1
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
2
|
Bodega B, Ramirez GDC, Grasser F, Cheli S, Brunelli S, Mora M, Meneveri R, Marozzi A, Mueller S, Battaglioli E, Ginelli E. Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation. BMC Biol 2009; 7:41. [PMID: 19607661 PMCID: PMC2719609 DOI: 10.1186/1741-7007-7-41] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/16/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (ANT1), FSHD-related gene 1 (FRG1), FRG2 and DUX4c, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (DUX4) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing FRG1 has been generated, displaying skeletal muscle defects. RESULTS In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and FRG1 gene promoter, and FRG1 expression, in control and FSHD cells. The FRG1 gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of FRG1 expression. Using chromosome conformation capture (3C) technology, we revealed that the FRG1 promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the FRG1/4q-D4Z4 array loop in myotubes. The FRG1 promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation. CONCLUSION We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of in cis chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.
Collapse
Affiliation(s)
- Beatrice Bodega
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Darai-Ramqvist E, Sandlund A, Müller S, Klein G, Imreh S, Kost-Alimova M. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. Genome Res 2008; 18:370-9. [PMID: 18230801 DOI: 10.1101/gr.7010208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.
Collapse
Affiliation(s)
- Eva Darai-Ramqvist
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
4
|
Bodega B, Cardone MF, Müller S, Neusser M, Orzan F, Rossi E, Battaglioli E, Marozzi A, Riva P, Rocchi M, Meneveri R, Ginelli E. Evolutionary genomic remodelling of the human 4q subtelomere (4q35.2). BMC Evol Biol 2007; 7:39. [PMID: 17359533 PMCID: PMC1852401 DOI: 10.1186/1471-2148-7-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/14/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In order to obtain insights into the functionality of the human 4q35.2 domain harbouring the facioscapulohumeral muscular dystrophy (FSHD) locus, we investigated in African apes genomic and chromatin organisations, and the nuclear topology of orthologous regions. RESULTS A basic block consisting of short D4Z4 arrays (10-15 repeats), 4q35.2 specific sequences, and approximately 35 kb of interspersed repeats from different LINE subfamilies was repeated at least twice in the gorilla 4qter. This genomic organisation has undergone evolutionary remodelling, leading to the single representation of both the D4Z4 array and LINE block in chimpanzee, and the loss of the LINE block in humans. The genomic remodelling has had an impact on 4qter chromatin organisation, but not its interphase nuclear topology. In comparison with humans, African apes show very low or undetectable levels of FRG1 and FRG2 histone 4 acetylation and gene transcription, although histone deacetylase inhibition restores gene transcription to levels comparable with those of human cells, thus indicating that the 4qter region is capable of acquiring a more open chromatin structure. Conversely, as in humans, the 4qter region in African apes has a very peripheral nuclear localisation. CONCLUSION The 4q subtelomere has undergone substantial genomic changes during evolution that have had an impact on chromatin condensation and the region's transcriptional regulation. Consequently, the 4qter genes in African apes and humans seem to be subjected to a different strategy of regulation in which LINE and D4Z4 sequences may play a pivotal role. However, the effect of peripheral nuclear anchoring of 4qter on these regulation mechanisms is still unclear. The observed differences in the regulation of 4qter gene expression between African apes and humans suggest that the human 4q35.2 locus has acquired a novel functional relevance.
Collapse
Affiliation(s)
- Beatrice Bodega
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | | | - Stefan Müller
- Biology II – Anthropology and Human Genetics, University of Ludwig Maximilians, Munich, Germany
| | - Michaela Neusser
- Biology II – Anthropology and Human Genetics, University of Ludwig Maximilians, Munich, Germany
| | - Francesca Orzan
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Elena Rossi
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Elena Battaglioli
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Anna Marozzi
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Paola Riva
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Mariano Rocchi
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milan-Bicocca, Monza, Italy
| | - Enrico Ginelli
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Bodega B, Cardone MF, Rocchi M, Meneveri R, Marozzi A, Ginelli E. The boundary of macaque rDNA is constituted by low-copy sequences conserved during evolution. Genomics 2006; 88:564-71. [PMID: 16765020 DOI: 10.1016/j.ygeno.2006.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/03/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
In Macaca mulatta, the single rDNA array is flanked by a patchwork of sequences including subregions of human Yp11.2, 4q35.2, and 10p15.3. This composite DNA region is characterized by unique or low-copy sequences, resembling a potentially transcribed region. The analysis of Cercopithecus aethiops, Presbytis cristata, and Hylobates lar suggests that this complex sequence organization could be shared by Old World monkey and lesser ape species. After the lesser apes/great apes divergence, the unique or nonduplicated DNA region underwent amplification and spreading, preferentially marking the p arm of acrocentric chromosomes bearing the rDNA. The molecular analysis of human acrocentric chromosomes revealed some extent of remodeling of the rDNA boundary: near the human NOR, a large 4q35.2 duplication partially resembles that found in MMU; conversely, infrequently represented Yp11.2 sequences totally differed from those of the macaque, and 10p15.3 sequences were lacking. Thus, although evolutionary events modified the sequence organization of the MMU rDNA boundary, its overall sequence feature and the preferential location in vicinity to the NOR have been conserved.
Collapse
MESH Headings
- Animals
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Y/genetics
- Conserved Sequence
- DNA, Ribosomal/genetics
- Evolution, Molecular
- Gene Duplication
- Genomics
- Humans
- In Situ Hybridization, Fluorescence
- Macaca mulatta/genetics
- Molecular Sequence Data
- Primates/genetics
- Species Specificity
Collapse
Affiliation(s)
- B Bodega
- Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Goto K, Nishino I, Hayashi YK. Rapid and accurate diagnosis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2006; 16:256-61. [PMID: 16545566 DOI: 10.1016/j.nmd.2006.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 01/09/2006] [Accepted: 01/18/2006] [Indexed: 11/17/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common muscular disorder, but clinical and genetic complications make its diagnosis difficult. Southern blot analysis detects a smaller sized EcoRI fragment on chromosome 4q35 in most facioscapulohumeral muscular dystrophy patients, that contains integral number of 3.3-kb tandem repeats known as D4Z4. The problems for the genetic diagnosis are that southern blotting for facioscapulohumeral muscular dystrophy is quite laborious and time-consuming, and the D4Z4 number is only estimated from the size of the fragment. We developed a more simplified diagnostic method using a long polymerase chain reaction (PCR) amplification technique. Successful amplification was achieved in all facioscapulohumeral muscular dystrophy patients with an EcoRI fragment size ranging from 10 to 25 kb, and each patient had a specific polymerase chain reaction product which corresponded to the size calculated from the number of D4Z4. Using southern blot analysis, more than 90% of facioscapulohumeral muscular dystrophy patients have a smaller EcoRI fragment than 26kb in our series, and the number of D4Z4 repeats is precisely counted by this polymerase chain reaction method. We conclude that this long polymerase chain reaction method can be used as an accurate genetic screening technique for facioscapulohumeral muscular dystrophy patients.
Collapse
Affiliation(s)
- Kanako Goto
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | |
Collapse
|
7
|
van der Maarel SM, Frants RR. The D4Z4 repeat-mediated pathogenesis of facioscapulohumeral muscular dystrophy. Am J Hum Genet 2005; 76:375-86. [PMID: 15674778 PMCID: PMC1196390 DOI: 10.1086/428361] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 01/19/2023] Open
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands.
| | | |
Collapse
|
8
|
Cardone MF, Ballarati L, Ventura M, Rocchi M, Marozzi A, Ginelli E, Meneveri R. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading. Mol Biol Evol 2004; 21:1792-9. [PMID: 15201396 DOI: 10.1093/molbev/msh190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this article, we report studies on the evolutionary history of beta satellite repeats (BSR) in primates. In the orangutan genome, the bulk of BSR sequences was found organized as very short stretches of approximately 100 to 170 bp, embedded in a 60-kb to 80-kb duplicated DNA segment. The estimated copy number of the duplicon that carries BSR sequences ranges from 70 to 100 per orangutan haploid genome. In both macaque and gibbon, the duplicon mapped to a single chromosomal region at the boundary of the rDNA on the marker chromosome (chromosome 13 and 12, respectively). However, only in the gibbon, the duplicon comprised 100 bp of beta satellite. Thus, the ancestral copy of the duplicon appeared in Old World monkeys ( approximately 25 to approximately 35 MYA), whereas the prototype of beta satellite repeats took place in a gibbon ancestor, after apes/Old World monkeys divergence ( approximately 25 MYA). Subsequently, a burst in spreading of the duplicon that carries the beta satellite was observed in the orangutan, after lesser apes divergence from the great apes-humans lineage ( approximately 18 MYA). The analysis of the orangutan genome also indicated the existence of two variants of the duplication that differ for the length (100 or 170 bp) of beta satellite repeats. The latter organization was probably generated by nonhomologous recombination between two 100-bp repeated regions, and it likely led to the duplication of the single Sau3A site present in the 100-bp variant, which generated the prototype of Sau3A 68-bp beta satellite tandem organization. The two variants of the duplication, although with a different ratios, characterize the hominoid genomes from the orangutan to humans, preferentially involving acrocentric chromosomes. At variance to alpha satellite, which appeared before the divergence of New World and Old World monkeys, the beta satellite evolutionary history began in apes ancestor, where we have first documented a low-copy, nonduplicated BSR sequence. The first step of BSR amplification and spreading occurred, most likely, because the BSR was part of a large duplicon, which underwent a burst dispersal in great apes' ancestor after the lesser apes' branching. Then, after orangutan divergence, BSR acquired the clustered structural organization typical of satellite DNA.
Collapse
Affiliation(s)
- M F Cardone
- Dipartimento di Anatomia Patologica e Genetica, Sezione di Genetica, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Dennehey BK, Gutches DG, McConkey EH, Krauter KS. Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 2004; 83:493-501. [PMID: 14962675 DOI: 10.1016/j.ygeno.2003.08.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/19/2003] [Indexed: 12/11/2022]
Abstract
Human chromosome 18 differs from its homologues in the great apes by a pericentric inversion. We have identified a chimpanzee bacterial artificial chromosome that spans a region where a break is likely to have occurred in a human progenitor and have characterized the corresponding regions in both chimpanzees and humans. Interspecies sequence comparisons indicate that the ancestral break occurred between the genes ROCK1 and USP14. In humans, the inversion places ROCK1 near centromeric heterochromatin and USP14 adjacent to highly repetitive subtelomeric repeats. In addition, we provide evidence for a human segmental duplication that may have provided a mechanism for the inversion.
Collapse
Affiliation(s)
- Briana K Dennehey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
10
|
Picozzi P, Marozzi A, Fornasari D, Benfante R, Barisani D, Meneveri R, Ginelli E. Genomic organization and transcription of the human retinol dehydrogenase 10 (RDH10) gene. FEBS Lett 2003; 554:59-66. [PMID: 14596915 DOI: 10.1016/s0014-5793(03)01089-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A cDNA clone up-regulated in hydraulic lung edema in rabbit showed high similarity with human RDH10 mRNA, which encodes a protein involved in retinoic acid metabolism. We defined the organization of the human gene, which includes a unique transcriptional start site, a coding region with six translated exons and a 3' untranslated region containing at least two used polyadenylation sites. The two poly(A) signals are responsible for the production of the 3 and 4 kb RDH10 mRNA isoforms detected in several human tissues and cell lines.
Collapse
Affiliation(s)
- P Picozzi
- Department of Biology and Genetics for Medical Sciences, University of Milan, Via Viotti 3/5, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|