1
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
2
|
Lamelas L, Aleix-Mata G, Rovatsos M, Marchal JA, Palomeque T, Lorite P, Sánchez A. Complete Mitochondrial Genome of Three Species of the Genus Microtus (Arvicolinae, Rodentia). Animals (Basel) 2020; 10:E2130. [PMID: 33207831 PMCID: PMC7696944 DOI: 10.3390/ani10112130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
The 65 species of the genus Microtus have unusual sex-related genetic features and a high rate of karyotype variation. However, only nine complete mitogenomes for these species are currently available. We describe the complete mitogenome sequences of three Microtus, which vary in length from 16,295 bp to 16,331 bp, contain 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes and a control region. The length of the 13 PCGs and the coded proteins is the same in all three species, and the start and stop codons are conserved. The non-coding regions include the L-strand origin of replication, with the same sequence of 35 bp, and the control region, which varies between 896 bp and 930 bp in length. The control region includes three domains (Domains I, II and III) with extended termination-associated sequences (ETAS-1 and ETAS-2) in Domain I. Domain II and Domain III include five (CSB-B, C, D, E and F) and three (CSB-1, CSB-2, and CSB-3) conserved sequence blocks, respectively. Phylogenetic reconstructions using the mitochondrial genomes of all the available Microtus species and one representative species from another genus of the Arvicolinae subfamily reproduced the established phylogenetic relationships for all the Arvicolinae genera that were analyzed.
Collapse
Affiliation(s)
- Luz Lamelas
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| | - Gaël Aleix-Mata
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic;
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain; (L.L.); (G.A.-M.); (J.A.M.); (T.P.); (P.L.)
| |
Collapse
|
3
|
Zhang J, Xiao H, Bi Y, Long Q, Gong Y, Dai J, Sun M, Cun W. Characteristics of the tree shrew humoral immune system. Mol Immunol 2020; 127:175-185. [PMID: 32992149 DOI: 10.1016/j.molimm.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies require an immune response similar to that of humans in a small animal model that is convenient to operate. Based on genome alignment, tree shrews are small animals considered to be more similar to primates than are rodents, and many human disease models have been established with tree shrews. However, the characteristics of the humoral immune response of tree shrews remain to be elucidated. In this study, the genetic sequence of the heavy chain constant region of tree shrew immunoglobulin (Ig) was complemented, and the results of immunoglobulin domain homology and transcriptome analysis showed that the tree shrew genome encodes only four classes of antibodies and does not encode IgD. The oldest IgM antibody has the highest homology with primates. After the complete sequence of each type of antibody was obtained, the tree shrew antibody protein was further expressed and purified by in vitro recombination, and an IgG quantitative evaluation system was established. The highly effective immuno protective effect induced by HSV-1 infection and the significant bactericidal effect induced by Neisseria meningitidis group C polysaccharide immunization showed that tree shrews exhibited immune responses more similar to humans than to mice. This may provide better predictive value for vaccine preclinical research.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Hongjian Xiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yanwei Bi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Qiong Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yue Gong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
4
|
Bannikova AA, Lebedev VS, Poplavskaya NS, Simanovsky SA, Undrakhbayar E, Adiya Y, Surov AS. Phylogeny and phylogeography of arvicoline and lagurine voles of Mongolia. FOLIA ZOOLOGICA 2019. [DOI: 10.25225/fozo.002.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Anna A. Bannikova
- Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia; e-mail:
| | - Vladimir S. Lebedev
- Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia; e-mail:
| | - Natalia S. Poplavskaya
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, 119071 Moscow, Russia; e-mail: , ,
| | - Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, 119071 Moscow, Russia; e-mail: , ,
| | - Enkhbat Undrakhbayar
- Institute of General and Experimental Biology of Mongolian Academy of Science, 13330 Ulaanbaatar, Mongolia; e-mail: ,
| | - Yansanjav Adiya
- Institute of General and Experimental Biology of Mongolian Academy of Science, 13330 Ulaanbaatar, Mongolia; e-mail: ,
| | - Alexei S. Surov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, 119071 Moscow, Russia; e-mail: , ,
| |
Collapse
|
5
|
Yang X, Ao W, Xu D, Feng S, Sun G, Dou H, Sha W, Zhang H. The complete mitochondrial genome of Daurian pika ( Ochotona dauurica). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1551087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, PR China
| | - Wen Ao
- Hulun Lake National Nature Reserve, Hulunbuir, PR China
| | - Dajie Xu
- College of Life Science, Qufu Normal University, Qufu, PR China
| | - Shi Feng
- College of Life Science, Qufu Normal University, Qufu, PR China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, PR China
| | - Huashan Dou
- Hulun Lake National Nature Reserve, Hulunbuir, PR China
| | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, PR China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, PR China
| |
Collapse
|
6
|
Huang HH, Yu C. Clustering DNA sequences using the out-of-place measure with reduced n-grams. J Theor Biol 2016; 406:61-72. [PMID: 27375217 DOI: 10.1016/j.jtbi.2016.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/18/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022]
Abstract
The alignment-free n-gram based method with the out-of-place measures as the distance has been successfully applied to automatic text or natural languages categorization in real time. However, it is not clear about its performance and the selection of n for comparing genome sequences. Here we propose a symmetric version of the out-of-place measure and a new approach for finding the optimal range of n to construct a phylogenetic tree with the symmetric out-of-place measures. Our method is then applied to real genome sequence datasets. The resulting phylogenetic trees are matching with the standard biological classification. It shows that our proposed method is a very powerful tool for phylogenetic analysis in terms of both classification accuracy and computation efficiency.
Collapse
Affiliation(s)
- Hsin-Hsiung Huang
- Department of Statistics, University of Central Florida, Orlando, FL 32816, USA.
| | - Chenglong Yu
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Medicine, Flinders University, Adelaide, SA 5001, Australia
| |
Collapse
|
7
|
Phylogenetic analyses of the harvest mouse, Micromys minutus (Rodentia: Muridae) based on the complete mitogenome sequences. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kawahara M, Koyama S, Iimura S, Yamazaki W, Tanaka A, Kohri N, Sasaki K, Takahashi M. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria. Sci Rep 2015; 5:14512. [PMID: 26416548 PMCID: PMC4586891 DOI: 10.1038/srep14512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/02/2015] [Indexed: 11/09/2022] Open
Abstract
Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals.
Collapse
Affiliation(s)
- Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Shiori Koyama
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Satomi Iimura
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Wataru Yamazaki
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Aiko Tanaka
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Nanami Kohri
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Keisuke Sasaki
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| |
Collapse
|
9
|
Zhou X, Sun F, Xu S, Yang G, Li M. The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful. Integr Zool 2015; 10:186-98. [PMID: 25311886 DOI: 10.1111/1749-4877.12116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The well-accepted Euarchonta grandorder is a pruned version of Archonta nested within the Euarchontoglires (or Supraprimates) clade. At present, it includes tree shrews (Scandentia), flying lemurs (Dermoptera) and primates (Primates). Here, a phylogenomic dataset containing 1912 exons from 22 representative mammals was compiled to investigate the phylogenetic relationships within this group. Phylogenetic analyses and hypothesis testing suggested that tree shrews can be classified as a sister group to Primates or to Glires or even as a basal clade within Euarchontoglires. Further analyses of both modified and original previously published datasets found that the phylogenetic position of tree shrews is unstable. We also found that two of three exonic indels reported as synapomorphies of Euarchonta in a previous study do not unambiguously support the monophyly of such a clade. Therefore, the monophyly of both Euarchonta and Sundatheria (Dermoptera + Scandentia) are suspect. Molecular dating and divergence rate analyses suggested that the ancestor of Euarchontoglires experienced a rapid divergence, which may cause the unresolved position of tree shrews even using the whole genomic data.
Collapse
Affiliation(s)
- Xuming Zhou
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Pan T, Wang H, Hu C, Sun Z, Zhu X, Meng T, Meng X, Zhang B. Species Delimitation in the Genus Moschus (Ruminantia: Moschidae) and Its High-Plateau Origin. PLoS One 2015; 10:e0134183. [PMID: 26280166 PMCID: PMC4539215 DOI: 10.1371/journal.pone.0134183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
The authenticity of controversial species is a significant challenge for systematic biologists. Moschidae is a small family of musk deer in the Artiodactyla, composing only one genus, Moschus. Historically, the number of species in the Moschidae family has been debated. Presently, most musk deer species were restricted in the Tibetan Plateau and surrounding/adjacent areas, which implied that the evolution of Moschus might have been punctuated by the uplift of the Tibetan Plateau. In this study, we aimed to determine the evolutionary history and delimit the species in Moschus by exploring the complete mitochondrial genome (mtDNA) and other mitochondrial gene. Our study demonstrated that six species, M. leucogaster, M. fuscus, M. moschiferus, M. berezovskii, M. chrysogaster and M. anhuiensis, were authentic species in the genus Moschus. Phylogenetic analysis and molecular dating showed that the ancestor of the present Moschidae originates from Tibetan Plateau which suggested that the evolution of Moschus was prompted by the most intense orogenic movement of the Tibetan Plateau during the Pliocene age, and alternating glacial-interglacial geological eras.
Collapse
Affiliation(s)
- Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Chaochao Hu
- School of Life Science, Nanjing Normal University, Nanjing, 230039, Jiangsu, China
| | - Zhonglou Sun
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Xiaoxue Zhu
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Tao Meng
- Guangxi Forest Inventory and Planning Institute, Nanning, 530011, Guangxi, China
| | - Xiuxiang Meng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
11
|
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, McCormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldón T, Paten B, Ray DA. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 2014; 346:1254449. [PMID: 25504731 PMCID: PMC4386873 DOI: 10.1126/science.1254449] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Dent Earl
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Ngan Nguyen
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Glenn Hickey
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John A St John
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Colin Kern
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | - Kenji K Kojima
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | | | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christine A Lavoie
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Meganathan P Ramakodi
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Sally R Isberg
- Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia
| | - Lee Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda Y Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher Moran
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - John McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jason T Howard
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cathy R Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Erich D Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
12
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
13
|
Yang X, Wang T. Linear regression model of short k-word: a similarity distance suitable for biological sequences with various lengths. J Theor Biol 2013; 337:61-70. [PMID: 23933105 DOI: 10.1016/j.jtbi.2013.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/30/2013] [Indexed: 01/10/2023]
Abstract
Originating from sequences' length difference, both k-word based methods and graphical representation approaches have uncovered biological information in their distinct ways. However, it is less likely that the mechanisms of information storage vary with sequences' length. A similarity distance suitable for sequences with various lengths will be much near to the mechanisms of information storage. In this paper, new sub-sequences of k-word were extracted from biological sequences under a one-to-one mapping. The new sub-sequences were evaluated by a linear regression model. Moreover, a new distance was defined on the invariants from the linear regression model. With comparison to other alignment-free distances, the results of four experiments demonstrated that our similarity distance was more efficient.
Collapse
Affiliation(s)
- Xiwu Yang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, PR China; School of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, PR China.
| | - Tianming Wang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| |
Collapse
|
14
|
Ekdale EG. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals. PLoS One 2013; 8:e66624. [PMID: 23805251 PMCID: PMC3689836 DOI: 10.1371/journal.pone.0066624] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. PRINCIPAL FINDINGS The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. SIGNIFICANCE The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Paleontology, San Diego Natural History Museum, San Diego, California, United States of America
| |
Collapse
|
15
|
Abstract
A recent paper by a science journalist in Nature shows major errors in understanding phylogenies, in this case of placental mammals. The underlying unrooted tree is probably correct, but the placement of the root just reflects a well-known error from the acceleration in the rate of evolution among some myomorph rodents.
Collapse
Affiliation(s)
- David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Sciuromorpha, Sciuridae) and revision of rodent phylogeny. Mol Biol Rep 2012; 40:1917-26. [PMID: 23114915 DOI: 10.1007/s11033-012-2248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
In this study, the complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Rodentia, Sciuromorpha, Sciuridae) was sequenced and characterized in detail. The entire mitochondrial genome of P. volans consisted of 16,513 bp and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Its gene arrangement pattern was consistent with the mammalian ground pattern. The overall base composition and AT contents were similar to those of other rodent mitochondrial genomes. The light-strand origin generally identified between tRNA ( Asn ) and tRNA ( Cys ) consisted of a secondary structure with an 11-bp stem and an 11-bp loop. The large control region was constructed of three characteristic domains, ETAS, CD, and CSB without any repeat sequences. Each domain contained ETAS1, subsequences A, B, and C, and CSB1, respectively. In order to examine phylogenetic contentious issues of the monophyly of rodents and phylogenetic relationships among five rodent suborders, here, phylogenetic analyses based on nucleotide sequence data of the 35 rodent and 3 lagomorph mitochondrial genomes were performed using the Bayesian inference and maximum likelihood method. The result strongly supported the rodent monophyly with high node confidence values (BP 100 % in ML and BPP 1.00 in BI) and also monophylies of four rodent suborders (BP 85-100 % in ML and BPP 1.00 in BI), except for Anomalumorpha in which only one species was examined here. Also, phylogenetic relationships among the five rodent suborders were suggested and discussed in detail.
Collapse
|
17
|
Lambret-Frotté J, Perini FA, de Moraes Russo CA. Efficiency of nuclear and mitochondrial markers recovering and supporting known amniote groups. Evol Bioinform Online 2012; 8:463-73. [PMID: 23032608 PMCID: PMC3422098 DOI: 10.4137/ebo.s9656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have analysed the efficiency of all mitochondrial protein coding genes and six nuclear markers (Adora3, Adrb2, Bdnf, Irbp, Rag2 and Vwf) in reconstructing and statistically supporting known amniote groups (murines, rodents, primates, eutherians, metatherians, therians). The efficiencies of maximum likelihood, Bayesian inference, maximum parsimony, neighbor-joining and UPGMA were also evaluated, by assessing the number of correct and incorrect recovered groupings. In addition, we have compared support values using the conservative bootstrap test and the Bayesian posterior probabilities. First, no correlation was observed between gene size and marker efficiency in recovering or supporting correct nodes. As expected, tree-building methods performed similarly, even UPGMA that, in some cases, outperformed other most extensively used methods. Bayesian posterior probabilities tend to show much higher support values than the conservative bootstrap test, for correct and incorrect nodes. Our results also suggest that nuclear markers do not necessarily show a better performance than mitochondrial genes. The so-called dependency among mitochondrial markers was not observed comparing genome performances. Finally, the amniote groups with lowest recovery rates were therians and rodents, despite the morphological support for their monophyletic status. We suggest that, regardless of the tree-building method, a few carefully selected genes are able to unfold a detailed and robust scenario of phylogenetic hypotheses, particularly if taxon sampling is increased.
Collapse
Affiliation(s)
- Julia Lambret-Frotté
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro
| | | | | |
Collapse
|
18
|
Kim HR, Park YC. The complete mitochondrial genome of the Korean red-backed vole, Myodes regulus (Rodentia, Murinae) from Korea. MITOCHONDRIAL DNA 2012; 23:148-50. [PMID: 22409761 DOI: 10.3109/19401736.2012.660932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have determined the complete mitochondrial genome (NC_016427) of the Korean red-backed vole, Myodes regulus, which is distributed in South Korea. The total length of the M. regulus mitogenome is 16,379 bp, with a base composition of 33.0% A, 26.7% T, 27.1% C, and 13.2% G. The total length of the 13 protein-coding genes is 11,396 bp long.
Collapse
Affiliation(s)
- Hye Ri Kim
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | | |
Collapse
|
19
|
Hao H, Liu S, Zhang X, Chen W, Song Z, Peng H, Liu Y, Yue B. Complete mitochondrial genome of a new vole Proedromys liangshanensis (Rodentia: Cricetidae) and phylogenetic analysis with related species: are there implications for the validity of the genus Proedromys? ACTA ACUST UNITED AC 2011; 22:28-34. [PMID: 21707319 DOI: 10.3109/19401736.2011.588220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM. The complete mitochondrial genome sequence of a newly discovered vole, Proedromys liangshanensis (Rodentia: Cricetidae: Arvicolinae), was determined. RESULTS. The mitogenome of P. liangshanensis is 16,296 bp in length. As with most other mammals, it contains the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one putative control region. The A+T content of the control region is 58.2%, the lowest proportion detected so far in Myomorpha. To confirm the phylogenetic position of P. liangshanensis, we carried out phylogenetic analyses based on complete mitochondrial genomic data using Bayesian, maximum parsimony, and maximum likelihood methods. CONCLUSION. All results revealed that P. liangshanenis is sister to Microtus. Although the results do not bear light on the validity of the genus Proedromys, based on the morphological characters, we suggest that Proedromys is an independent genus of equal rank to the genus Microtus.
Collapse
Affiliation(s)
- Haibang Hao
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Moa's Ark or volant ghosts of Gondwana? Insights from nineteen years of ancient DNA research on the extinct moa (Aves: Dinornithiformes) of New Zealand. Ann Anat 2011; 194:36-51. [PMID: 21596537 DOI: 10.1016/j.aanat.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/23/2022]
Abstract
The moa (Aves: Dinornithiformes) of New Zealand represent one of the extinct iconic taxa that define the field of ancient DNA (aDNA), and after almost two decades of genetic scrutiny of bones, feathers, coprolites, mummified tissue, eggshell, and sediments, our knowledge of these prehistoric giants has increased significantly. Thanks to molecular and morphological-based research, the insights that have been obtained into moa phylogenetics, phylogeography, and palaeobiology exceeds that of any other extinct taxon. This review documents the strengths of applying a multidisciplinary approach when studying extinct taxa but also shows that cross-disciplinary controversies still remain at the most fundamental levels, with highly conflicting interpretations derived from aDNA and morphology. Moa species diversity, for example, is still heavily debated, as well as their relationship with other ratites and the mode of radiation. In addition to increasing our knowledge on a lineage of extinct birds, further insights into these aspects can clarify some of the basal splits in avian evolution, and the evolutionary implications of the breakup of the prehistoric supercontinent Gondwana. Did a flightless moa ancestor drift away on proto New Zealand (Moa's Ark) or did a volant ancestor arrive by flight? Here we provide an overview of 19 years of aDNA research on moa, critically assess the attempts and controversies in placing the moa lineage among palaeognath birds, and discuss the factors that facilitated the extensive radiation of moa. Finally, we identify the most obvious gaps in the current knowledge to address the future potential research areas in moa genetics.
Collapse
|
21
|
Campbell V, Lapointe FJ. Retrieving a mitogenomic mammal tree using composite taxa. Mol Phylogenet Evol 2011; 58:149-56. [DOI: 10.1016/j.ympev.2010.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 10/17/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
22
|
Horn S, Durka W, Wolf R, Ermala A, Stubbe A, Stubbe M, Hofreiter M. Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species. PLoS One 2011; 6:e14622. [PMID: 21307956 PMCID: PMC3030560 DOI: 10.1371/journal.pone.0014622] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. Methodology/Principal Findings We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. Conclusions/Significance A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it.
Collapse
Affiliation(s)
- Susanne Horn
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Goremykin VV, Nikiforova SV, Bininda-Emonds ORP. Automated Removal of Noisy Data in Phylogenomic Analyses. J Mol Evol 2010; 71:319-31. [DOI: 10.1007/s00239-010-9398-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
|
24
|
Jiang YF, Chou CH, Lin EC, Chiu CH. Molecular characterization of hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) from Taiwan voles (Microtus kikuchii). Comp Biochem Physiol A Mol Integr Physiol 2010; 158:183-8. [PMID: 20937407 DOI: 10.1016/j.cbpa.2010.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that senses and adapts cells to hypoxic environmental conditions. HIF-1 is composed of an oxygen-regulated α subunit (HIF-1α) and a constitutively expressed β subunit (HIF-1β). Taiwan voles (Microtus kikuchii) are an endemic species in Taiwan, found only in mountainous areas greater than 2000m above sea level. In this study, the full-length HIF-1α cDNA was cloned and sequenced from liver tissues of Taiwan voles. We found that HIF-1α of Taiwan voles had high sequence similarity to HIF-1α of other species. Sequence alignment of HIF-1α functional domains indicated basic helix-loop-helix (bHLH), PER-ARNT-SIM (PAS) and C-terminal transactivation (TAD-C) domains were conserved among species, but sequence variations were found between the oxygen-dependent degradation domains (ODDD). To measure Taiwan vole HIF-1α responses to hypoxia, animals were challenged with cobalt chloride, and HIF-1α mRNA and protein expression in brain, lung, heart, liver, kidney, and muscle was assessed by quantitative RT-PCR and Western blot analysis. Upon induction of hypoxic stress with cobalt chloride, an increase in HIF-1α mRNA levels was detected in lung, heart, kidney, and muscle tissue. In contrast, protein expression levels showed greater variation between individual animals. These results suggest that the regulation of HIF-1α may be important to the Taiwan vole under cobalt chloride treatments. But more details regarding the evolutionary effect of environmental pressure on HIF-1α primary sequence, HIF-1α function and regulation in Taiwan voles remain to be identified.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Animal Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
25
|
Kuhn A, Dehnert M, Helm WE, Hütt MT. Statistical evidence for ancestral correlation patterns. Biosystems 2010; 100:215-24. [DOI: 10.1016/j.biosystems.2010.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 12/15/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
26
|
Campbell V, Lapointe FJ. An application of supertree methods to Mammalian mitogenomic sequences. Evol Bioinform Online 2010; 6:57-71. [PMID: 20535231 PMCID: PMC2880846 DOI: 10.4137/ebo.s4527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
TWO DIFFERENT APPROACHES CAN BE USED IN PHYLOGENOMICS: combined or separate analysis. In the first approach, different datasets are combined in a concatenated supermatrix. In the second, datasets are analyzed separately and the phylogenetic trees are then combined in a supertree. The supertree method is an interesting alternative to avoid missing data, since datasets that are analyzed separately do not need to represent identical taxa. However, the supertree approach and the corresponding consensus methods have been highly criticized for not providing valid phylogenetic hypotheses. In this study, congruence of trees estimated by consensus and supertree approaches were compared to model trees obtained from a combined analysis of complete mitochondrial sequences of 102 species representing 93 mammal families. The consensus methods produced poorly resolved consensus trees and did not perform well, except for the majority rule consensus with compatible groupings. The weighted supertree and matrix representation with parsimony methods performed equally well and were highly congruent with the model trees. The most similar supertree method was the least congruent with the model trees. We conclude that some of the methods tested are worth considering in a phylogenomic context.
Collapse
Affiliation(s)
- Véronique Campbell
- Université de Montréal, Département de Sciences Biologiques, C.P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - François-Joseph Lapointe
- Université de Montréal, Département de Sciences Biologiques, C.P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
27
|
Prasad GVR. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India. J Biosci 2010; 34:649-59. [PMID: 20009262 DOI: 10.1007/s12038-009-0063-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.
Collapse
Affiliation(s)
- G V R Prasad
- Indian Institute of Science Education and Research (IISER-K), BCKV Main Campus, Mohanpur 741 252, India.
| |
Collapse
|
28
|
Dai Q, Liu X, Li L, Yao Y, Han B, Zhu L. Using Gaussian model to improve biological sequence comparison. J Comput Chem 2010; 31:351-61. [PMID: 19479732 PMCID: PMC7166749 DOI: 10.1002/jcc.21322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/14/2009] [Indexed: 11/08/2022]
Abstract
One of the major tasks in biological sequence analysis is to compare biological sequences, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations among the sequences. Numerous efficient methods have been developed for sequence comparison, but challenges remain. In this article, we proposed a novel method to compare biological sequences based on Gaussian model. Instead of comparing the frequencies of k-words in biological sequences directly, we considered the k-word frequency distribution under Gaussian model which gives the different expression levels of k-words. The proposed method was tested by similarity search, evaluation on functionally related genes, and phylogenetic analysis. The performance of our method was further compared with alignment-based and alignment-free methods. The results demonstrate that Gaussian model provides more information about k-word frequencies and improves the efficiency of sequence comparison.
Collapse
Affiliation(s)
- Qi Dai
- Institute for Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Xiaoqing Liu
- School of Science, Hangzhou Dianzi University; Hangzhou 310018, People's Republic of China
| | - Lihua Li
- Institute for Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yuhua Yao
- College of Life Sciences, Zhejiang Sci‐Tech University, Hangzhou 310018, People's Republic of China
| | - Bin Han
- Institute for Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Lei Zhu
- Institute for Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
29
|
Waddell PJ, Ota R, Penny D. Measuring fit of sequence data to phylogenetic model: gain of power using marginal tests. J Mol Evol 2009; 69:289-99. [PMID: 19851702 DOI: 10.1007/s00239-009-9268-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 07/28/2009] [Indexed: 11/29/2022]
Abstract
Testing fit of data to model is fundamentally important to any science, but publications in the field of phylogenetics rarely do this. Such analyses discard fundamental aspects of science as prescribed by Karl Popper. Indeed, not without cause, Popper (Unended quest: an intellectual autobiography. Fontana, London, 1976) once argued that evolutionary biology was unscientific as its hypotheses were untestable. Here we trace developments in assessing fit from Penny et al. (Nature 297:197-200, 1982) to the present. We compare the general log-likelihood ratio (the G or G (2) statistic) statistic between the evolutionary tree model and the multinomial model with that of marginalized tests applied to an alignment (using placental mammal coding sequence data). It is seen that the most general test does not reject the fit of data to model (P approximately 0.5), but the marginalized tests do. Tests on pairwise frequency (F) matrices, strongly (P < 0.001) reject the most general phylogenetic (GTR) models commonly in use. It is also clear (P < 0.01) that the sequences are not stationary in their nucleotide composition. Deviations from stationarity and homogeneity seem to be unevenly distributed amongst taxa; not necessarily those expected from examining other regions of the genome. By marginalizing the 4( t ) patterns of the i.i.d. model to observed and expected parsimony counts, that is, from constant sites, to singletons, to parsimony informative characters of a minimum possible length, then the likelihood ratio test regains power, and it too rejects the evolutionary model with P << 0.001. Given such behavior over relatively recent evolutionary time, readers in general should maintain a healthy skepticism of results, as the scale of the systematic errors in published trees may really be far larger than the analytical methods (e.g., bootstrap) report.
Collapse
Affiliation(s)
- Peter J Waddell
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA.
| | | | | |
Collapse
|
30
|
Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci U S A 2009; 106:17089-94. [PMID: 19805098 DOI: 10.1073/pnas.0904649106] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna-platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19-48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.
Collapse
|
31
|
Dai Q, Yang Y, Wang T. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison. ACTA ACUST UNITED AC 2008; 24:2296-302. [PMID: 18710871 DOI: 10.1093/bioinformatics/btn436] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. RESULTS The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.
Collapse
Affiliation(s)
- Qi Dai
- Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China.
| | | | | |
Collapse
|
32
|
Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 2008; 8:352-7. [PMID: 18722554 DOI: 10.1016/j.mito.2008.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/16/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022]
Abstract
Pikas originated in Asia and are small lagomorphs native to cold climates. The plateau pika, Ochotona curzoniae is a keystone species on the Qinghai-Tibet Plateau and an ideal animal model for hypoxic adaptation studies. Altered mitochondrial function, especially cytochrome c oxidase activity, is an important factor in modulation of energy generation and expenditure during cold and hypoxia adaptation. In this study, we determined the complete nucleotide sequence of the O. curzoniae mitochondrial genome. The plateau pika mitochondrial DNA is 17,131bp long and encodes the complete set of 37 proteins typical for vertebrates. Phylogenetic analysis based on concatenated heavy-strand encoded protein-coding genes revealed that pikas are closer to rabbit and hare than to rat. This suggests that rabbit or hare would be a good control animal for pikas in cold and hypoxia adaptation studies. Fifteen novel mitochondrial DNA-encoded amino acid changes were identified in the pikas, including three in the subunits of cytochrome c oxidase. These amino acid substitutions potentially function in modulation of mitochondrial complexes and electron transport efficiency during cold and hypoxia adaptation.
Collapse
|
33
|
da Fonseca RR, Johnson WE, O'Brien SJ, Ramos MJ, Antunes A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 2008; 9:119. [PMID: 18318906 PMCID: PMC2375446 DOI: 10.1186/1471-2164-9-119] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 03/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Rute R da Fonseca
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | | | | | | | | |
Collapse
|
34
|
Lissovsky AA, Ivanova NV, Borisenko AV. Molecular Phylogenetics and Taxonomy of the =Subgenus pika (Ochotona, Lagomorpha). J Mammal 2007. [DOI: 10.1644/06-mamm-a-363r.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Abstract
There are many examples of groups (such as birds, bees, mammals, multicellular animals, and flowering plants) that have undergone a rapid radiation. In such cases, where there is a combination of short internal and long external branches, correctly estimating and rooting phylogenetic trees is known to be a difficult problem. In this simulation study, we tested the performances of different phylogenetic methods at estimating a tree that models a rapid radiation. We found that maximum likelihood, corrected and uncorrected neighbor-joining, and corrected and uncorrected parsimony, all suffer from biases toward specific tree topologies. In addition, we found that using a single-taxon outgroup to root a tree frequently disrupts an otherwise correct ingroup phylogeny. Moreover, for uncorrected parsimony, we found cases where several individual trees (in which the outgroup was placed incorrectly) were selected more frequently than the correct tree. Even for parameter settings where the correct tree was selected most frequently when using extremely long sequences, for sequences of up to 60,000 nucleotides the incorrectly rooted trees were each selected more frequently than the correct tree. For all the cases tested here, tree estimation using a two taxon outgroup was more accurate than when using a single-taxon outgroup. However, the ingroup was most accurately recovered when no outgroup was used.
Collapse
Affiliation(s)
- Liat Shavit
- The Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
36
|
Matthee CA, Eick G, Willows-Munro S, Montgelard C, Pardini AT, Robinson TJ. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol 2007; 42:827-37. [PMID: 17101283 DOI: 10.1016/j.ympev.2006.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 09/19/2006] [Accepted: 10/02/2006] [Indexed: 11/30/2022]
Abstract
Nuclear DNA intron sequences are increasingly used to investigate evolutionary relationships among closely related organisms. The phylogenetic usefulness of intron sequences at higher taxonomic levels has, however, not been firmly established and very few studies have used these markers to address evolutionary questions above the family level. In addition, the mechanisms driving intron evolution are not well understood. We compared DNA sequence data derived from three presumably independently segregating introns (THY, PRKC I and MGF) across 158 mammalian species. All currently recognized extant eutherian mammalian orders were included with the exception of Cingulata, Dermoptera and Scandentia. The total aligned length of the data was 6366 base pairs (bp); after the exclusion of autapomorphic insertions, 1511 bp were analyzed. In many instances the Bayesian and parsimony analyses were complementary and gave significant posterior probability and bootstrap support (>80) for the monophyly of Afrotheria, Euarchontoglires, Laurasiatheria and Boreoeutheria. Apart from finding congruent support when using these methods, the intron data also provided several indels longer than 3 bp that support, among others, the monophyly of Afrotheria, Paenungulata, Ferae and Boreoeutheria. A quantitative analysis of insertions and deletions suggested that there was a 75% bias towards deletions. The average insertion size in the mammalian data set was 16.49 bp +/- 57.70 while the average deletion was much smaller (4.47 bp +/- 14.17). The tendency towards large insertions and small deletions is highlighted by the observation that out of a total of 17 indels larger than 100 bp, 15 were insertions. The majority of indels (>60% of all events) were 1 or 2 bp changes. Although the average overall indel substitution rate of 0.00559 per site is comparable to that previously reported for rodents and primates, individual analyses among different evolutionary lineages provide evidence for differences in the formation rate of indels among the different mammalian groups.
Collapse
Affiliation(s)
- Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa.
| | | | | | | | | | | |
Collapse
|
37
|
Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus. BMC Evol Biol 2007; 7:16. [PMID: 17288612 PMCID: PMC1802082 DOI: 10.1186/1471-2148-7-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/08/2007] [Indexed: 11/24/2022] Open
Abstract
Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies.
Collapse
|
38
|
Kjer KM, Honeycutt RL. Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evol Biol 2007; 7:8. [PMID: 17254354 PMCID: PMC1796853 DOI: 10.1186/1471-2148-7-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/25/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traditionally, most studies employing data from whole mitochondrial genomes to diagnose relationships among the major lineages of mammals have attempted to exclude regions that potentially complicate phylogenetic analysis. Components generally excluded are 3rd codon positions of protein-encoding genes, the control region, rRNAs, tRNAs, and the ND6 gene (encoded on the opposite strand). We present an approach that includes all the data, with the exception of the control region. This approach is based on a site-specific rate model that accommodates excessive homoplasy and that utilizes secondary structure as a reference for proper alignment of rRNAs and tRNAs. RESULTS Mitochondrial genomic data for 78 eutherian mammals, 8 metatherians, and 3 monotremes were analyzed with a Bayesian analysis and our site specific rate model. The resultant phylogeny revealed strong support for most nodes and was highly congruent with more recent phylogenies based on nuclear DNA sequences. In addition, many of the conflicting relationships observed by earlier mitochondrial-based analyses were resolved without need for the exclusion of large subsets of the data. CONCLUSION Rather than exclusion of data to minimize presumed noise associated with non-protein encoding genes in the mitochondrial genome, our results indicate that selection of an appropriate model that accommodates rate heterogeneity across data partitions and proper treatment of RNA genes can result in a mitochondrial genome-based phylogeny of eutherian mammals that is reasonably congruent with recent phylogenies derived from nuclear genes.
Collapse
Affiliation(s)
- Karl M Kjer
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901-8524, USA
| | - Rodney L Honeycutt
- Pepperdine University, Natural Science Division, 24255 Pacific Coast Hwy, Malibu, California 90263-4321, USA
| |
Collapse
|
39
|
Triant DA, Dewoody JA. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica 2007; 128:95-108. [PMID: 17028943 DOI: 10.1007/s10709-005-5538-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/25/2005] [Indexed: 11/28/2022]
Abstract
Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation.
Collapse
Affiliation(s)
- Deborah A Triant
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
40
|
Cannarozzi G, Schneider A, Gonnet G. A phylogenomic study of human, dog, and mouse. PLoS Comput Biol 2007; 3:e2. [PMID: 17206860 PMCID: PMC1761043 DOI: 10.1371/journal.pcbi.0030002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022] Open
Abstract
In recent years the phylogenetic relationship of mammalian orders has been addressed in a number of molecular studies. These analyses have frequently yielded inconsistent results with respect to some basal ordinal relationships. For example, the relative placement of primates, rodents, and carnivores has differed in various studies. Here, we attempt to resolve this phylogenetic problem by using data from completely sequenced nuclear genomes to base the analyses on the largest possible amount of data. To minimize the risk of reconstruction artifacts, the trees were reconstructed under different criteria-distance, parsimony, and likelihood. For the distance trees, distance metrics that measure independent phenomena (amino acid replacement, synonymous substitution, and gene reordering) were used, as it is highly improbable that all of the trees would be affected the same way by any reconstruction artifact. In contradiction to the currently favored classification, our results based on full-genome analysis of the phylogenetic relationship between human, dog, and mouse yielded overwhelming support for a primate-carnivore clade with the exclusion of rodents.
Collapse
Affiliation(s)
- Gina Cannarozzi
- Institute of Computational Science, ETH Zurich, Zurich, Switzerland
| | - Adrian Schneider
- Institute of Computational Science, ETH Zurich, Zurich, Switzerland
| | - Gaston Gonnet
- Institute of Computational Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Narita Y, Oda SI, Kageyama T. Rodent monophyly deduced from the unique gastric proteinase constitution and molecular phylogenetic analyses using pepsinogen-C cDNA sequences. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:273-82. [PMID: 20483259 DOI: 10.1016/j.cbd.2006.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/16/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Pepsinogens are zymogens of pepsins, the gastric digestive proteinases. Although pepsinogen A is predominant in most mammalian species hitherto known, pepsinogen C is expressed exclusively and the lack of pepsinogen A is evidenced in the rat and guinea pig. Furthermore, in these two rodents, considerable amount of procathepsin E is also expressed in gastric mucosa although it is almost undetectable in other mammals. In this paper, in order to clarify whether such unique gastric proteinase constitution is common among rodents, we carried out purification and characterization of gastric proteinases, and molecular cloning of pepsinogen-C cDNAs from several rodent species including the degu and coypu. Pepsinogen C and procathepsin E were isolated but pepsinogen A was undetectable in the rodents, leading to the conclusion that that rodents commonly share the unique gastric proteinase constitution. This feature could be treated as a new "molecular synapomorphy", supporting strongly monophyly of the order Rodentia. From the molecular phylogenetic analyses of pepsinogen-C cDNA sequences, monophyly of the order Rodentia was also supported by the analyses with high statistic reliabilities.
Collapse
Affiliation(s)
- Yuichi Narita
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | | | | |
Collapse
|
42
|
Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 2006; 4:e91. [PMID: 16515367 PMCID: PMC1395351 DOI: 10.1371/journal.pbio.0040091] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 01/23/2006] [Indexed: 11/30/2022] Open
Abstract
Reconstruction of the placental mammalian (eutherian) evolutionary tree has undergone diverse revisions, and numerous aspects remain hotly debated. Initial hierarchical divisions based on morphology contained many misgroupings due to features that evolved independently by similar selection processes. Molecular analyses corrected many of these misgroupings and the superordinal hierarchy of placental mammals was recently assembled into four clades. However, long or rapid evolutionary periods, as well as directional mutation pressure, can produce molecular homoplasies, similar characteristics lacking common ancestors. Retroposed elements, by contrast, integrate randomly into genomes with negligible probabilities of the same element integrating independently into orthologous positions in different species. Thus, presence/absence analyses of these elements are a superior strategy for molecular systematics. By computationally scanning more than 160,000 chromosomal loci and judiciously selecting from only phylogenetically informative retroposons for experimental high-throughput PCR applications, we recovered 28 clear, independent monophyly markers that conclusively verify the earliest divergences in placental mammalian evolution. Using tests that take into account ancestral polymorphisms, multiple long interspersed elements and long terminal repeat element insertions provide highly significant evidence for the monophyletic clades Boreotheria (synonymous with Boreoeutheria), Supraprimates (synonymous with Euarchontoglires), and Laurasiatheria. More importantly, two retropositions provide new support for a prior scenario of early mammalian evolution that places the basal placental divergence between Xenarthra and Epitheria, the latter comprising all remaining placentals. Due to its virtually homoplasy-free nature, the analysis of retroposon presence/absence patterns avoids the pitfalls of other molecular methodologies and provides a rapid, unequivocal means for revealing the evolutionary history of organisms. The authors identified and sequenced retroposons in mammalian genomes. The presence and absence of these retroposons provided evolutionary markers from which the authors reconstructed the phylogenetic history of placental mammals.
Collapse
Affiliation(s)
- Jan Ole Kriegs
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Gennady Churakov
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Martin Kiefmann
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Ursula Jordan
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Jürgen Brosius
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Phillips MJ, McLenachan PA, Down C, Gibb GC, Penny D. Combined Mitochondrial and Nuclear DNA Sequences Resolve the Interrelations of the Major Australasian Marsupial Radiations. Syst Biol 2006; 55:122-37. [PMID: 16507529 DOI: 10.1080/10635150500481614] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the "reduced-bias" mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of non-historical signal, such as from compositional non-stationarity. [Base composition; combined data; marsupial; mitochondrial genome; phylogeny.].
Collapse
Affiliation(s)
- Matthew J Phillips
- Henry Wellcome Ancient Biomolecules Center, Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Wickström LM, Haukisalmi V, Varis S, Hantula J, Henttonen H. Molecular Phylogeny and Systematics of Anoplocephaline Cestodes in Rodents and Lagomorphs. Syst Parasitol 2005; 62:83-99. [PMID: 16167118 DOI: 10.1007/s11230-005-5488-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
A molecular phylogenetic hypothesis is presented for the anoplocephaline cestodes of placental mammals based on sequence data from the mitochondrial cytochrome c oxidase I (COI) gene, the nuclear-encoded 28S rRNA gene and the internal transcribed spacer region I of rRNA (ITS1). The material consists of 35 species representing nine genera of cestodes, with emphasis on taxa parasitising rodents and lagomorphs in the Holarctic region. The resulting phylogenies show considerable disagreement with earlier systematic and phylogenetic hypotheses derived from morphology. Specifically, the results contradict the view of uterine morphology being the primary determinant of deeper phylogenetic splits within Anoplocephalinae. Also, the role of genital duplication as a means of generic divergence was not found to follow consistently the pattern suggested by earlier hypotheses. Colonisation of novel host lineages has evidently been the predominant mode of diversification in anoplocephaline cestodes of placental mammals; evidence for phyletic co-evolution was obscure. The phylogenies consistently distinguished a large monophyletic group including all species from arvicoline rodents (voles and lemmings), primarily representing the genera Anoplocephaloides Baer, 1923 and Paranoplocephala Lühe, 1910. Phylogenetic relationships within the "arvicoline clade" of cestodes were generally poorly resolved. Consistent support for nodes above and below the unresolved polytomy indicates a rapid radiation involving a nearly simultaneous diversification of many lineages, a scenario also proposed for the arvicoline hosts.
Collapse
Affiliation(s)
- Lotta M Wickström
- Finnish Forest Research Institute, Vantaa Research Centre, PO Box 18, FIN-01301, Vantaa, Finland
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Olson LE, Sargis EJ, Martin RD. Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 2005; 35:656-73. [PMID: 15878134 DOI: 10.1016/j.ympev.2005.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 11/16/2022]
Abstract
Despite their traditional and continuing prominence in studies of interordinal mammalian phylogenetics, treeshrews (order Scandentia) remain relatively unstudied with respect to their intraordinal relationships. At the same time, significant morphological variation among living treeshrews has been shown to have direct relevance to higher-level interpretations of character state change as reconstructed in traditional interordinal studies, which have often included only a single species of treeshrew. Therefore, the importance of resolving relationships among treeshrews extends well beyond a better understanding of patterns of diversification within the order. A recent review highlighted several shortcomings in published studies of treeshrew phylogenetics based on morphology. Here we present the first investigation of treeshrew phylogenetics based on DNA sequences, utilizing previously published sequences from the mitochondrial 12S rRNA gene and combining them with newly generated sequence data from 15 species. Parsimony, likelihood, and Bayesian analyses all strongly support a sister relationship between Ptilocercus and the remaining species, further substantiating its recent elevation to familial status. Dendrogale is consistently recovered as the next taxon to diverge, but relationships among the remaining taxa are poorly supported by these data. We provide evidence for a relatively rapid radiation within the genera Tupaia and Urogale, but limited resolution precludes more than a cursory interpretation of biogeographic patterns.
Collapse
Affiliation(s)
- Link E Olson
- Department of Zoology, Field Museum, Chicago, IL 60605, USA.
| | | | | |
Collapse
|
47
|
Narita Y, Kuratani S. Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:91-106. [PMID: 15660398 DOI: 10.1002/jez.b.21029] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Developmental constraints refer to biases that limit phenotypic changes during evolution. To examine the contribution of developmental constraints in the evolution of vertebrate morphology, we analyzed the distribution pattern of mammalian vertebral formulae. Data on mammalian vertebral formulae were collected from the Descriptive Catalogue of the Osteological Series Contained in the Museum of the Royal College of Surgeons of England by Richard Owen (1853) and were plotted onto the most reliable mammalian phylogenetic tree based on recent molecular studies. In addition to the number of cervical vertebrae that is almost fixed to 7, we found that the number of thoracolumbar vertebrae tends to be 19 in many groups of mammals. Since fidelity of the number of thoracolumbar vertebrae was also completely maintained in Monotremata and Marsupialia, we presumed that thoracolumbar vertebral number as well as cervical vertebral number might have been fixed in the primitive mammalian lineage. On the basis of primitive vertebral formulae, we could clarify the polarity of evolution and identify several deviations from the primitive states during the mammalian evolution. The changes in the vertebral formulae in eutherian mammals seem to be lineage-specific, such that most species in Carnivora have 20 instead of 19 thoracolumbar vertebrae. Because such lineage-specific vertebral formulae contrast with the estimated distribution pattern on the assumption of evolution only through the selective pressure, we concluded that developmental constraints played an important role in the evolution of mammalian vertebral formulae.
Collapse
Affiliation(s)
- Yuichi Narita
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | |
Collapse
|
48
|
THANOU E, FRAGUEDAKIS-TSOLIS S, CHONDROPOULOS B. mtDNA variation and evaluation of phylogenetic relationships among karyotypically polymorphic populations of Microtus (Terricola) thomasi (Arvicolidae, Rodentia) from Greece. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00412.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Jaarola M, Martínková N, Gündüz I, Brunhoff C, Zima J, Nadachowski A, Amori G, Bulatova NS, Chondropoulos B, Fraguedakis-Tsolis S, González-Esteban J, José López-Fuster M, Kandaurov AS, Kefelioğlu H, da Luz Mathias M, Villate I, Searle JB. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 2004; 33:647-63. [PMID: 15522793 DOI: 10.1016/j.ympev.2004.07.015] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 06/30/2004] [Indexed: 11/15/2022]
Abstract
Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineages displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved, suggesting a rapid and potentially simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past.
Collapse
Affiliation(s)
- Maarit Jaarola
- Department of Cell and Organism Biology, Genetics Building, Lund University, Sölvegatan 29, SE-223 62 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Rodentia (e.g., mice, rats, dormice, squirrels, and guinea pigs) and Lagomorpha (e.g., rabbits, hares, and pikas) are usually grouped into the Glires. Status of this controversial superorder has been evaluated using morphology, paleontology, and mitochondrial plus nuclear DNA sequences. This growing corpus of data has been favoring the monophyly of Glires. Recently, Misawa and Janke [Mol. Phylogenet. Evol. 28 (2003) 320] analyzed the 6441 amino acids of 20 nuclear proteins for six placental mammals (rat, mouse, rabbit, human, cattle, and dog) and two outgroups (chicken and xenopus), and observed a basal position of the two murine rodents among the former. They concluded that "the Glires hypothesis was rejected." We here reanalyzed [loc. cit.] data set under maximum likelihood and Bayesian tree-building approaches, using phylogenetic models that take into account among-site variation in evolutionary rates and branch-length variation among proteins. Our observations support both the association of rodents and lagomorphs and the monophyly of Euarchontoglires (=Supraprimates) as the most likely explanation of the protein alignments. We conducted simulation studies to evaluate the appropriateness of lissamphibian and avian outgroups to root the placental tree. When the outgroup-to-ingroup evolutionary distance increases, maximum parsimony roots the topology along the long Mus-Rattus branch. Maximum likelihood, in contrast, roots the topology along different branches as a function of their length. Maximum likelihood appears less sensitive to the "long-branch attraction artifact" than is parsimony. Our phylogenetic conclusions were confirmed by the analysis of a different protein data set using a similar sample of species but different outgroups. We also tested the effect of the addition of afrotherian and xenarthran taxa. Using the linearized tree method, [loc. cit.] estimated that mice and rats diverged about 35 million years ago. Molecular dating based on the Bayesian relaxed molecular clock method suggests that the 95% credibility interval for the split between mice and rats is 7-17 Mya. We here emphasize the need for appropriate models of sequence evolution (matrices of amino acid replacement, taking into account among-site rate variation, and independent parameters across independent protein partitions) and for a taxonomically broad sample, and conclude on the likelihood that rodents and lagomorphs together constitute a monophyletic group (Glires).
Collapse
Affiliation(s)
- Emmanuel J P Douzery
- Laboratoire de Paléontologie, Phylogénie et Paléobiologie, CC064, Institut des Sciences de l'Evolution UMR 5554/CNRS, Université Montpellier II; Place E. Bataillon, 34 095 Montpellier Cedex 05, France.
| | | |
Collapse
|