1
|
Nagamine R, Korenaga H, Sakai M, Secombes CJ, Kono T. Characterization and expression analysis of Th-POK from the Japanese pufferfish, Takifugu rubripes. Comp Biochem Physiol B Biochem Mol Biol 2012. [PMID: 23195130 DOI: 10.1016/j.cbpb.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In fish, T cell lineage commitment has not been studied, although there are reports related to CD4 and CD8 positive cells. This study describes the cloning and analysis of a master regulator involved in this process, the Th-POK gene in Japanese pufferfish, Takifugu rubripes. The Fugu Th-POK cDNA was composed of 1901 bp, with a 75 bp 5'-UTR, a 131 bp 3'-UTR, and a 1692 bp open reading frame which translates into a peptide of 564 amino acid residues. The deduced Fugu Th-POK protein contained a BTB/POZ domain, Krüppel motif (H/C linker) and Krüppel-like zinc finger DNA binding domain with C2H2 structure. The homology analysis of Fugu Th-POK (ZBTB7B) with other known ZBTB7 members (ZBTB7A, 7C) showed low identity, and the phylogenetic tree analysis showed the Fugu Th-POK clustered with the mammalian Th-POK, away from other ZBTB7 members. The analysis of transcriptional control region of Th-POK gene suggested that the 5'-flanking region and intron 1 include numerous canonical binding motifs for transcription factors regulating T cell development. The genomic organization of the Fugu Th-POK gene was composed of three exons and two introns, and its structure was identical to that of its human counterpart. Comparison of the Fugu and human genomes showed that high levels of conserved synteny existed around the Th-POK gene. The high expression of the Fugu Th-POK gene in unstimulated tissues was seen in head kidney, muscle, skin and gills. Moreover, the expression of the Fugu Th-POK gene in thymic cells was increased by LPS, polyI:C and PHA stimulation.
Collapse
Affiliation(s)
- Ryusuke Nagamine
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | | | | | | | | |
Collapse
|
2
|
Markova EN, Kantidze OL, Razin SV. Transcription of the AML1/ETO chimera is guided by the P2 promoter of the AML1 gene in the Kasumi-1 cell line. Gene 2012; 510:142-6. [PMID: 22995345 DOI: 10.1016/j.gene.2012.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023]
Abstract
Chromosomal translocation t (8;21)(q22;22) is one of the most frequent cytogenetic abnormalities found in acute myeloid leukaemia (AML). It generates the AML1/ETO fusion gene, which itself supports human haematopoietic stem cell self-renewal. However, the mechanism guiding transcription of this chimeric gene remains unclear. In our work, we attempted to shed light on this essential issue. We investigated the promoter from which transcription of the AML1/ETO gene is initiated and defined the three-dimensional structure of the whole rearranged locus.
Collapse
Affiliation(s)
- Elena N Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia
| | | | | |
Collapse
|
3
|
Markova EN, Kantidze OL, Razin SV. Transcriptional regulation and spatial organisation of the human AML1/RUNX1 gene. J Cell Biochem 2011; 112:1997-2005. [PMID: 21445863 DOI: 10.1002/jcb.23117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor RUNX1 is a key regulator of haematopoiesis in vertebrates. In humans, the 260-kb long gene coding for this transcription factor is located on chromosome 21. This gene is transcribed from two alternative promoters that are commonly referred to as the distal and the proximal promoters. In model experiments, these two promoters were found to be active in cells of different lineages, although RUNX1 is preferentially expressed in haematopoietic cells. In the present study, we attempted to identify the regulatory elements that could guide tissue-specific expression of the RUNX1 gene. Two such regulatory elements were found within the RUNX1 gene. One of these elements, located within intron 1, is a haematopoietic-specific enhancer. The second regulatory element, located within intron 5.2, contributes to the formation of an active chromatin hub, which integrates the above-mentioned enhancer and the P1 and P2 promoters.
Collapse
Affiliation(s)
- Elena N Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
4
|
Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice. Differentiation 2011; 81:261-8. [DOI: 10.1016/j.diff.2011.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/14/2011] [Accepted: 02/01/2011] [Indexed: 11/20/2022]
|
5
|
Lung tissue regeneration after induced injury in Runx3 KO mice. Cell Tissue Res 2010; 341:465-70. [PMID: 20623301 DOI: 10.1007/s00441-010-1011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023]
Abstract
Runx3 is essential for normal murine lung development, and Runx3 knockout (KO) mice, which die soon after birth, exhibit alveolar hyperplasia. Wound healing, tissue repair, and regeneration mechanisms are necessary in humans for proper early lung development. Previous studies have reported that various signaling molecules, such as pErk, Tgf-beta1, CCSP, pJnk, Smad3, and HSP70 are closely related to wound healing. In order to confirm the relationship between lung defects caused by the loss of function of Runx3 and wound healing, we have localized various wound-healing markers after laser irradiation in wild-type and in Runx3 KO mouse lungs at post-natal day 1. Our results indicate that pERK, Tgf-beta1, CCSP, pJnk, and HSP70 are dramatically down-regulated by loss of Runx3 during lung wound healing. However, Smad3 is up-regulated in the Runx3 KO laser-irradiated lung region. Therefore, the lung wound-healing mechanism is inhibited in the Runx3 KO mouse, which shows abnormal lung architecture, by reduced pErk, Tgf-beta1, CCSP, pJnk, and HSP70 and by induced Smad3.
Collapse
|
6
|
Abstract
OBJECTIVE Mutations in the RUNX2 gene, a master regulator of bone formation, have been identified in cleidocranial dysplasia (CCD) patients. CCD is a rare autosomal-dominant disease characterized by the delayed closure of cranial sutures, defects in clavicle formation, and supernumerary teeth. The purposes of this study were to identify genetic causes of two CCD nuclear families and to report their clinical phenotypes. MATERIALS AND METHODS We identified two CCD nuclear families and performed mutational analyses to clarify the underlying molecular genetic etiology. RESULTS Mutational analysis revealed a novel nonsense mutation (c.273T>A, p.L93X) in family 1 and a de novo missense one (c.673C>T, p.R225W) in family 2. Individuals with a nonsense mutation showed maxillary hypoplasia, delayed eruption, multiple supernumerary teeth, and normal stature. In contrast, an individual with a de novo missense mutation in the Runt domain showed only one supernumerary tooth and short stature. CONCLUSIONS Mutational and phenotypic analyses showed that the severity of mutations on the skeletal system may not necessarily correlate with that of the disruption of tooth development.
Collapse
Affiliation(s)
- H-M Ryoo
- Department of Cell and Developmental Biology, Dental Research Institute and BK21 Program, School of Dentistry, Seoul National University, Seoul 110-768, Korea
| | | | | | | | | |
Collapse
|
7
|
Zhang S, Wei L, Zhang A, Zhang L, Yu H. RUNX3 Gene Methylation in Epithelial Ovarian Cancer Tissues and Ovarian Cancer Cell Lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:307-11. [PMID: 19645591 DOI: 10.1089/omi.2009.0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong Province, People's Republic of China
| | - Lingxia Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong Province, People's Republic of China
| | - Aifeng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong Province, People's Republic of China
| | - Linlin Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong Province, People's Republic of China
| | - Hao Yu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong Province, People's Republic of China
| |
Collapse
|
8
|
Zou L, Zou X, Li H, Mygind T, Zeng Y, Lü N, Bünger C. Molecular mechanism of osteochondroprogenitor fate determination during bone formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:431-41. [PMID: 17120800 DOI: 10.1007/978-0-387-34133-0_28] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoblasts and chondrocytes, which derive from a common mesenchymal precursor (osteochondroprogenitor), are involved in bone formation and remodeling in vivo. Determination of osteochondroprogenitor fate is under the control of complex hormonal and local factors converging onto a series of temporospatial dependent transcription regulators. Sox9, together with L-Sox5 and Sox6, of the Sox family is required for chondrogenic differentiation commitment, while Runx2/Cbfa 1, a member of runt family and Osterix/Osx, a novel zinc finger-containing transcription factor play a pivotal role in osteoblast differentiation decision and hypertrophic chondrocyte maturation. Recent in vitro and in vivo evidence suggests beta-catenin, a transcriptional activator in the canonical Wnt pathway, can act as a determinant factor for controlling chondrocyte and osteoblast differentiation. Here we focus on several intensively studied transcription factors and Wnt/beta-catenin signal molecules to illustrate the regulatory mechanism in directing commitment between osteoblast and chondrocyte, which will eventually allow us to properly manipulate the mesenchymal progenitor cell differentiation on bone and regeneration of cartilage tissue engineering.
Collapse
Affiliation(s)
- Lijin Zou
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Gargano G, Calcara D, Corsale S, Agnese V, Intrivici C, Fulfaro F, Pantuso G, Cajozzo M, Morello V, Tomasino RM, Ottini L, Colucci G, Bazan V, Russo A. Aberrant methylation within RUNX3 CpG island associated with the nuclear and mitochondrial microsatellite instability in sporadic gastric cancers. Results of a GOIM (Gruppo Oncologico dell'Italia Meridionale) prospective study. Ann Oncol 2007; 18 Suppl 6:vi103-9. [PMID: 17591800 DOI: 10.1093/annonc/mdm236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) development is a multistep process, during which numerous alterations accumulate in nuclear and mitochondrial DNA. A deficiency of repair machinery brings about an accumulation of errors introduced within simple repetitive microsatellite sequences during replication of DNA. Aberrant methylation is related to microsatellite instability (MSI) by the silencing of the hMLH1 gene. The aim of this study is to investigate a possible relationship between the RUNX3 promoter methylation, nuclear microsatellite instability (nMSI) and mitochondrial microsatellite instability (mtMSI), in order to clarify its biological role in GC. PATIENTS AND METHODS nMSI and mtMSI were evaluated in a consecutive series of 100 GC patients. For the analysis of the nMSI, we followed the National Cancer Institute guidelines. mtMSI was assessed by analyzing a portion of the displacement-loop region. The aberrant methylation of RUNX3 was analyzed in 40 GC patients by methylation-specific PCR. RESULTS Overall, 55% of GC demonstrated methylation of the RUNX3 promoter; 82% of GC was classified as stable microsatellite instability, 5% as low-level microsatellite instability and 13% as high-level microsatellite instability (MSI-H); mtMSI was detected in 11% of GC. A significant association was found between mtMSI and tumor-node-metastasis staging, furthermore an interesting association between MSI-H status, mtMSI and RUNX3 methylation. CONCLUSION These data suggest that RUNX3 is an important target of methylation in the evolution of mtMSI and nMSI-H GC.
Collapse
Affiliation(s)
- G Gargano
- Section of Medical Oncology, Department of Oncology, Università di Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ng CEL, Osato M, Tay BH, Venkatesh B, Ito Y. cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes). Gene 2007; 399:162-73. [PMID: 17604919 DOI: 10.1016/j.gene.2007.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
The Runx family genes are involved in hematopoiesis, osteogenesis and neuropoiesis, and mutations in these genes have been frequently associated with human hereditary diseases and cancers. Here we report the cDNA cloning of the full Runx gene family of the pufferfish (Fugu rubripes), which comprises frRunx1, frRunx2, frRunx3, frRunt and frCbfb. Fugu is evolutionarily distant from mammals, thus the annotation of the frRunx family genes greatly facilitates comparative genomics approaches. Protein sequence comparison revealed that the fugu genes show high conservation in the Runt domain and PY and VWRPY motifs. frRunx1 had an extra stretch of eight histidine residues, while frRunx2 lacked the poly-glutamine/-alanine stretch that is a hallmark of the mammalian Runx2 genes. Analysis of the promoter regions revealed high conservation of the binding sites for transcription factors, including Runx sites in the P1 promoters. Abundant CpG dinucleotides in the P2 promoter regions were also detected. The expression patterns of the frRunx family genes in various tissues showed high similarity to those of the mammalian Runx genes. The genomic structures of the fugu and mammalian Runx genes are largely conserved except for a split exon 2 in frRunx1 and an extra exon in the C-terminal region of frRunx3 that is missing in mammalian Runx3 genes. The similarities and differences between the Runx family genes of fugu and mammals will improve our understanding of the functions of these proteins.
Collapse
Affiliation(s)
- Cherry Ee Lin Ng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|
11
|
Pinto JP, Conceição NM, Viegas CSB, Leite RB, Hurst LD, Kelsh RN, Cancela ML. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res 2005; 20:1440-53. [PMID: 16007341 DOI: 10.1359/jbmr.050318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/19/2005] [Accepted: 03/16/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED The zebrafish runx2b transcription factor is an ortholog of RUNX2 and is highly conserved at the structural level. The runx2b pebp2alphaA2 isoform induces osteocalcin gene expression by binding to a specific region of the promoter and seems to have been selectively conserved in the teleost lineage. INTRODUCTION RUNX2 (also known as CBFA1/Osf2/AML3/PEBP2alphaA) is a transcription factor essential for bone formation in mammals, as well as for osteoblast and chondrocyte differentiation, through regulation of expression of several bone- and cartilage-related genes. Since its discovery, Runx2 has been the subject of intense studies, mainly focused in unveiling regulatory targets of this transcription factor in high vertebrates. However, no single study has been published addressing the role of Runx2 in bone metabolism of low vertebrates. While analyzing the zebrafish (Danio rerio) runx2 gene, we identified the presence of two orthologs of RUNX2, which we named runx2a and runx2b and cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2. MATERIALS AND METHODS Zebrafish runx2b gene and cDNA were isolated by RT-PCR and sequence data mining. The 3D structure of runx2b runt domain was modeled using mouse Runx1 runt as template. The regulatory effect of pebp2alphaA2 on osteocalcin expression was analyzed by transient co-transfection experiments using a luciferase reporter gene. Phylogenetic analysis of available Runx sequences was performed with TREE_PUZZLE 5.2. and MrBayes. RESULTS AND CONCLUSIONS We showed that the runx2b gene structure is highly conserved between mammals and fish. Zebrafish runx2b has two promoter regions separated by a large intron. Sequence analysis suggested that the runx2b gene encodes three distinct isoforms, by a combination of alternative splicing and differential promoter activation, as described for the human gene. We have cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2, and showed its high degree of sequence similarity with the mammalian pebp2alphaA. The cloned zebrafish osteocalcin promoter was found to contain three putative runx2-binding elements, and one of them, located at -221 from the ATG, was capable of mediating pebp2alphaA2 transactivation. In addition, cross-species transactivation was also confirmed because the mouse Cbfa1 was able to induce the zebrafish osteocalcin promoter, whereas the zebrafish pebp2alphaA2 activated the murine osteocalcin promoter. These results are consistent with the high degree of evolutionary conservation of these proteins. The 3D structure of the runx2b runt domain was modeled based on the runt domain of mouse Runx1. Results show a high degree of similarity in the 3D configuration of the DNA binding regions from both domains, with significant differences only observed in non-DNA binding regions or in DNA-binding regions known to accommodate considerable structure flexibility. Phylogenetic analysis was used to clarify the relationship between the isoforms of each of the two zebrafish Runx2 orthologs and other Runx proteins. Both zebrafish runx2 genes clustered with other Runx2 sequences. The duplication event seemed, however, to be so old that, whereas Runx2b clearly clusters with the other fish sequences, it is unclear whether Runx2a clusters with Runx2 from higher vertebrates or from other fish.
Collapse
Affiliation(s)
- Jorge P Pinto
- CCMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
12
|
van der Meulen T, Kranenbarg S, Schipper H, Samallo J, van Leeuwen JL, Franssen H. Identification and characterisation of two runx2 homologues in zebrafish with different expression patterns. ACTA ACUST UNITED AC 2005; 1729:105-17. [PMID: 15894389 DOI: 10.1016/j.bbaexp.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 01/14/2023]
Abstract
Genome and gene duplications are considered to be the impetus to generate new genes, as the presence of multiple copies of a gene allows for paralogues to adopt novel function. After at least two rounds of genome/gene duplication, the Runt gene family consists of three members in vertebrates, instead of one in invertebrates. One of the family members, Runx2, plays a key role in the development of bone, a tissue that first occurs in vertebrates. The family has thus gained new gene function in the course of evolution. Two Runx2 genes were cloned in the vertebrate model system the zebrafish (Danio rerio). The expression patterns of the two genes differ and their kinetics differ up to four fold. In addition, splice forms exist that are novel when compared with mammals. Together, these findings comprise opportunities for selection and retention of the paralogues towards divergent and possibly new function.
Collapse
Affiliation(s)
- T van der Meulen
- Experimental Zoology group, Wageningen University, Marijkeweg 40, 6709 PG, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Flores MV, Tsang VWK, Hu W, Kalev-Zylinska M, Postlethwait J, Crosier P, Crosier K, Fisher S. Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expr Patterns 2005; 4:573-81. [PMID: 15261836 DOI: 10.1016/j.modgep.2004.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/18/2022]
Abstract
The differentiation of cells in the vertebrate skeleton is controlled by a precise genetic program. One crucial regulatory gene in the pathway encodes the transcription factor Runx2, which in mouse is required for differentiation of all osteoblasts and the proper development of a subset of hypertrophic chondrocytes. To explore the differentiation of skeletogenic cells in the model organism zebrafish (Danio rerio), we have identified two orthologues of the mammalian gene, runx2a and runx2b. Both genes share sequence homology and gene structure with the mammalian genes, and map to regions of the zebrafish genome displaying conserved synteny with the region where the human gene is localized. While both genes are expressed in developing skeletal elements, they show evidence of partial divergence in expression pattern, possibly explaining why both orthologues have been retained through teleost evolution.
Collapse
Affiliation(s)
- Maria Vega Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Venkatesh B, Yap WH. Comparative genomics using fugu: a tool for the identification of conserved vertebrate cis-regulatory elements. Bioessays 2005; 27:100-7. [PMID: 15612032 DOI: 10.1002/bies.20134] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.
Collapse
Affiliation(s)
- Byrappa Venkatesh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673.
| | | |
Collapse
|
15
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
16
|
Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJK, Cooke JE, Elgar G. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 2005; 3:e7. [PMID: 15630479 PMCID: PMC526512 DOI: 10.1371/journal.pbio.0030007] [Citation(s) in RCA: 682] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/21/2004] [Indexed: 02/06/2023] Open
Abstract
In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.
Collapse
Affiliation(s)
- Adam Woolfe
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Martin Goodson
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Debbie K Goode
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Phil Snell
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Gayle K McEwen
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Tanya Vavouri
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Sarah F Smith
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Phil North
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Heather Callaway
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Krys Kelly
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Klaudia Walter
- 2Medical Research Council Biostatistics Unit, Institute of Public Health, Addenbrookes HospitalCambridgeUnited Kingdom
| | - Irina Abnizova
- 2Medical Research Council Biostatistics Unit, Institute of Public Health, Addenbrookes HospitalCambridgeUnited Kingdom
| | - Walter Gilks
- 2Medical Research Council Biostatistics Unit, Institute of Public Health, Addenbrookes HospitalCambridgeUnited Kingdom
| | - Yvonne J. K Edwards
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Julie E Cooke
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| | - Greg Elgar
- 1Medical Research Council Rosalind Franklin Centre for Genomics ResearchHinxton, CambridgeUnited Kingdom
| |
Collapse
|
17
|
Glusman G, Kaur A, Hood L, Rowen L. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. BMC Evol Biol 2004; 4:43. [PMID: 15527507 PMCID: PMC533870 DOI: 10.1186/1471-2148-4-43] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/04/2004] [Indexed: 11/10/2022] Open
Abstract
Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family), but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes) reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.
Collapse
Affiliation(s)
- Gustavo Glusman
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Amardeep Kaur
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Leroy Hood
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Lee Rowen
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| |
Collapse
|
18
|
Terry A, Kilbey A, Vaillant F, Stewart M, Jenkins A, Cameron E, Neil JC. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain. Gene 2004; 336:115-25. [PMID: 15225881 DOI: 10.1016/j.gene.2004.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/08/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The Runx2 (Cbfa1, Aml3, PEBP2alphaA) gene plays an essential role in bone development and is one of a three-member family of closely related genes that encode the alpha-chain DNA binding components of the heterodimeric core binding factor complex. While all three mammalian Runx genes share a complex dual promoter structure (P1, P2) and display alternative splicing, a distinctive feature of Runx2 is the potential to encode larger isoforms in which the C-terminal domain encoded by the standard 3' terminal exon (exon 6) is replaced by an extended 200-201 amino acid C-terminal sequence including an extensive proline-rich domain and a C-terminal amphipathic helix. We report that the novel exon that gives rise to these variants (exon 6.1) is located over 100 kb downstream of exon 6 in the mouse, rat and human genomes. Exon 6.1 spans a CpG-rich island, and human/rodent conservation is evident through the coding sequence and the 3' untranslated region (UTR). Reverse transcriptase polymerase chain reaction (RT-PCR) and blot hybridisation analyses reveal that exon 6.1 is utilised at low levels in all mouse tissues and cell lines that express Runx2, regardless of which promoter is active, giving Runx2 the potential to encode more than 12 distinct isoforms. RT-PCR analysis of human RUNX2 exon 6.1 expression shows that utilisation of this exon is also conserved. In vitro transcription/translation of cDNAs encoding several exon 6.1 isoforms reveals that the novel Runx proteins are able to bind specifically to canonical Runx DNA target sequences. Antibodies raised to the unique C-terminal domain were shown to be reactive by immunoprecipitation and immunoblot assay, and were used in confocal immunofluorescence microscopy to reveal low level cytoplasmic staining in osteosarcoma and lymphoma cells that express high levels of Runx2 mRNA. However, reactive protein could not be detected in immunoblots of extracts from either cell type, suggesting that these proteins are unstable in lymphoid and osteosarcoma cells. In conclusion, the conservation and widespread utilisation of Runx2 exon 6.1 suggest that its encoded isoforms play an as yet undetermined role in mammalian development.
Collapse
Affiliation(s)
- Anne Terry
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet 2004; 5:456-65. [PMID: 15153998 DOI: 10.1038/nrg1350] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dario Boffelli
- DOE Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | |
Collapse
|
20
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
21
|
Stock M, Schäfer H, Fliegauf M, Otto F. Identification of novel genes of the bone-specific transcription factor Runx2. J Bone Miner Res 2004; 19:959-72. [PMID: 15190888 DOI: 10.1359/jbmr.2004.19.6.959] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The transcription factor Runx2 is a key regulator of osteoblast development and plays a role in chondrocyte maturation. The identification of transcriptional target genes of Runx2 may yield insight into how osteoblastic differentiation is achieved on a molecular level. MATERIALS AND METHODS Using a differential hybridization technique (selective amplification through biotin and restriction-mediated enrichment [SABRE]) and cDNA microarray analysis, 15 differentially expressed genes were identified using mRNA from C3H 10Tl/2 cells with constitutive and inducible overexpression of Runx2. RESULTS AND CONCLUSIONS Among the 15 genes identified, 4 encode the extracellular matrix proteins Ecml, Mgp, Fbn5, and Osf-2, three represent the transcription factors Esxl, Osrl, and Sox9, whereas others were Ptn, Npdc-1, Higl, and Tem l. The gene for Pttg1ip was upregulated in Runx2-expressing cells. Pttg1ip is widely expressed during development, but at highest levels in limbs and gonads. The Pttg1ip promoter binds Runx2 in a sequence specific manner, and Runx2 is able to transactivate the Pttg lip promoter in MC3T3-El cells. Therefore, Pttg1ip is likely tobe a novel direct transcriptional target gene of Runx2. In conclusion, the genes identified in this study are important candidates for mediating Runx2 induced cellular differentiation.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, University of Freiburg Medical Center, Germany
| | | | | | | |
Collapse
|
22
|
Stricker S, Poustka AJ, Wiecha U, Stiege A, Hecht J, Panopoulou G, Vilcinskas A, Mundlos S, Seitz V. A single amphioxus and sea urchin runt-gene suggests that runt-gene duplications occurred in early chordate evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:673-684. [PMID: 12798364 DOI: 10.1016/s0145-305x(03)00037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Runt-homologous molecules are characterized by their DNA binding runt-domain which is highly conserved within bilaterians. The three mammalian runt-genes are master regulators in cartilage/bone formation and hematopoiesis. Historically these features evolved in Craniota and might have been promoted by runt-gene duplication events. The purpose of this study was therefore to investigate how many runt-genes exist in the stem species of chordates, by analyzing the number of runt-genes in what is likely to be the closest living relative of Craniota-amphioxus. To acquire further insight into the possible role of runt-genes in early chordate evolution we have determined the number of runt-genes in sea urchins and have analyzed the runt-expression pattern in this species. Our findings demonstrate the presence of a single runt-gene in amphioxus and sea urchin, which makes it highly likely that the stem species of chordates harbored only a single runt-gene. This suggests that runt-gene duplications occurred later in chordate phylogeny, and are possibly also associated with the evolution of features such as hematopoiesis, cartilage and bone development. In sea urchin embryos runt-expression involves cells of endodermal, mesodermal and ectodermal origin. This complex pattern of expression might reflect the multiple roles played by runt-genes in mammals. A strong runt-signal in the gastrointestinal tract of the sea urchin is in line with runt-expression in the intestine of nematodes and in the murine gastrointestinal tract, and seems to be one of the phylogenetically ancient runt-expression domains.
Collapse
Affiliation(s)
- S Stricker
- Max Planck Institute Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Levanon D, Brenner O, Otto F, Groner Y. Runx3 knockouts and stomach cancer. EMBO Rep 2003; 4:560-4. [PMID: 12776174 PMCID: PMC1319207 DOI: 10.1038/sj.embor.embor868] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 04/29/2003] [Indexed: 11/09/2022] Open
Abstract
Gene targeting often results in knockout mice that show several phenotypes, some of which may not directly relate to the intrinsic function of the disrupted gene. Hence, to study the biological function of genes using knockout mice, one must identify the defects that are directly due to the loss of the targeted gene. Runx3 is a transcription factor that regulates lineage-specific gene expression in developmental processes. Recently, two groups produced Runx3 knockout mice. Two comparable defects were identified in both knockout strains, one involved neurogenesis and the other thymopoiesis. In addition, a stomach defect pertaining to gastric cancer was observed in one of the mutant strains, but not in the other. Here, we assess the differences between the two Runx3 mutant strains and discuss further studies that could reconcile these discrepancies. This article highlights the difficulties of inferring gene function through the interpretation of knockout phenotypes.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Florian Otto
- Department of Hematology/Oncology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Tel: +972 8 934 3972; Fax: +972 8 934 4108;
| |
Collapse
|
24
|
Rennert J, Coffman JA, Mushegian AR, Robertson AJ. The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol Biol 2003; 3:4. [PMID: 12659662 PMCID: PMC153517 DOI: 10.1186/1471-2148-3-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Accepted: 03/24/2003] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Runx genes encode proteins defined by the highly conserved Runt DNA-binding domain. Studies of Runx genes and proteins in model organisms indicate that they are key transcriptional regulators of animal development. However, little is known about Runx gene evolution. RESULTS A phylogenetically broad sampling of publicly available Runx gene sequences was collected. In addition to the published sequences from mouse, sea urchin, Drosophila melanogaster and Caenorhabditis elegans, we collected several previously uncharacterised Runx sequences from public genome sequence databases. Among deuterostomes, mouse and pufferfish each contain three Runx genes, while the tunicate Ciona intestinalis and the sea urchin Strongylocentrotus purpuratus were each found to have only one Runx gene. Among protostomes, C. elegans has a single Runx gene, while Anopheles gambiae has three and D. melanogaster has four, including two genes that have not been previously described. Comparative sequence analysis reveals two highly conserved introns, one within and one just downstream of the Runt domain. All vertebrate Runx genes utilize two alternative promoters. CONCLUSIONS In the current public sequence database, the Runt domain is found only in bilaterians, suggesting that it may be a metazoan invention. Bilaterians appear to ancestrally contain a single Runx gene, suggesting that the multiple Runx genes in vertebrates and insects arose by independent duplication events within those respective lineages. At least two introns were present in the primordial bilaterian Runx gene. Alternative promoter usage arose prior to the duplication events that gave rise to three Runx genes in vertebrates.
Collapse
Affiliation(s)
- Jessica Rennert
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
- Computational Biosciences Program, Arizona State University, Tempe, AZ 85287, USA
| | - James A Coffman
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - Anthony J Robertson
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| |
Collapse
|