia coli LQ-1 based on a novel nitrogen source feeding strategy. Bioprocess Biosyst Eng 2023; 46:717-725. [PMID: 36882675 DOI: 10.1007/s00449-023-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
As an important five-carbon platform chemical to synthesize polyesters and polyamides, glutaric acid is widely used in numerous biochemical fields such as consumer goods, textile, and footwear industries. However, the application of glutaric acid is limited by the low yield of its bio-production. In this study, a metabolically engineered Escherichia coli LQ-1 based on 5-aminovalerate (AMV) pathway was used for glutaric acid fed-batch fermentation. Given the significance of nitrogen source in the bio-production of glutaric acid by AMV pathway, a novel nitrogen source feeding strategy feedbacked by real-time physiological parameters was proposed after evaluating the effects of nitrogen source feeding (such as ammonia and ammonium sulfate) on glutaric acid bio-production. Under the proposed nitrogen source feeding strategy, a significantly improved glutaric acid production of 53.7 g L-1 was achieved in a 30 L fed-batch fermentation by the metabolically engineered E. coli LQ-1, which was an improvement of 52.1% over pre-optimization. Additionally, a higher conversion rate of 0.64 mol mol-1 (glutaric acid/glucose) was obtained compared with the previously reported bio-production of glutaric acid with E. coli. These results indicated that the nitrogen source feeding strategy proposed in this study will be useful for achieving the efficient and sustainable bio-based production of glutaric acid.
Collapse
Affiliation(s)
- Wenwen Bi
- College of Biological Science and Medical Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chen Chen
- College of Biological Science and Medical Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Tiantian Wang
- College of Biological Science and Medical Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Pan Ye
- College of Biological Science and Medical Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Naiqiang Li
- College of Biological Science and Medical Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
29
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
30
|
Coral-Medina A, Morrissey JP, Camarasa C. The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation. J Ind Microbiol Biotechnol 2022; 49:6825455. [PMID: 36370452 PMCID: PMC9923386 DOI: 10.1093/jimb/kuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.
Collapse
Affiliation(s)
- Angela Coral-Medina
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland
| | - John P Morrissey
- School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland,Environmental Research Institute and SUSFERM Fermentation Science Centre, University College Cork, T12 K8AF, Cork, Ireland
| | | |
Collapse
|
31
|
Characterization of the endogenous promoters in Yarrowia lipolytica for the biomanufacturing applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Transcriptome Analysis of the Influence of High-Pressure Carbon Dioxide on Saccharomyces cerevisiae under Sub-Lethal Condition. J Fungi (Basel) 2022; 8:jof8101011. [PMID: 36294576 PMCID: PMC9605315 DOI: 10.3390/jof8101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation mechanism has not been well researched, and this has hindered its commercial application. In this work, we used a sub-lethal HPCD condition (4.0 MPa, 30 °C) and a recovery condition (30 °C) to repair the damaged cells. Transcriptome analysis was performed by using RNA sequencing and gene ontology analysis to investigate the detailed lethal mechanism caused by HPCD treatment. RT-qPCR analysis was conducted for certain upregulated genes, and the influence of HPCD on protoplasts and single-gene deletion strains was investigated. Six major categories of upregulated genes were identified, including genes associated with the pentose phosphate pathway (oxidative phase), cell wall organization or biogenesis, glutathione metabolism, protein refolding, phosphatidylcholine biosynthesis, and AdoMet synthesis, which are all considered to be associated with cell death induced by HPCD. The inactivation or structure alteration of YNL194Cp in the organelle membrane is considered the critical reason for cell death. We believe this work contributes to elucidating the cell-death mechanism and providing a direction for further research on non-thermal HPCD sterilization technology.
Collapse
|
33
|
Selection and Optimization of Medium Components for the Efficient Production of L-Asparaginase by Leucosporidium scottii L115—A Psychrotolerant Yeast. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports the production of L-asparaginase (ASNase), an enzyme mainly used for the treatment of acute lymphoblastic leukemia, by Leucosporidiumscottii L115, a psychrotolerant yeast isolated from the Antarctic ecosystem. Focus was given to select the most appropriate medium components able to maximize the enzyme production by this yeast, as a first step for the development of a new process to produce ASNase. By combining knowledge in bioprocesses, statistical analysis and modeling, the medium composition that most favored enzyme production was established, which consisted of using a mixture of sucrose (28.34 g L−1) and glycerol (15.61 g L−1) as carbon sources, supplemented with proline (6.15 g L−1) and the following salts (g L−1): KCl, 0.52; MgSO4·7H2O, 0.52; CuNO3·3H2O, 0.001; ZnSO4·7H2O, 0.001; and FeSO4·7H2O, 0.001. By using this medium, enzyme production of 2850 U L−1 (productivity of 23.75 U L−1 h−1) was obtained, which represented a 28-fold increase in enzyme production per gram of cells (178 U gdcw−1) when compared to the control (non-optimized medium), and a 50-fold increase when compared to a reference medium used for ASNase production.
Collapse
|
34
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
35
|
Chen Y, Zeng W, Ma W, Ma W, Zhou J. Chromatin Regulators Ahc1p and Eaf3p Positively Influence Nitrogen Metabolism in Saccharomyces cerevisiae. Front Microbiol 2022; 13:883934. [PMID: 35620110 PMCID: PMC9127870 DOI: 10.3389/fmicb.2022.883934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
There is a complex regulatory network of nitrogen metabolism in Saccharomyces cerevisiae, and many details of this regulatory network have not been revealed. This study explored the global regulation of nitrogen metabolism in S. cerevisiae from an epigenetic perspective. Comparative transcriptome analysis of S. cerevisiae S288C treated with 30 nitrogen sources identified nine chromatin regulators (CRs) that responded significantly to different nitrogen sources. Functional analysis showed that among the CRs identified, Ahc1p and Eaf3p promoted the utilization of non-preferred nitrogen sources through global regulation of nitrogen metabolism. Ahc1p regulated nitrogen metabolism through amino acid transport, nitrogen catabolism repression (NCR), and the Ssy1p-Ptr3p-Ssy5p signaling sensor system. Eaf3p regulated nitrogen metabolism via amino acid transport and NCR. The regulatory mechanisms of the effects of Ahc1p and Eaf3p on nitrogen metabolism depended on the function of their histone acetyltransferase complex ADA and NuA4. These epigenetic findings provided new insights for a deeper understanding of the nitrogen metabolism regulatory network in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjian Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast. Nat Commun 2022; 13:2605. [PMID: 35546160 PMCID: PMC9095633 DOI: 10.1038/s41467-022-30312-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolites are often unable to permeate cell membranes and are thus accumulated inside cells. We investigate whether engineered microbes can exclusively secrete intracellular metabolites because sustainable metabolite secretion holds a great potential for mass-production of high-value chemicals in an efficient and continuous manner. In this study, we demonstrate a synthetic pathway for a metabolite trafficking system that enables lipophilic terpene secretion by yeast cells. When metabolite-binding proteins are tagged with signal peptides, metabolite trafficking is highly achievable; loaded metabolites can be precisely delivered to a desired location within or outside the cell. As a proof of concept, we systematically couple a terpene-binding protein with an export signal peptide and subsequently demonstrate efficient, yet selective terpene secretion by yeast (~225 mg/L for squalene and ~1.6 mg/L for β-carotene). Other carrier proteins can also be readily fused with desired signal peptides, thereby tailoring different metabolite trafficking pathways in different microbes. To the best of our knowledge, this is the most efficient cognate pathway for metabolite secretion by microorganisms. The engineering of metabolite secretion from microorganisms can lead to many applications in synthetic biology. In this article, the authors engineer a metabolite trafficking system for the secretion of medicinal terpenes.
Collapse
|
37
|
Chen Y, Zeng W, Yu S, Chen J, Zhou J. Gene co-expression network analysis reveals the positive impact of endocytosis and mitochondria-related genes over nitrogen metabolism in Saccharomyces cerevisiae. Gene 2022; 821:146267. [PMID: 35150821 DOI: 10.1016/j.gene.2022.146267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Nitrogen metabolism is essential for most cellular activities. Therefore, a deep understanding of its regulatory mechanisms is necessary for the efficient utilization of nitrogen sources for Saccharomyces cerevisiae. In this study, a gene co-expression network was constructed for S. cerevisiae S288C with different nitrogen sources. From this, a key gene co-expression module related to nitrogen source preference utilization was obtained, and 10 hub genes centrally located in the co-expression network were identified. Functional studies verified that the endocytosis-related genes CAP1 and END3 significantly increased the utilization of multiple non-preferred amino acids and reduced the accumulation of the harmful nitrogen metabolite precursor urea by regulating amino acid transporters and TOR pathway. The mitochondria-related gene ATP12, MRPL22, MRP1 and NAM9 significantly increased the utilization of multiple non-preferred amino acids and reduced accumulation of the urea by coordinately regulating nitrogen catabolism repression, Ssy1p-Ptr3p-Ssy5p signaling sensor system, amino acid transporters, TOR pathway and urea metabolism-related pathways. Furthermore, these data revealed the potential positive effects of endocytosis and mitochondrial ribosomes protein translation on nitrogen source preference. This study provides new analytical perspectives for complex regulatory networks involving nitrogen metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
38
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Wang S, Lu Y, Fu X, Wang M, Wang W, Wang J, Wang H, Liu Y. Sequential Fermentation with
Torulapora delbrueckii
and selected Saccharomyces cerevisiae for aroma enhancement of Longyan dry white Wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suwen Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Yao Lu
- College of Food science and nutritional engineering China Agricultural University Beijing 100083 China
| | - Xiaofang Fu
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Meiqi Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Wenxiu Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Jie Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Huanxiang Wang
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Yaqiong Liu
- Hebei Agricultural University Baoding Hebei 071001 China
| |
Collapse
|
40
|
Amino Acid Sensing and Assimilation by the Fungal Pathogen Candida albicans in the Human Host. Pathogens 2021; 11:pathogens11010005. [PMID: 35055954 PMCID: PMC8781990 DOI: 10.3390/pathogens11010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023] Open
Abstract
Nutrient uptake is essential for cellular life and the capacity to perceive extracellular nutrients is critical for coordinating their uptake and metabolism. Commensal fungal pathogens, e.g., Candida albicans, have evolved in close association with human hosts and are well-adapted to using diverse nutrients found in discrete host niches. Human cells that cannot synthesize all amino acids require the uptake of the “essential amino acids” to remain viable. Consistently, high levels of amino acids circulate in the blood. Host proteins are rich sources of amino acids but their use depends on proteases to cleave them into smaller peptides and free amino acids. C. albicans responds to extracellular amino acids by pleiotropically enhancing their uptake and derive energy from their catabolism to power opportunistic virulent growth. Studies using Saccharomyces cerevisiae have established paradigms to understand metabolic processes in C. albicans; however, fundamental differences exist. The advent of CRISPR/Cas9-based methods facilitate genetic analysis in C. albicans, and state-of-the-art molecular biological techniques are being applied to directly examine growth requirements in vivo and in situ in infected hosts. The combination of divergent approaches can illuminate the biological roles of individual cellular components. Here we discuss recent findings regarding nutrient sensing with a focus on amino acid uptake and metabolism, processes that underlie the virulence of C. albicans.
Collapse
|
41
|
Dey T, Rangarajan PN. Carbon starvation-induced synthesis of GDH2 and PEPCK is essential for the survival of Pichia pastoris. Biochem Biophys Res Commun 2021; 581:25-30. [PMID: 34653675 DOI: 10.1016/j.bbrc.2021.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022]
Abstract
The industrial yeast Pichia pastoris can utilize amino acids as the sole source of carbon. It possesses a post-transcriptional regulatory circuit that governs the synthesis of cytosolic glutamate dehydrogenase 2 (GDH2) and phosphoenolpyruvate carboxykinase (PEPCK), key enzymes of amino acid catabolism. Here, we demonstrate that the post-transcriptional regulatory circuit is activated during carbon starvation resulting in the translation of GDH2 and PEPCK mRNAs. GDH2 and PEPCK synthesis is abrogated in Δatg1 indicating a key role for autophagy or an autophagy-related process. Finally, carbon-starved Δgdh2 and Δpepck exhibit poor survival. This study demonstrates a key role for amino acid catabolism during carbon starvation, a phenomenon hitherto unreported in other yeast species.
Collapse
Affiliation(s)
- Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
42
|
Chen Y, Cao Y, Gai Y, Ma H, Zhu Z, Chung KR, Li H. Genome-Wide Identification and Functional Characterization of GATA Transcription Factor Gene Family in Alternaria alternata. J Fungi (Basel) 2021; 7:jof7121013. [PMID: 34946995 PMCID: PMC8706292 DOI: 10.3390/jof7121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.
Collapse
Affiliation(s)
- Yanan Chen
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yingzi Cao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yunpeng Gai
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Haijie Ma
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Zengrong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Correspondence: ; Tel.: +86-13634190823
| |
Collapse
|
43
|
Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, Galeote V. Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity. J Fungi (Basel) 2021; 7:jof7110963. [PMID: 34829250 PMCID: PMC8625066 DOI: 10.3390/jof7110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.
Collapse
Affiliation(s)
- Carmen Becerra-Rodríguez
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Géraldine Taghouti
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Sylvie Dequin
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
| | - Margarida Casal
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Sandra Paiva
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Correspondence:
| |
Collapse
|
44
|
Gil-Muñoz R, Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM. Effect of Methyl Jasmonate Doped Nanoparticles on Nitrogen Composition of Monastrell Grapes and Wines. Biomolecules 2021; 11:1631. [PMID: 34827629 PMCID: PMC8615355 DOI: 10.3390/biom11111631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Diego Fernando Paladines-Quezada
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - José Ignacio Fernández-Fernández
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - Gloria Belén Ramírez-Rodríguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| |
Collapse
|
45
|
Increase in Fruity Ester Production during Spine Grape Wine Fermentation by Goal-Directed Amino Acid Supplementation. FERMENTATION 2021. [DOI: 10.3390/fermentation7040231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this work was to enhance the levels of fruity esters in spine grape (Vitis davidii Foёx) wine by goal-directed amino acid supplementation during fermentation. HPLC and GC-MS monitored the amino acids and fruity esters, respectively, during alcoholic fermentation of spine grape and Cabernet Sauvignon grape. HPLC was also used to determine the extracellular metabolites and precursors involved in the synthesis of fruity esters. Alanine, phenylalanine, and isoleucine levels in spine grape were less than those in Cabernet Sauvignon. Pearson correlation between amino acid profile and fruity ester content in the two systems indicated that deficiencies in alanine, phenylalanine, and isoleucine levels might have limited fruity ester production in spine grape wine. Supplementation of these three amino acids based on their levels in Cabernet Sauvignon significantly increased fruity ester content in spine grape wine. Interestingly, goal-directed amino acid supplementation might have led to changes in the distribution of carbon fluxes, which contributed to the increase in fruity ester production.
Collapse
|
46
|
Hatakeyama R. Pib2 as an Emerging Master Regulator of Yeast TORC1. Biomolecules 2021; 11:biom11101489. [PMID: 34680122 PMCID: PMC8533233 DOI: 10.3390/biom11101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Cell growth is dynamically regulated in response to external cues such as nutrient availability, growth factor signals, and stresses. Central to this adaptation process is the Target of Rapamycin Complex 1 (TORC1), an evolutionarily conserved kinase complex that fine-tunes an enormous number of cellular events. How upstream signals are sensed and transmitted to TORC1 has been intensively studied in major model organisms including the budding yeast Saccharomyces cerevisiae. This field recently saw a breakthrough: the identification of yeast phosphatidylInositol(3)-phosphate binding protein 2 (Pib2) protein as a critical regulator of TORC1. Although the study of Pib2 is still in its early days, multiple groups have provided important mechanistic insights on how Pib2 relays nutrient signals to TORC1. There remain, on the other hand, significant gaps in our knowledge and mysteries that warrant further investigations. This is the first dedicated review on Pib2 that summarizes major findings and outstanding questions around this emerging key player in cell growth regulation.
Collapse
Affiliation(s)
- Riko Hatakeyama
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
47
|
Megarioti AH, Primo C, Kapetanakis GC, Athanasopoulos A, Sophianopoulou V, André B, Gournas C. The Bul1/2 Alpha-Arrestins Promote Ubiquitylation and Endocytosis of the Can1 Permease upon Cycloheximide-Induced TORC1-Hyperactivation. Int J Mol Sci 2021; 22:10208. [PMID: 34638549 PMCID: PMC8508209 DOI: 10.3390/ijms221910208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.
Collapse
Affiliation(s)
- Amalia H. Megarioti
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Cecilia Primo
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - George C. Kapetanakis
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Bruno André
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| |
Collapse
|
48
|
Effect of ammonium acetate on alcohol fermentation in cassava-alcohol fermentation process. Microbiol Res 2021; 256:126868. [PMID: 34972024 DOI: 10.1016/j.micres.2021.126868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The cassava-alcohol fermentation process employing cassava requires nitrogen source to maximize yields by a commercial strain of S. cerevisiae TG1348. In this study, a factorial experimental design was used to assess a suitable nitrogen source for growth and fermentative performance of S. cerevisiae in cassava-ethanol fermentation. The alcohol fermentation time was about 39 h for urea and ammonium acetate, which was 48 h for ammonium chloride and ammonium sulphate. The fermentation time was reduced by 19 % when using urea and ammonium acetate as nitrogen source. Ammonium acetate leaded to the highest alcohol yield, which was 4% higher than for ammonium sulphate. In addition, byproduct formation differed obviously between the nitrogen sources. The glycerol yields were similar for urea, ammonium sulphate and ammonium chloride but were 24 % lower for ammonium acetate. However, glycerol yield for ammonium carbonate was higher than for other nitrogen sources. Clearly, in batch cultures the ammonium acetate not only increased ethanol generation, but also decreased glycerol generation. In order to understand why ammonium acetate promotes alcohol fermentation, acetic acid was added to different nitrogen sources. The weight loss effect of ammonium sulphate adding acetic acid and ammonium acetate as nitrogen source was the same. The fermentation time was shortened by adding acetic acid. And pH was increased by addition of acetic acid when ammonium sulfate and urea were used as nitrogen sources. The results showed that the acetate root plays an important role in ammonium acetate. The results of this study could facilitate the development of new strategies to control fermentation performance.
Collapse
|
49
|
Shen P, Niu D, Permaul K, Tian K, Singh S, Wang Z. Exploitation of ammonia-inducible promoters for enzyme overexpression in Bacillus licheniformis. J Ind Microbiol Biotechnol 2021; 48:6298226. [PMID: 34124759 PMCID: PMC9113418 DOI: 10.1093/jimb/kuab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Ammonium hydroxide is conventionally used as an alkaline reagent and cost-effective nitrogen source in enzyme manufacturing processes. However, few ammonia-inducible enzyme expression systems have been described thus far. In this study, genomic-wide transcriptional changes in Bacillus licheniformis CBBD302 cultivated in media supplemented with ammonia were analyzed, resulting in identification of 1443 differently expressed genes, of which 859 genes were upregulated and 584 downregulated. Subsequently, the nucleotide sequences of ammonia-inducible promoters were analyzed and their functionally-mediated expression of amyL, encoding an α-amylase, was shown. TRNA_RS39005 (copA), TRNA_RS41250 (sacA), TRNA_RS23130 (pdpX), TRNA_RS42535 (ald), TRNA_RS31535 (plp), and TRNA_RS23240 (dfp) were selected out of the 859 upregulated genes and each showed higher transcription levels (FPKM values) in the presence of ammonia and glucose than that of the control. The promoters, PcopA from copA, PsacA from sacA, PpdpX from pdpX, Pald from ald, and Pplp from plp, except Pdfp from dfp, were able to mediate amyL expression and were significantly induced by ammonia. The highest enzyme expression level was mediated by Pplp and represented 23% more α-amylase activity after induction by ammonia in a 5-L fermenter. In conclusion, B. licheniformis possesses glucose-independent ammonia-inducible promoters, which can be used to mediate enzyme expression and therefore enhance the enzyme yield in fermentations conventionally fed with ammonia for pH adjustment and nitrogen supply.
Collapse
Affiliation(s)
- Peili Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kugen Permaul
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
50
|
Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:463. [PMID: 34201222 PMCID: PMC8229676 DOI: 10.3390/jof7060463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ΔMogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ΔMogln2 on MM. The ΔMogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ΔMogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Lianyu Lin
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Wajjiha Batool
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Ammarah Shabbir
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
- Marine and Agricultural Biotechnology Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Tang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| |
Collapse
|