1
|
Jiang X, Li L, Gao M, Li X, Ding Y, Song Y, Zhao Y, Kong X. Two homologous genes encoding interleukin (IL)-34 in the common carp (Cyprinus carpio L.): Roles in inflammatory modulation and anti-bacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109951. [PMID: 39389173 DOI: 10.1016/j.fsi.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
In mammals, interleukin 34 (IL-34) is a ligand for macrophage colony-stimulating factor receptor (M-CSFR), promoting inflammatory responses and inducing the synthesis and secretion of various cytokines. However, studies on its function in lower vertebrates is limited, and its evolutionary relationship with homologous molecules in mammals remains unclear. In this study, two IL-34-encoding genes were cloned and identified in common carp (Cyprinus carpio L.), designated as CcIL-34A and CcIL-34B, with an amino acid sequence similarity of 77.7 %. Gene synteny analysis revealed that the IL-34 gene loci are relatively conserved, and both are located downstream of SF3B3. The expression patterns of CcIL-34s were analyzed using qRT-PCR, and this showed that they are expressed across all tested tissues, with higher levels in the liver, spleen, and head kidney and lower levels in the gills and intestines. Following infection with Aeromonas hydrophila, the mRNA expression levels of CcIL-34s in the gills, head kidney, intestines, and spleen were significantly upregulated. Immunofluorescence was also employed to assess changes in CcIL-34 protein expression, showing a significant increase in carp spleens 24 h after A. hydrophila infection, suggesting that CcIL-34s contribute to host defense against this bacterium. To investigate the immunological function of IL-34 in vivo, pc-CcIL-34A and pc-CcIL-34B eukaryotic expression plasmids were constructed and injected intramuscularly into fish. Five days after injection, the expression levels of inflammation-related cytokines in the head kidney and spleen were significantly altered. Furthermore, 24 h post-A. hydrophila infection, the bacterial loads in the liver, spleen, and kidneys were significantly reduced. Ten days post-infection, the survival rates in the groups with CcIL-34A and CcIL-34B overexpression were 40 % and 36.7 %, respectively, compared to 16.7 % in the control group. These findings suggest that CcIL-34s are involved in modulating inflammatory responses, enhancing the immune response, and improving survival rates in fish following bacterial infection, thus supporting the potential use of IL-34 molecules in aquaculture.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, 310012, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, 450000, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
2
|
Wang H, Zheng F, Ouyang A, Yuan G, Su J, Liu X. Blunt snout bream (Megalobrama amblycephala) MaCSF-1 contributes to proliferation, phagocytosis and immunoregulation of macrophages via MaCSF-1R. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1113-1126. [PMID: 35803511 DOI: 10.1016/j.fsi.2022.06.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
CSF-1 and CSF-1R have been well demonstrated in humans, regulating the differentiation, proliferation and survival of the mononuclear phagocyte system. However, the functional study on MaCSF-1 and MaCSF-1R from blunt snout bream (Megalobrama amblycephala) is still unknown. In the present study, we cloned and functionally characterized MaCSF-1 and MaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that both MaCSF-1 and MaCSF-1R were mostly close to the grass carp counterparts. Tissue distribution analysis showed that both MaCSF-1 and MaCSF-1R were widely distributed in all examined tissues, dominantly distributed in spleen, blood and head kidney tissues. Furthermore, confocal microscopy assay and flow cytometry assay showed that MaCSF-1R was the marker on the surface of macrophages. Recombinant MaCSF-1 promoted macrophage proliferation, phagocytosis and the production of IL-10. Through the pull-down experiments and indirect immunofluorescence experiments, the interaction between MaCSF-1 and MaCSF-1R was confirmed. To explore the relationship between MaCSF-1 and its receptor, MaCSF-1R and MaCSF-1R antibody was prepared. Then the MaCSF-1R blockage assay indicated that the role of MaCSF-1 on the macrophages proliferation and phagocytosis was weakened, leading the reduction of IL-10 expression level. In conclusion, MaCSF-1R is the marker on the surface of macrophage membrane; and MaCSF-1 promotes macrophage proliferation, phagocytosis, and significantly increased the expression levels of IL-10 depended on the interacting with MaCSF-1R. This study provides basal data for the biological function of MaCSF-1 and MaCSF-1R, and is valuable for the exploration of MaCSF-1 and MaCSF-1R molecular interactions.
Collapse
Affiliation(s)
- Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zool Res 2020; 41:123-137. [PMID: 32150792 PMCID: PMC7109011 DOI: 10.24272/j.issn.2095-8137.2020.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-34 (IL-34) is a novel cytokine that plays an important role in innate immunity and inflammatory processes by binding to the colony-stimulating factor-1 receptor (CSF-1R). However, information on the function of IL-34 in fish remains limited. In the present study, we identified an IL-34 homolog from mudskippers (Boleophthalmus pectinirostris). In silico analysis showed that the mudskipper IL-34 (BpIL-34) was similar to other known IL-34 variants in sequence and structure and was most closely related to an orange-spotted grouper (Epinephelus coioides) homolog. BpIL-34 transcripts were constitutively expressed in various tissues, with the highest level of expression found in the brain. Edwardsiella tarda infection significantly up-regulated the mRNA expression of BpIL-34 in the mudskipper tissues. The recombinant mature BpIL-34 peptide (rBpIL-34) was purified and used to produce anti-rBpIL-34 IgG. Western blot analysis combined with PNGase F digestion revealed that native BpIL-34 in monocytes/macrophages (MOs/MФs) was N-glycosylated. In vitro, rBpIL-34 treatment enhanced the phagocytotic and bactericidal activity of mudskipper MOs/MФs, as well as the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor α (BpTNF-α) and BpIL-1β in these cells. Furthermore, the knockdown of mudskipper CSF-1R1 (BpCSF-1R1), but not mudskipper BpCSF-1R2, significantly inhibited the rBpIL-34-mediated enhanced effect on MO/MФ function. In conclusion, our results indicate that mudskipper BpIL-34 modulates the functions of MOs/MФs via BpCSF-1R1.
Collapse
Affiliation(s)
- Hai-Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail: .,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ming-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China E-mail: jchen1975@ 163.com
| |
Collapse
|
4
|
Cui B, Fan X, Zhou D, He L, Li Y, Li D, Lin H. CSF1R methylation is a key regulatory mechanism of tumor-associated macrophages in hepatocellular carcinoma. Oncol Lett 2020; 20:1835-1845. [PMID: 32724427 PMCID: PMC7377184 DOI: 10.3892/ol.2020.11726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are important in tumor microenvironments and are closely associated with cancer occurrence, metastasis and progression. Colony stimulating factor 1 receptor (CSF1R) serves a crucial role in TAM formation. Whether CSF1R expression is regulated by DNA methylation in hepatocellular carcinoma (HCC) has not been fully elucidated. In the current study, HCC and adjacent non-cancerous tissue (ANT) samples were collected from 160 patients with HCC. CSF1R methylation levels were analyzed using a Mass ARRAY Analyzer to establish the potential impact of CSF1R methylation alternations on HCC clinicopathological characteristics. The mean methylation level of the CSF1R promoter (chr 5:149492491-149492958) was demonstrated to be significantly higher in ANTs compared with HCC tissues (65.3±7.5% vs. 57.3±14.4%, respectively; P<0.0001). CSF1R also exhibited decreased expression in HCC tissues compared with ANTs (P=0.0026). However, CSF1R expression was negatively correlated with CSF1R methylation levels in ANTs (r>0.4; P<0.0001). Further analysis indicated that patients with diabetes exhibited lower methylation levels in ANTs compared with HCC tissues (P=0.0062). Furthermore, CSF1R hypomethylation in ANTs was associated with a larger number of tumors (P=0.0332), larger tumor size (P=0.0494) and higher tumor grade (P=0.0244). Therefore, methylation alternation of the CSF1R promoter region analyzed in the present study was a key regulatory mechanism on CSF1R expression and ANT hypomethylation indicated poor clinicopathological characteristics of HCC. CSF1R may be a potential immunological therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Cui
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
5
|
Magrone T, Russo MA, Jirillo E. Dietary Approaches to Attain Fish Health with Special Reference to their Immune System. Curr Pharm Des 2019; 24:4921-4931. [PMID: 30608037 DOI: 10.2174/1381612825666190104121544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
Fish despite their low collocation in the vertebrate phylum possess a complete immune system. In teleost fish both innate and adaptive immune responses have been described with melanomacrophage centers (MMCs) equivalent to mammalian germinal centers. Primary lymphoid organs are represented by the thymus and kidney, while spleen and mucosa-associated lymphoid tissues act as secondary lymphoid organs. Functions of either innate immune cells (e.g., macrophages and dendritic cells) or adaptive immune cells (T and B lymphocytes) will be described in detail, even including their products, such as cytokines and antibodies. In spite of a robust immune arsenal, fish are very much exposed to infectious agents (marine bacteria, parasites, fungi, and viruses) and, consequentially, mortality is very much enhanced especially in farmed fish. In fact, in aquaculture stressful events (overcrowding), microbial infections very frequently lead to a high rate of mortality. With the aim to reduce mortality of farmed fish through the reinforcement of their immune status the current trend is to administer natural products together with the conventional feed. Then, in the second part of the present review emphasis will be placed on a series of products, such as prebiotics, probiotics and synbiotics, β-glucans, vitamins, fatty acids and polyphenols all used to feed farmed fish. With special reference to polyphenols, results of our group using red grape extracts to feed farmed European sea bass will be illustrated. In particular, determination of cytokine production at intestinal and splenic levels, areas of MMCs and development of hepatopancreas will represent the main biomarkers considered. All together, our own data and those of current literature suggests that natural product administration to farmed fish for their beneficial effects may, in part, solve the problem of fish mortality in aquaculture, enhancing their immune responses.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
6
|
Xue Y, Jiang X, Gao J, Li X, Xu J, Wang J, Gao Q, Zou J. Functional characterisation of interleukin 34 in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 92:91-100. [PMID: 31146007 DOI: 10.1016/j.fsi.2019.05.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Interleukin (IL) 34 plays an important role in regulating macrophage functions and inflammation process. IL-34 homologues have recently been discovered in fish but the functions have not been studied. In this study, an IL-34 homologue was identified in grass carp Ctenopharyngodon idella and its bioactivities were investigated. The grass carp IL-34 was constitutively expressed in tissues, with the highest expression detected in spleen. It could be up-regulated in spleen after infection with F. cloumnare and grass carp reovirus II, and in primary head kidney leucocytes by recombinant IL-4/13B. The recombinant IL-34 produced in bacteria and HEK293T cells showed stimulatory effect on the expression of IL-1β, IL-6 and IL-8 but inhibited expression of IL-10 and TGF-β1 in primary head kidney macrophages. The results demonstrate that IL-34 is a proinflammatory cytokine in grass carp.
Collapse
Affiliation(s)
- Yujie Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinyu Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jingduo Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Brunet FG, Volff JN, Schartl M. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates. Genome Biol Evol 2016; 8:1600-13. [PMID: 27260203 PMCID: PMC4898815 DOI: 10.1093/gbe/evw103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Manfred Schartl
- Physiologische Chemie, Biozentrum, University of Würzburg, Am Hubland, and Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA
| |
Collapse
|
9
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
10
|
Grayfer L, Edholm ES, Robert J. Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 58:757-66. [PMID: 26154317 DOI: 10.1387/ijdb.140271jr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Macrophage-lineage cells are indispensable to vertebrate homeostasis and immunity. In turn, macrophage development is largely regulated through colony-stimulating factor-1 (CSF1) binding to its cognate receptor (CSF1R). To study amphibian monopoiesis, we identified and characterized the X. laevis CSF1R cDNA transcript. Quantitative analysis revealed that CSF1R tissue gene expression increased with X. laevis development, with greatest transcript levels detected in the adult lung, spleen and liver tissues. Notably, considerable levels of CSF1R mRNA were also detected in the regressing tails of metamorphosing animals, suggesting macrophage involvement in this process, and in the adult bone marrow; corroborating the roles for this organ in Xenopus monopoiesis. Following animal infections with the ranavirus Frog Virus 3 (FV3), both tadpole and adult X. laevis exhibited increased kidney CSF1R gene expression. Conversely, while FV3-infected tadpoles increased their spleen and liver CSF1R mRNA levels, the FV3-challenged adults did not. Notably, FV3 induced elevated bone marrow CSF1R expression, and while stimulation of tadpoles with heat-killed E. coli had no transcriptional effects, bacterial stimulation of adult frogs resulted in significantly increased spleen, liver and bone marrow CSF1R expression. We produced the X. laevis CSF1R in recombinant form (rXlCSF1R) and determined, via in vitro cross-linking studies, that two molecules of rXlCSF1R bound the dimeric rXlCSF1. Finally, administration of rXlCSF1R abrogated the rXlCSF1-induced tadpole macrophage recruitment and differentiation as well as bacterial and FV3-elicited peritoneal leukocyte accumulation. This work marks a step towards garnering greater understanding of the unique mechanisms governing amphibian macrophage biology.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| | | | | |
Collapse
|
11
|
Ueda K, Saito E, Iwasaki K, Tsutsui S, Nozawa A, Kikuchi K, Nakamura O. Accumulation of cells expressing macrophage colony-stimulating factor receptor gene in the ovary of a pregnant viviparous fish, Neoditrema ransonnetii (Perciformes, Embiotocidae). FISH & SHELLFISH IMMUNOLOGY 2016; 50:223-230. [PMID: 26828262 DOI: 10.1016/j.fsi.2016.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR), a member of the group of type III protein tyrosine kinase receptors, is expressed primarily by monocyte/macrophage lineage cells. In order to describe the distribution of macrophages at the maternal-fetal interface in Neoditrema ransonnetii, a viviparous fish species, M-CSFR cDNA was sequenced. Two sequences were obtained: NrM-CSFR1 (4381 bp, encoding 980 amino acids), and NrM-CSFR2 (3573 bp, encoding 1016 amino acids). Both the genes were expressed in the ovary of pregnant females. In situ hybridization revealed that a number of cells that were positive for NrM-CSFR1 and/or NrM-CSFR2 populated the ovigerous lamellae of the ovary during pregnancy. Following parturition, M-CSFR-positive cells disappeared from the subepithelial region of ovigerous lamellae, and were localized in perivascular tissues. These results suggest the role of M-CSFR-positive cells, which appear to be macrophages, in N. ransonnetii during pregnancy.
Collapse
Affiliation(s)
- Kazuki Ueda
- School of Marine Biosciences, Kitasato University, Kanagawa, 252-0373, Japan
| | - Erina Saito
- School of Marine Biosciences, Kitasato University, Kanagawa, 252-0373, Japan
| | - Kaoru Iwasaki
- School of Marine Biosciences, Kitasato University, Kanagawa, 252-0373, Japan
| | - Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, Kanagawa, 252-0373, Japan
| | - Aoi Nozawa
- Fisheries Laboratory, the University of Tokyo, Shizuoka, 431-0214, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, the University of Tokyo, Shizuoka, 431-0214, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, Kanagawa, 252-0373, Japan.
| |
Collapse
|
12
|
Wang Y, Appiah-Kubi K, Wu M, Yao X, Qian H, Wu Y, Chen Y. The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are major players in oncogenesis, drug resistance, and attractive oncologic targets in cancer. Growth Factors 2016; 34:64-71. [PMID: 27170215 DOI: 10.1080/08977194.2016.1180293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a key role in signaling pathways in oncogenesis. The overexpression of PDGFs and PDGFRs and the oncogenic alterations of these receptors have been implicated in human cancers and correlated significantly with poor outcomes. This review discusses the biology of the PDGF isoforms and receptors briefly, and their role in oncogenesis. Also, the attractiveness of targeting PDGFs and PDGFRs, based on a wide display of oncologic alterations in cancers, diverse therapeutic strategies, their roles in resistance to cancer treatments with prospects of overcoming drug resistance, and the extent to which validated biomarkers have been developed for effective PDGFs and PDGFRs-based cancer management are discussed.
Collapse
Affiliation(s)
- Ying Wang
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Kwaku Appiah-Kubi
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
- b Department of Applied Biology , University for Development Studies , Navrongo , Ghana , and
| | - Min Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Xiaoyuan Yao
- c Basic Medical Department, Changchun Medical College , Jilin , People's Republic of China
| | - Hai Qian
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yan Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yongchang Chen
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| |
Collapse
|
13
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
14
|
Chen Q, Lu XJ, Chen J. Identification and functional characterization of the CSF1R gene from grass carp Ctenopharyngodon idellus and its use as a marker of monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2015; 45:386-398. [PMID: 25956721 DOI: 10.1016/j.fsi.2015.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is an important regulator of monocytes/macrophages (MO/MΦ). Although CSF1R gene has been identified and functionally studied in many fish, the precise role of CSF1R in grass carp (Ctenopharyngodon idellus) remains unclear. In this study, we determined the cDNA sequence of CSF1R (CiCSF1R) from a teleost fish, grass carp. Sequence comparison and phylogenetic tree analysis showed that CiCSF1R was most closely related to the CSF1R of zebrafish. The CiCSF1R transcript was mainly expressed in the spleen, head kidney, and head kidney-derived MO/MΦ, and its expression was altered in various tissues upon Aeromonas hydrophila infection. We prepared antibodies for neutralization of CiCSF1R on grass carp MO/MΦ. CiCSF1R neutralization or knockdown led to anti-inflammatory status in MO/MΦ upon A. hydrophila infection. CiCSF1R neutralization or knockdown also decreased the phagocytic activity of MO/MΦ. Flow cytometric analysis showed that more than 85% of grass carp MO/MΦ were CiCSF1R-positive cells. The percentage of CiCSF1R-positive cells in the head kidney of grass carp was above 10%, whereas it was only 5% and 4% in the spleen and liver, respectively. In conclusion, CSF1R is a specific surface marker of grass carp MO/MΦ, and it regulates the functions of MO/MΦ.
Collapse
Affiliation(s)
- Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Mo ZQ, Li YW, Zhou L, Li AX, Luo XC, Dan XM. Grouper (Epinephelus coioides) IL-34/MCSF2 and MCSFR1/MCSFR2 were involved in mononuclear phagocytes activation against Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:142-149. [PMID: 25543034 DOI: 10.1016/j.fsi.2014.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
MCSF and its well-known receptor MCSFR had been well studied in humans, regulating the differentiation, proliferation, and survival of the mononuclear phagocyte system. IL-34, which is an alternative ligand of MCSF receptor, was recently identified as a novel cytokine and functionally overlaps with MCSF. However, the functional study of these receptors and their ligands in fish are largely unknown. In the present study, the cDNA of two potential grouper MCSFR ligands have been cloned, EcIL-34 (657 bp) and EcMCSF2 (804 bp), as well as an additional copy of grouper MCSFR, EcMCSFR2 (3141 bp). Sequence analysis showed that these three molecules had higher identities with other fish counterparts compared to mammals and their conserved structures and important functional residues were also analyzed. Tissue distribution analysis showed that EcIL-34 is dominant in brain, gill and spleen compared to EcMCSF2, which is dominant in head kidney, trunk kidney, skin, heart and muscle. EcMCSFR1 was dominant in the most tissues except head kidney and liver compared to EcMCSFR2. The different tissue distribution patterns of these two grouper MCSF receptors and their two ligands indicate the different mononuclear phagocyte differentiation and activation modes in different tissues. In Cryptocaryon irritans infected grouper, EcIL-34 and EcMCSFR2 were the most strongly up-regulated ligand and receptor in the infected sites, gill and skin. Their up-regulation confirmed the proliferation and activation of phagocytes in C. irritans infected sites, which would improve the antigen presentation and elicit the host local specific immune response. In C. irritans infected grouper head kidney, both ligands EcIL-34 and EcMCSF2 (especially EcMCSF2) were up-regulated, but both receptors EcMCSFR1 and EcMCSFR2 were down-regulated, which indicated that the phagocytes differentiation and proliferation may have occurred in this hemopoietic organ, and after that they migrated to the infected cites. The down-regulation of EcIL-34 and EcMCSF2 and no significant change of EcMCSFR1 and EcMCSFR2 in most time point of grouper spleen showed it was less involved in phagocytes response to C. irritans infection.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol/ Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/ Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
16
|
Katzenback BA, Foroutanpay BV, Belosevic M. Expressions of transcription factors in goldfish (Carassius auratus L.) macrophages and their progenitors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:230-239. [PMID: 23748037 DOI: 10.1016/j.dci.2013.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
The development of macrophages is a highly regulated process requiring coordination amongst transcription factors. The presence/absence, relative levels, antagonism, or synergy of all transcription factors involved is critical to directing lineage cell fate and differentiation. While relative levels of many key myeloid transcription factors have been determined in mammalian macrophage differentiation, a similar set of studies have yet to be conducted in a teleost system. In this study, we report on the mRNA levels of transcription factors (cebpa, cjun, cmyb, egr1, gata1, gata2, gata3, lmo2, mafb, pax5, pu.1 and runx1) in sorted goldfish progenitor cells, monocytes, and macrophages from primary kidney macrophage cultures. The mRNA levels of runx1 and pu.1 were significantly higher, gata3 and pax5 mRNA levels were lower, in monocytes compared to progenitors, and the mRNA levels of cjun, egr1, gata2, gata3, mafb and pax5 were significantly decreased in macrophages compared to progenitor cells. The relative mRNA levels of the interferon regulatory factor family of transcription factors, irf1, irf2, irf5, irf7, irf8 and irf9 in sorted progenitors, monocytes and macrophages were also measured. In contrast to other irf family transcription factors examined, irf8 mRNA levels were increased in monocytes compared to progenitors by greater than three-fold, suggesting that irf8 is important for monopoiesis. Lastly, we show the differential regulation of myeloid transcription factor mRNA levels in sorted progenitor cells from 1, 2, or 3-day old cultures in response to the recombinant goldfish growth factors, rgCSF-1 and rgKITLA.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
17
|
Dan XM, Zhong ZP, Li YW, Luo XC, Li AX. Cloning and expression analysis of grouper (Epinephelus coioides) M-CSFR gene post Cryptocaryon irritans infection and distribution of M-CSFR(+) cells. FISH & SHELLFISH IMMUNOLOGY 2013; 35:240-248. [PMID: 23643873 DOI: 10.1016/j.fsi.2013.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The M-CSF/M-CSFR system plays a central role in the cell survival, proliferation, differentiation and maturation of the monocyte/macrophage lineage. In present study, we cloned the sequence of the M-CSFR cDNA from the orange-spotted grouper (Epinephelus coioides). Sequence analysis reveals that ten cysteines in the extracellular immunoglobulin-like (Ig-like) domains of EcM-CSFR are conserved in fish and mammals, its nine possible N-glycosylation sites are conserved in fish but not mammals, 7 of 8 identified mammal M-CSFR intracellular autophosphorylation tyrosine sites was found in EcM-CSFR. Real-time PCR showed that the constitutive expression level of EcM-CSFR was the highest in the spleen, less in the gill, kidney, head kidney and liver, least in the blood, skin, gut and thymus. A rabbit anti-EcM-CSFR polyclonal antibody against the recombinant EcM-CSFR extracellular domain was developed and it was efficient in labeling the monocytes and macrophages isolated from the head kidney. Immunochemistry analysis showed that M-CSFR(+) cells located in all tested paraffin-embedded tissues and M-CSFR(+) cell centres with the characteristic of melano-macrophage centres(MMCs) was found in the spleen, head kidney, kidney, gut and liver. All these results indicate the widespread distribution of macrophages in grouper tissues and its importance in fish immune system. In Crytocaryon irritans infected grouper, EcM-CSFR was transient up-regulated and rapidly down-regulated in skin, gill, head kidney and spleen. The possible activation mechanism of macrophage via EcM-CSFR signal transduction in the fish anti-C. irritans infection was discussed.
Collapse
Affiliation(s)
- Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | | | | | | | | |
Collapse
|
18
|
Rieger AM, Konowalchuk JD, Havixbeck JJ, Robbins JS, Smith MK, Lund JM, Barreda DR. A soluble form of the CSF-1 receptor contributes to the inhibition of inflammation in a teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:438-446. [PMID: 23262431 DOI: 10.1016/j.dci.2012.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/28/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
We previously reported on the identification of a novel soluble form of the CSF-1 receptor (sCSF-1R) in goldfish that induced dose-dependent down-regulation of macrophage proliferation. Herein, we report that sCSF-1R has a role beyond macrophage development, which extends into the control of cellular antimicrobial inflammatory responses in this lower vertebrate. Using an in vivo model of self-resolving peritonitis coupled to in vitro characterization of sCSF-1R activity, we show that sCSF-1R plays a role in the inhibition of inflammation which follows an initial acute phase of innate antimicrobial responses within an inflammatory site. In vitro, mature goldfish primary kidney macrophages but not monocytes up-regulated sCSF-1R expression upon direct contact with apoptotic cells. In vivo, sCSF-1R expression coincided with an increase in macrophage numbers that resulted from administration of apoptotic cells into the goldfish peritoneal cavity. This contrasted the decrease in sCSF-1R expression during zymosan-induced inflammatory responses in vivo. Subsequent experiments showed an anti-inflammatory effect for sCSF-1R. Leukocyte infiltration and ROS production decreased in a dose-dependent manner compared to zymosan-stimulated controls upon addition of increasing doses of recombinant sCSF-1R. Among others, sCSF-1R may contribute to the dual role that phagocytic macrophages play in the induction and regulation of inflammation. Overall, our results provide new insights into ancient mechanisms of inflammation control and, in particular, the evolutionary origins of the CSF-1 immune regulatory axis.
Collapse
Affiliation(s)
- Aja M Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | | | | | | | |
Collapse
|
19
|
Katzenback BA, Belosevic M. Colony-stimulating factor-1 receptor protein expression is a specific marker for goldfish (Carassius auratus L.) macrophage progenitors and their differentiated cell types. FISH & SHELLFISH IMMUNOLOGY 2012; 32:434-445. [PMID: 22202746 DOI: 10.1016/j.fsi.2011.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/20/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Signaling through the colony-stimulating factor-1 receptor (CSF-1R) mediates the proliferation, differentiation, and activation of macrophages and their progenitors. In this study we report on the use of an anti-goldfish CSF-1R antibody to specifically recognize a population of CSF-1R positive cells from goldfish tissues. Furthermore, using our previously characterized primary kidney macrophage culture system, we show that CSF-1R positive cells include monocytes, macrophages, and their progenitor cells. Freshly isolated progenitor cells had a higher median florescent intensity ratio than those progenitor cells cultured for up to four days. The decrease in CSF-1R expression on the progenitor cells coincides with the appearance and development of monocytes and macrophages. Monocytes were consistently CSF-1R+ and maintained the high level of CSF-1R expression as they developed into macrophages. Like that of mammalian systems, CSF-1R is expressed on all macrophage sub-populations (progenitors, monocytes, macrophages), and CSF-1R expression increases with macrophage development in teleosts.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Gunter HM, Clabaut C, Salzburger W, Meyer A. Identification and characterization of gene expression involved in the coloration of cichlid fish using microarray and qRT-PCR approaches. J Mol Evol 2011; 72:127-37. [PMID: 21267555 DOI: 10.1007/s00239-011-9431-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/03/2011] [Indexed: 01/09/2023]
Abstract
It has been suggested that speciation on the basis of sexual selection is an important mechanism for the generation of new species for East African cichlids, where male body coloration is one of the major discriminatory factors used by females in mate choice. To gain insight into the molecular basis of cichlid coloration, we studied the Lake Malawi cichlid Pseudotropheus saulosi, comparing transcription in the bright blue skin of males to the yellow skin of females. Our cDNA microarray experiments identified 46 clones that exhibited expression differences between the two sexes, of which five were confirmed to be differentially expressed by relative quantitative real-time PCR (qRT-PCR). This gene list includes a representative from the endosomal-to-Golgi vesicle trafficking pathway, Coatomer protein complex, subunit zeta-1 (Copz-1), which is known to be a critical determinant of pigmentation in humans and zebrafish. With the support of microscopic images of the skin of these specimens, we interpret the transcriptional differences between the blue males and yellow females. Here, we provide insight into the putative functional diversification of genes involved in the coloration of cichlids and by extension, on the evolution of coloration in teleost fish.
Collapse
Affiliation(s)
- Helen M Gunter
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstr 10, 78457 Constance, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
Normal development and function of the testis are controlled by endocrine and paracrine signaling pathways. Platelet-derived growth factors (PDGFs) are growth factors that mediate epithelial-mesenchymal interactions in various tissues during normal and abnormal processes such as embryo development, wound healing, tissue fibrosis, vascular disorders, and cancer. PDGFs and their receptors (PDGFRs) have emerged as key players in the regulation of embryonic and postnatal development of the male gonad. Cells that express PDGFs and PDGFRs are found in the testis of mammals, birds, and reptiles, and their distribution, regulation, and function vary across species. Testicular PDGFs and PDGFRs appear after the process of sex determination in animals that use either genetic sex determination or environmental sex determination. Sertoli cells are the main PDGF-producing cells during the entire period of prenatal and postnatal testis development. Fetal Leydig cells and their precursors, adult Leydig cells and their stem cell precursors, peritubular myoid cells, cells of the blood vessels, and gonocytes are the testicular cell types expressing PDGFRs. Genetically targeted deletions of PDGFs, PDGFRs, PDGFR target genes or pharmacological silencing of PDGF signaling produce profound damage on the target cells that, depending on the developmental period, are under direct or indirect control of PDGF. PDGF signaling may also serve diverse functions outside of the realm of testis development, including testicular tumors. In this review, we provide a framework of the current knowledge to clarify the useful information regarding how PDGFs function in individual cells of the testis.
Collapse
Affiliation(s)
- Sabrina Basciani
- Department of Medical Physiopathology, I Faculty of Medicine, University of Rome La Sapienza, Policlinico Umberto I, 00161 Rome, Italy
| | | | | | | |
Collapse
|
22
|
Wang T, Hanington PC, Belosevic M, Secombes CJ. Two Macrophage Colony-Stimulating Factor Genes Exist in Fish That Differ in Gene Organization and Are Differentially Expressed. THE JOURNAL OF IMMUNOLOGY 2008; 181:3310-22. [DOI: 10.4049/jimmunol.181.5.3310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Abstract
Colony-stimulating factor-1 (CSF-1) regulates mononuclear cell proliferation, differentiation, and survival. The functions of CSF-1 are well documented in mammals; however, little is known about CSF-1 biology in lower vertebrates. This is the first report on the identification and functional characterization of a fish CSF-1 molecule expressed highly in the spleen and in phorbol 12-myristate 13-acetate-stimulated monocytes. Goldfish CSF-1 is a 199-amino acid protein that possesses the required cysteine residues to form important intra-chain and inter-chain disulfide bonds that allow CSF-1 to form a functional homodimer and to interact with its high affinity receptor, CSF-1R. Recombinant goldfish CSF-1 formed a homodimer and bound to the soluble goldfish CSF-1R. The addition of the recombinant CSF-1 to sorted goldfish progenitor cells, monocytes, and macrophages induced the differentiation of monocytes into macrophages and the proliferation of monocyte-like cells. The proliferation of these cells was abrogated by addition of an anti-CSF-1R antibody as well as the soluble CSF-1R. The ability of the soluble CSF-1R to inhibit CSF-1-induced proliferation represents a novel mechanism for the regulation of CSF-1 function.
Collapse
Affiliation(s)
- Patrick C Hanington
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
24
|
Liu J, Liu S, Tao M, Li W, Liu Y. Isolation and expression analysis of testicular type Sox9b in allotetraploid fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:329-34. [PMID: 17245533 DOI: 10.1007/s10126-006-6123-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 11/08/2006] [Indexed: 05/13/2023]
Abstract
We isolated a Sox9 homologue, termed Sox9b, from adult allotetraploids. On the basis of the HMG-box amino acid sequences, Sox9b can be categorized into the same subgroup of Sox-E proteins as SOX8, 9, and 10. Interestingly, Northern and Southern hybridization demonstrated that Sox9b was highly expressed in the testis but at lower levels in the heart and brain, while no expression of Sox9b mRNA was discovered in the ovary of adult allotetraploids. Two transcripts of Sox9 (2.1 kb and 1.7 kb) with overlapping expression were observed for the first time in teleosts. These results indicated that allotetraploid Sox9b might be involved in gonadal development of male allotetraploids. In addition, the diverse tissue-specific expression profiles of Sox9b provided significant molecular evidence for the lineage-specific subfunction partitioning of Sox9 genes.
Collapse
Affiliation(s)
- Jifang Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Braasch I, Salzburger W, Meyer A. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Mol Biol Evol 2006; 23:1192-202. [PMID: 16547150 DOI: 10.1093/molbev/msk003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The occurrence of a fish-specific genome duplication (FSGD) in the lineage leading to teleost fishes is widely accepted, but the consequences of this event remain elusive. Teleosts, and the cichlid fishes from the species flocks in the East African Great Lakes in particular, evolved a unique complexity and diversity of body coloration and color patterning. Several genes involved in pigment cell development have been retained in duplicate copies in the teleost genome after the FSGD. Here we investigate the evolutionary fate of one of these genes, the type III receptor tyrosine kinase (RTK) colony-stimulating factor 1 receptor (csf1r). We isolated and shotgun sequenced two paralogous csf1r genes from a bacterial artificial chromosome library of the cichlid fish Astatotilapia burtoni that are both linked to paralogs of the pdgfr beta gene, another type III RTK. Two pdgfr beta-csf1r paralogons were also identified in the genomes of pufferfishes and medaka, and our phylogenetic analyses suggest that the pdgfr beta-csf1r locus was duplicated during the course of the FSGD. Comparisons of teleosts and tetrapods suggest asymmetrical divergence at different levels of genomic organization between the teleost-specific pdgfr beta-csf1r paralogons, which seem to have evolved as coevolutionary units. The high-evolutionary rate in the teleost B-paralogon, consisting of csf1rb and pdgfr betab, further suggests neofunctionalization by functional divergence of the extracellular, ligand-binding region of these cell-surface receptors. Finally, we hypothesize that genome duplications and the associated expansion of the RTK family might be causally linked to the evolution of coloration in vertebrates and teleost fishes in particular.
Collapse
Affiliation(s)
- Ingo Braasch
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
26
|
Roca FJ, Sepulcre MAP, López-Castejón G, Meseguer J, Mulero V. The colony-stimulating factor-1 receptor is a specific marker of macrophages from the bony fish gilthead seabream. Mol Immunol 2006; 43:1418-23. [PMID: 16137767 DOI: 10.1016/j.molimm.2005.07.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 11/28/2022]
Abstract
We report the molecular cloning of the colony-stimulating factor-1 receptor gene from the bony fish gilthead seabream (sbCSF-1R). The deduced sbCSF-1R shows a predicted signal sequence, a transmembrane domain and a tyrosine kinase domain, all in conserved positions. A transcript showing a premature stop codon that predicted the removal of 84 C-terminal amino acids was also found. RT-PCR expression studies demonstrate that, although the sbCSF-1R transcripts are found in different immune tissues, including gill, liver, spleen, blood, peritoneal exudate, thymus and head-kidney (HK), their expression is confined to the monocyte/macrophage lineage. Furthermore, the expression of sbCSF-1R might be modulated by the activation stage of the macrophages, since both the infection of fish and the in vitro activation of leukocytes resulted in the down-regulation of gene expression. These data indicate that the CSF-1R may be used as a specific probe for cells of the monocyte/macrophage lineage in the gilthead seabream, an immunological tractable fish model. In addition, the functional characterisation of the CSF-1R and its ligand may shed light into the mechanisms of proliferation and the pathways of differentiation of macrophages in bony fish.
Collapse
Affiliation(s)
- Francisco J Roca
- Department of Cell Biology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
27
|
Prohaska SJ, Stadler PF. Evolution of the vertebrate parahox clusters. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:481-7. [PMID: 16619246 DOI: 10.1002/jez.b.21099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ParaHox cluster contains three Hox-related homeobox genes. The evolution of this sister of the Hox-gene clusters has been studied extensively in metazoans with a focus on its early evolution. Its fate within the vertebrate lineage, and in particular following the teleost-specific genome duplication, however, has not received much attention. Three of the four human ParaHox loci are linked with PDGFR family tyrosine kinases. We demonstrate that these loci arose as duplications in an ancestral vertebrate and trace the subsequent history of gene losses. Surprisingly, teleost fishes have not expanded their ParaHox repertoire following the teleost-specific genome duplication, while duplicates of the associated tyrosine kinases have survived, supporting the hypothesis of a large-scale duplication followed by extensive gene loss.
Collapse
Affiliation(s)
- Sonja J Prohaska
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany.
| | | |
Collapse
|
28
|
Wong E, Yu WP, Yap WH, Venkatesh B, Soong TW. Comparative genomics of the human and Fugu voltage-gated calcium channel alpha1-subunit gene family reveals greater diversity in Fugu. Gene 2005; 366:117-27. [PMID: 16337095 DOI: 10.1016/j.gene.2005.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/14/2005] [Accepted: 08/05/2005] [Indexed: 11/26/2022]
Abstract
Extensive search for the orthologs of 10 human voltage-gated calcium channel (VGCC) alpha(1)-subunit genes in the Fugu genome sequence revealed 21 alpha(1)-subunit genes in the compact genome of Fugu. Subtype classification of the identified Fugu alpha(1) orthologs based on phylogenetic analysis, genomic organization and sequence comparison of the most divergent II/III loop and the C-terminal regions of the alpha(1)-subunits indicated extra copies of alpha(1S)-, alpha(1D)-, alpha(1F)-, alpha(1A)-, alpha(1E)-, alpha(1H)- and alpha(1G)-subunit genes. Phylogenetic analysis reveals that this is likely due to fish lineage specific alpha(1)-subunit subtype duplication. Sequence comparison shows that many of the structural features characteristic of VGCC and specific channel subtypes are also present in the Fugu alpha(1)-subunits. All the Fugu alpha(1)-subunits showed similar expression profile to that of the mammalian alpha(1)-subunits except for Fugu alpha(1S), alpha(1A), alpha(1B) and alpha(1H) which have a more widespread tissue distribution. These results indicate that Fugu, a lower vertebrate, has more extensive channel heterogeneity compared to human.
Collapse
Affiliation(s)
- Esther Wong
- Ion Channel and Transporter Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, S308433, Singapore
| | | | | | | | | |
Collapse
|
29
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
30
|
Honda T, Nishizawa T, Uenobe M, Kohchi C, Kuroda A, Ototake M, Nakanishi T, Yokomizo Y, Takahashi Y, Inagawa H, Soma GI. Molecular cloning and expression analysis of a macrophage-colony stimulating factor receptor-like gene from rainbow trout, Oncorhynchus mykiss. Mol Immunol 2005; 42:1-8. [PMID: 15488938 DOI: 10.1016/j.molimm.2004.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Accepted: 07/15/2004] [Indexed: 11/24/2022]
Abstract
The M-CSF and its receptor (M-CSFR, CSF-1R or c-fms proto-oncogene) system were initially implicated as essential in mammals for normal monocyte development as well as for pregnancy. To allow a comparison with the M-CSF and M-CSFR system of an oviparous animal, we cloned a M-CSFR-like gene from rainbow trout (Oncorhynchus mykiss). The gene was cloned from a cDNA library of head kidney. It contained an open reading frame encoding 967 amino acids with a predicted size of 109 kDa. The putative amino acid sequence of rainbow trout M-CSFR showed 54% amino acid identity to fugu (Takifugu rubripes) M-CSFR, 52% to zebrafish (Danio rerio) M-CSFR and 40% to mouse (Mus musculus) and human (Homo sapiens) M-CSFR. The M-CSFR-like gene was constitutively expressed in head kidney, kidney, intestine, spleen and blood. The gene was detected especially in the ovary of immature female rainbow trout. These results suggest that a M-CSFR-like receptor may be involved in female reproductive tracts even in an oviparous animal like fish.
Collapse
Affiliation(s)
- Teruko Honda
- Department of Histology, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Davies SJ, Wise C, Venkatesh B, Mirza G, Jefferson A, Volpi EV, Ragoussis J. Mapping of three translocation breakpoints associated with orofacial clefting within 6p24 and identification of new transcripts within the region. Cytogenet Genome Res 2004; 105:47-53. [PMID: 15218257 DOI: 10.1159/000078008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 02/24/2004] [Indexed: 11/19/2022] Open
Abstract
Orofacial clefting (OFC) is a common congenital malformation. Here we report the refinement of three translocation breakpoints of patients exhibiting OFC within the 6p24 region, and the isolation and characterisation of novel genes, one of which is directly disrupted by the translocation breakpoint of a patient. The gene has been characterized and orthologues identified in bovine, murine and pufferfish.
Collapse
Affiliation(s)
- S J Davies
- The Wellcome Trust Centre for Human Genetics, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zelensky AN, Gready JE. C-type lectin-like domains in Fugu rubripes. BMC Genomics 2004; 5:51. [PMID: 15285787 PMCID: PMC514892 DOI: 10.1186/1471-2164-5-51] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/01/2004] [Indexed: 12/18/2022] Open
Abstract
Background Members of the C-type lectin domain (CTLD) superfamily are metazoan proteins functionally important in glycoprotein metabolism, mechanisms of multicellular integration and immunity. Three genome-level studies on human, C. elegans and D. melanogaster reported previously demonstrated almost complete divergence among invertebrate and mammalian families of CTLD-containing proteins (CTLDcps). Results We have performed an analysis of CTLD family composition in Fugu rubripes using the draft genome sequence. The results show that all but two groups of CTLDcps identified in mammals are also found in fish, and that most of the groups have the same members as in mammals. We failed to detect representatives for CTLD groups V (NK cell receptors) and VII (lithostathine), while the DC-SIGN subgroup of group II is overrepresented in Fugu. Several new CTLD-containing genes, highly conserved between Fugu and human, were discovered using the Fugu genome sequence as a reference, including a CSPG family member and an SCP-domain-containing soluble protein. A distinct group of soluble dual-CTLD proteins has been identified, which may be the first reported CTLDcp group shared by invertebrates and vertebrates. We show that CTLDcp-encoding genes are selectively duplicated in Fugu, in a manner that suggests an ancient large-scale duplication event. We have verified 32 gene structures and predicted 63 new ones, and make our annotations available through a distributed annotation system (DAS) server and their sequences as additional files with this paper. Conclusions The vertebrate CTLDcp family was essentially formed early in vertebrate evolution and is completely different from the invertebrate families. Comparison of fish and mammalian genomes revealed three groups of CTLDcps and several new members of the known groups, which are highly conserved between fish and mammals, but were not identified in the study using only mammalian genomes. Despite limitations of the draft sequence, the Fugu rubripes genome is a powerful instrument for gene discovery and vertebrate evolutionary analysis. The composition of the CTLDcp superfamily in fish and mammals suggests that large-scale duplication events played an important role in the evolution of vertebrates.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| | - Jill E Gready
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| |
Collapse
|
33
|
Abstract
The ray-finned fishes ('fishes') vary widely in genome size, morphology and adaptations. Teleosts, which comprise approximately 23600 species, constitute >99% of living fishes. The radiation of teleosts has been attributed to a genome duplication event, which is proposed to have occurred in an ancient teleost. But more evidence is required to support the genome-duplication hypothesis and to establish a causal relationship between additional genes and teleost diversity. Fish genomes seem to be 'plastic' in comparison with other vertebrate genomes because genetic changes, such as polyploidization, gene duplications, gain of spliceosomal introns and speciation, are more frequent in fishes.
Collapse
Affiliation(s)
- Byrappa Venkatesh
- Institute of Molecular and Cell Biology 30, Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|
34
|
Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res 2004; 14:1248-57. [PMID: 15197168 PMCID: PMC442139 DOI: 10.1101/gr.2400004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In humans, the claudin superfamily consists of 19 homologous proteins that commonly localize to tight junctions of epithelial and endothelial cells. Besides being structural tight-junction components, claudins participate in cell-cell adhesion and the paracellular transport of solutes. Here, we identify and annotate the claudin genes in the whole-genome of the teleost fish, Fugu rubripes (Fugu), and determine their phylogenetic relationships to those in mammals. Our analysis reveals extensive gene duplications in the teleost lineage, leading to 56 claudin genes in Fugu. A total of 35 Fugu claudin genes can be assigned orthology to 17 mammalian claudin genes, with the remaining 21 genes being specific to the fish lineage. Thus, a significant number of the additional Fugu genes are not the result of the proposed whole-genome duplication in the fish lineage. Expression profiling shows that most of the 56 Fugu claudin genes are expressed in a more-or-less tissue-specific fashion, or at particular developmental stages. We postulate that the expansion of the claudin gene family in teleosts allowed the acquisition of novel functions during evolution, and that fish-specific novel members of gene families such as claudins contribute to a large extent to the distinct physiology of fishes and mammals.
Collapse
Affiliation(s)
- Yong Hwee Loh
- Institute of Molecular and Cell Biology, Singapore 117609
| | | | | | | | | |
Collapse
|
35
|
Koopman P, Schepers G, Brenner S, Venkatesh B. Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 2004; 328:177-86. [PMID: 15019997 DOI: 10.1016/j.gene.2003.12.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 10/24/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts.
Collapse
Affiliation(s)
- Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
36
|
Abstract
Recent advances in genetic manipulation have greatly expanded our understanding of cellular responses to platelet-derived growth factors (PDGFs) during animal development. In addition to driving mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialized mesenchymal and migratory cell types, both during development and in the adult animal. Furthermore, the availability of genomic sequence data has facilitated the identification of novel PDGF and PDGF receptor (PDGFR) family members in C. elegans, Drosophila, Xenopus, zebrafish and mouse. Early data from these different systems suggest that some functions of PDGFs have been evolutionarily conserved.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|