1
|
Seim I, Baker AM, Chopin LK. RadAA: A Command-line Tool for Identification of Radical Amino Acid Changes in Multiple Sequence Alignments. Mol Inform 2019; 38:e1800057. [PMID: 30019526 PMCID: PMC6585820 DOI: 10.1002/minf.201800057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/24/2018] [Indexed: 11/09/2022]
Abstract
High-throughput sequencing has revolutionised biology and medicine. Numerous genomes and transcriptome assemblies are now available, and these genomic data sets lend themselves to comparisons between species, strains, and other strata. Researchers often need to rapidly identify changes, in particular amino acid substitutions that could confer biological function in their system of interest. However, we are not aware of an easy-to-use tool that can be used to detect such changes, and researchers currently rely on idiosyncratic computer code. We present RadAA, a command-line tool which screens multiple sequence alignments for radical amino acid changes in a stratum/strata by classifying residues into groups by charge (with cysteine in its own group). RadAA is easy to use, even for researchers with little experience in computational biology. It can be run on most operating systems - including MacOS, Windows, and Linux - and integrated into high-performance computing environments. The RadAA source code and executable binaries are freely available at https://github.com/sciseim/RadAA.
Collapse
Affiliation(s)
- Inge Seim
- Comparative and Endocrine Biology Laboratory, Translational Research Institute - Institute of Health and Biomedical Innovation, School of Biomedical SciencesQueensland University of Technology37 Kent St4102WoolloongabbaAustralia
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal University1 Wenyuan Road210023NanjingChina
| | - Andrew M. Baker
- School of Earth, Environmental and Biological Sciences, Science and Engineering FacultyQueensland University of Technology2 George St, 4001BrisbaneAustralia
| | - Lisa K. Chopin
- Comparative and Endocrine Biology Laboratory, Translational Research Institute - Institute of Health and Biomedical Innovation, School of Biomedical SciencesQueensland University of Technology37 Kent St4102WoolloongabbaAustralia
| |
Collapse
|
2
|
Tessier L, Côté O, Bienzle D. Sequence variant analysis of RNA sequences in severe equine asthma. PeerJ 2018; 6:e5759. [PMID: 30324028 PMCID: PMC6186407 DOI: 10.7717/peerj.5759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Severe equine asthma is a chronic inflammatory disease of the lung in horses similar to low-Th2 late-onset asthma in humans. This study aimed to determine the utility of RNA-Seq to call gene sequence variants, and to identify sequence variants of potential relevance to the pathogenesis of asthma. Methods RNA-Seq data were generated from endobronchial biopsies collected from six asthmatic and seven non-asthmatic horses before and after challenge (26 samples total). Sequences were aligned to the equine genome with Spliced Transcripts Alignment to Reference software. Read preparation for sequence variant calling was performed with Picard tools and Genome Analysis Toolkit (GATK). Sequence variants were called and filtered using GATK and Ensembl Variant Effect Predictor (VEP) tools, and two RNA-Seq predicted sequence variants were investigated with both PCR and Sanger sequencing. Supplementary analysis of novel sequence variant selection with VEP was based on a score of <0.01 predicted with Sorting Intolerant from Tolerant software, missense nature, location within the protein coding sequence and presence in all asthmatic individuals. For select variants, effect on protein function was assessed with Polymorphism Phenotyping 2 and screening for non-acceptable polymorphism 2 software. Sequences were aligned and 3D protein structures predicted with Geneious software. Difference in allele frequency between the groups was assessed using a Pearson’s Chi-squared test with Yates’ continuity correction, and difference in genotype frequency was calculated using the Fisher’s exact test for count data. Results RNA-Seq variant calling and filtering correctly identified substitution variants in PACRG and RTTN. Sanger sequencing confirmed that the PACRG substitution was appropriately identified in all 26 samples while the RTTN substitution was identified correctly in 24 of 26 samples. These variants of uncertain significance had substitutions that were predicted to result in loss of function and to be non-neutral. Amino acid substitutions projected no change of hydrophobicity and isoelectric point in PACRG, and a change in both for RTTN. For PACRG, no difference in allele frequency between the two groups was detected but a higher proportion of asthmatic horses had the altered RTTN allele compared to non-asthmatic animals. Discussion RNA-Seq was sensitive and specific for calling gene sequence variants in this disease model. Even moderate coverage (<10–20 counts per million) yielded correct identification in 92% of samples, suggesting RNA-Seq may be suitable to detect sequence variants in low coverage samples. The impact of amino acid alterations in PACRG and RTTN proteins, and possible association of the sequence variants with asthma, is of uncertain significance, but their role in ciliary function may be of future interest.
Collapse
Affiliation(s)
- Laurence Tessier
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,BenchSci, Toronto, ON, Canada
| | - Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,BioAssay Works, Ijamsville, MD, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Ahmad HI, Ahmad MJ, Adeel MM, Asif AR, Du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget 2018; 9:18435-18445. [PMID: 29719616 PMCID: PMC5915083 DOI: 10.18632/oncotarget.24240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022] Open
Abstract
The rapid evolution of reproductive proteins might be driven by positive Darwinian selection. The bone morphogenetic protein family is the largest within the transforming growth factor (TGF) superfamily. A little have been known about the molecular evolution of bone morphogenetic proteins exhibiting potential role in mammalian reproduction. In this study we investigated mammalian bone morphogenetic proteins using maximum likelihood approaches of codon substitutions to identify positive Darwinian selection in various species. The proportion of positively selected sites was tested by different likelihood models for individual codon, and M8 were found to be the best model. The percentage of positively elected sites under M8 are 2.20% with ω = 1.089 for BMP2, 1.6% with ω = 1.61 for BMP 4 0.53% for BMP15 with ω = 1.56 and 0.78% for GDF9 with ω = 1.93. The percentage of estimated selection sites under M8 is strong statistical confirmation that divergence of bone morphogenetic proteins is driven by Darwinian selection. For the proteins, model M8 was found significant for all proteins with ω > 1. To further test positive selection on particular amino acids, the evolutionary conservation of amino acid were measured based on phylogenetic linkage among sequences. For exploring the impact of these somatic substitution mutations in the selection region on human cancer, we identified one pathogenic mutation in human BMP4 and one in BMP15, possibly causing prostate cancer and six neutral mutations in BMPs. The comprehensive map of selection results allows the researchers to perform systematic approaches to detect the evolutionary footprints of selection on specific gene in specific species.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Muhammad Muzammal Adeel
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Akhtar Rasool Asif
- University of Veterinary and Animal Sciences, Lahore, Sub Campus Jhang, Pakistan
| | - Xiaoyong Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
4
|
Screening of nucleotide variations in genomic sequences encoding charged protein regions in the human genome. BMC Genomics 2017; 18:588. [PMID: 28789634 PMCID: PMC5549384 DOI: 10.1186/s12864-017-4000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022] Open
Abstract
Background Studying genetic variation distribution in proteins containing charged regions, called charge clusters (CCs), is of great interest to unravel their functional role. Charge clusters are 20 to 75 residue segments with high net positive charge, high net negative charge, or high total charge relative to the overall charge composition of the protein. We previously developed a bioinformatics tool (FCCP) to detect charge clusters in proteomes and scanned the human proteome for the occurrence of CCs. In this paper we investigate the genetic variations in the human proteins harbouring CCs. Results We studied the coding regions of 317 positively charged clusters and 1020 negatively charged ones previously detected in human proteins. Results revealed that coding parts of CCs are richer in sequence variants than their corresponding genes, full mRNAs, and exonic + intronic sequences and that these variants are predominately rare (Minor allele frequency < 0.005). Furthermore, variants occurring in the coding parts of positively charged regions of proteins are more often pathogenic than those occurring in negatively charged ones. Classification of variants according to their types showed that substitution is the major type followed by Indels (Insertions-deletions). Concerning substitutions, it was found that within clusters of both charges, the charged amino acids were the greatest loser groups whereas polar residues were the greatest gainers. Conclusions Our findings highlight the prominent features of the human charged regions from the DNA up to the protein sequence which might provide potential clues to improve the current understanding of those charged regions and their implication in the emergence of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4000-3) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Neves F, Abrantes J, Esteves PJ. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Innate Immun 2016; 22:336-43. [PMID: 27189425 DOI: 10.1177/1753425916647471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal UMIB/UP - Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
6
|
C-H…pi interactions in proteins: prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability. J Mol Model 2014; 20:2136. [DOI: 10.1007/s00894-014-2136-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022]
|
7
|
Cardona F, Tormos-Pérez M, Pérez-Tur J. Structural and functional in silico analysis of LRRK2 missense substitutions. Mol Biol Rep 2014; 41:2529-42. [PMID: 24488318 DOI: 10.1007/s11033-014-3111-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/10/2014] [Indexed: 11/27/2022]
Abstract
The LRRK2 gene (Leucine-Rich Repeat Kinase 2, PARK8) is mutated in a significant number of cases of autosomal dominant Parkinson's disease (PD) and in some sporadic cases of late-onset PD. LRRK2 is a large, complex protein that comprises several interaction domains: armadillo, ankyrin, leucine-rich repeats and WD40 domains; two catalytic domains: ROC-GTPase and serine/threonine kinase; and a COR domain (unknown function). Pathogenic mutations are scattered all over the domains of LRRK2, although the prevalence of mutations in some domains is higher (ROC-GTPase, COR and kinase). In this work, we model the structure of each domain to predict and explore the effects of described missense mutations and polymorphisms. The results allow us to postulate the possible effects of pathogenic mutations in the function of the protein, and hypothesize the importance of some polymorphisms that have not been linked directly to PD, but act as risk factors for the disease. In our analysis, we also study the effects of PD-related mutations in the kinase domain structure and in the phosphorylation of the activation loop to determine effects on kinase activity.
Collapse
Affiliation(s)
- Fernando Cardona
- Unitat de Genètica Molecular, Institut de Biomedicina de València, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain,
| | | | | |
Collapse
|
8
|
Lemos de Matos A, McFadden G, Esteves PJ. Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolagus, Sylvilagus, and Lepus. Immunogenetics 2013; 66:43-52. [DOI: 10.1007/s00251-013-0740-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
9
|
Neves F, Abrantes J, Steinke JW, Esteves PJ. Maximum-likelihood approaches reveal signatures of positive selection in IL genes in mammals. Innate Immun 2013; 20:184-91. [PMID: 23775092 DOI: 10.1177/1753425913486687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ILs are part of the immune system and are involved in multiple biological activities. ILs have been shown to evolve under positive selection; however, little information exists regarding which codons are specifically selected. By using different codon-based maximum-likelihood (ML) approaches, signatures of positive selection in mammalian ILs were searched for. Sequences of 46 ILs were retrieved from publicly available databases of mammalian genomes to detect signatures of positive selection in individual codons. Evolutionary analyses were conducted under two ML frameworks, the HyPhy package implemented in the Data Monkey Web Server and CODEML implemented in PAML. Signatures of positive selection were found in 28 ILs: IL-1A and B; IL-2, IL-4 to IL-10, IL-12A and B; IL-14 to IL-17A and C; IL-18, IL-20 to IL-22, IL-25, IL-26, IL-27B, IL-31, IL-34, IL-36A; and G. Codons under positive selection varied between 1 and 15. No evidence of positive selection was detected in IL-13; IL-17B and F; IL-19, IL-23, IL-24, IL-27A; or IL-29. Most mammalian ILs have sites evolving under positive selection, which may be explained by the multitude of biological processes in which ILs are enrolled. The results obtained raise hypotheses concerning the ILs functions, which should be pursued by using mutagenesis and crystallographic approaches.
Collapse
Affiliation(s)
- Fabiana Neves
- 1CIBIO/UP - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
10
|
Cardona F, Sánchez‐Mut JV, Dopazo H, Pérez‐Tur J. Phylogenetic and in silico structural analysis of the Parkinson disease‐related kinase PINK1. Hum Mutat 2011; 32:369-78. [PMID: 21412950 DOI: 10.1002/humu.21444] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fernando Cardona
- Unitat de Genètica Molecular, Institut de Biomedicina de València‐CSIC, Valencia, Spain
- CiberNed, Spain
| | | | - Hernán Dopazo
- Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Jordi Pérez‐Tur
- Unitat de Genètica Molecular, Institut de Biomedicina de València‐CSIC, Valencia, Spain
- CiberNed, Spain
| |
Collapse
|
11
|
Wibowo TA, Michal JJ, Jiang Z. Corticotropin releasing hormone is a promising candidate gene for marbling and subcutaneous fat depth in beef cattle. Genome 2007; 50:939-45. [DOI: 10.1139/g07-075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene corticotropin releasing hormone (CRH) is mapped on bovine chromosome 14 (BTA14), where more than 30 fat-related quantitative trait loci (QTLs) have been reported in dairy and beef cattle. The gene product regulates secretion of adrenocorticotrophin hormone, the hypothalamic–pituitary–adrenal axis, and multiple hypothalamic functions; therefore, we hypothesized that CRH is a promising candidate gene for beef marbling score (BMS) and subcutaneous fat depth (SFD) in a Wagyu × Limousin F2 population. Two pairs of primers were designed and a total of 5 single nucleotide polymorphisms (SNPs) were identified: g.9657C>T, c.10718G>C, c.10841G>A, c.10893A>C, and c.10936G>C (AAFC03076794.1). Among the 4 cSNPs, c.10718G>C, c.10841G>A, and c.10936G>C are missense mutations leading to amino acid changes from arginine to proline, from serine to asparagine, and from aspartic acid to histidine, respectively. These 5 SNPs were genotyped on ~250 F2 progeny, but only 4 were selected as tagging SNPs for association analysis because no historical recombination was observed between c.10718G>C and c.10893A>C. Statistical analysis showed that g.9657C>T, c.10718G>C, and c.10936G>C and their haplotypes had significant effects on SFD, but only c.10936G>C was significantly associated with BMS. The SNP in the promoter (g.9657C>T) led to gain/loss of a CpG site and 4 potential regulatory binding sites. Different haplotypes among the 4 cSNPs significantly affected mRNA secondary structures but were not associated with phenotypes. Overall, our results provide further evidence that CRH is a promising candidate gene for a concordant QTL related to lipid metabolism in mammals.
Collapse
Affiliation(s)
- Tito A. Wibowo
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| |
Collapse
|
12
|
Moldogazieva NT, Terentiev AA, Kazimirsky AN, Antonov MY, Shaitan KV. Conformational dynamics of human alpha-fetoprotein-derived heptapeptide LDSYQCT analogs. BIOCHEMISTRY (MOSCOW) 2007; 72:529-39. [PMID: 17573707 DOI: 10.1134/s0006297907050094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conformational dynamics of a biologically active fragment of alpha-fetoprotein, the heptapeptide LDSYQCT, and its analogs obtained by site-directed substitutions of amino acid residues were studied. The conformational dynamics of the peptide were conservative under the substitutions Y17F, Y17S, and D15E. Substitutions C19A and S16V resulted only in local changes in the dynamic behavior of the peptide. Chemical modification of cysteine (C19) or dimerization of the peptide by producing a disulfide bond between cysteine residues of two parallel peptide chains, as well as the substitutions C19G, C19S, Q18E, and D15N changed a set of possible conformations and dynamic behavior of all amino acid residues. The most significant changes were caused by substitution of uncharged amino acid residues by charged ones, and vice versa.
Collapse
|
13
|
Poon AFY, Chao L. FUNCTIONAL ORIGINS OF FITNESS EFFECT-SIZES OF COMPENSATORY MUTATIONS IN THE DNA BACTERIOPHAGE ØX174. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01841.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Williams NA, Close JP, Giouzeli M, Crow TJ. Accelerated evolution of Protocadherin11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:623-33. [PMID: 16874762 DOI: 10.1002/ajmg.b.30357] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been argued that cerebral asymmetry (the "torque") is the characteristic that defines the human brain and that morphological findings in psychosis are consistent with a deviation in this sex-dependent dimension of brain growth. Evidence from sex chromosome aneuploidies and an association within families between sex and handedness is consistent with the presence of a determinant of cerebral asymmetry (a possible correlate of language) on the X and the Y chromosomes. During hominid evolution a 3.5 Mb translocation occurred from the ancestral X chromosome to the Y chromosome, resulting in duplication of the Protocadherin11X gene, such that it is represented on the X and Y chromosomes in man, whereas there is a single X-linked gene in other mammals. We re-date the duplicative translocation to 6 million years ago, that is, close to the chimpanzee-hominid bifurcation. Sequence comparisons with the chimpanzee, bonobo, gorilla, and orangutan indicate that in contrast to earlier purifying selection there has been accelerated change in the Protocadherin11X ectodomain as well as the Protocadherin11Y sequence in the hominid lineage since the duplication. The evolutionary sequence of events together with the prior case for an X-Y homologous gene suggests that this gene-pair is a candidate for the evolution of hominid-specific characteristics including the sexual dimorphism of cerebral asymmetry, a putative correlate of language.
Collapse
Affiliation(s)
- Nic A Williams
- Prince of Wales International Centre for SANE Research, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
15
|
Muráni E, Murániová M, Ponsuksili S, Schellander K, Wimmers K. Molecular characterization and evidencing of the porcine CRH gene as a functional-positional candidate for growth and body composition. Biochem Biophys Res Commun 2006; 342:394-405. [PMID: 16483545 DOI: 10.1016/j.bbrc.2006.01.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
Corticotropin-releasing hormone (CRH), a major regulator of neuroendocrine response to stress, is involved in the control of energy balance and thus may affect body composition and growth. The porcine CRH (pCRH) gene was studied as a comparative-positional candidate for QTL for longissimus muscle area, average backfat thickness, carcass length, and average daily gain on test on porcine chromosome 4. Sequence of the complete transcriptional unit of pCRH gene spanning 2068bp was determined along with 582bp of the 5'-flanking region. Cross-species sequence comparison revealed a number of potential regulatory regions including an intronic evolutionary conserved region and an adjacent CpG island that may control cell-type specific expression of the CRH gene. A SNP in exon 2 (c.+83G>A) leading to a non-conservative amino acid exchange (p.28Arg>Gln) in the prohormone was identified that is segregating in the DUMI resource population. Linkage and association analysis based on this SNP revealed that for all four traits the pCRH gene falls in the QTL peak area and that the c.+83G>A SNP shows a highly significant additive effect (p<0.0001). Physical mapping using the IMpRH panel assigned the pCRH gene to interval SW724-S0107, promoting the gene as a positional candidate also for QTL identified in other porcine resource populations. Additional four variable sites were identified that segregate in commercial pig breeds. Particularly interesting is a SNP (g.233C>T) in the 5'-flanking region that occurred in an evolutionary conserved motif. The knowledge of the DNA-variation of pCRH gene will facilitate follow-up studies necessary to provide definite genetic evidence of the effect of pCRH gene on body composition and growth.
Collapse
Affiliation(s)
- Eduard Muráni
- Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
16
|
Poon AFY, Chao L. FUNCTIONAL ORIGINS OF FITNESS EFFECT-SIZES OF COMPENSATORY MUTATIONS IN THE DNA BACTERIOPHAGE φX174. Evolution 2006. [DOI: 10.1554/06-013.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Yampolsky LY, Kondrashov FA, Kondrashov AS. Distribution of the strength of selection against amino acid replacements in human proteins. Hum Mol Genet 2005; 14:3191-201. [PMID: 16174645 DOI: 10.1093/hmg/ddi350] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The impact of an amino acid replacement on the organism's fitness can vary from lethal to selectively neutral and even, in rare cases, beneficial. Substantial data are available on either pathogenic or acceptable replacements. However, the whole distribution of coefficients of selection against individual replacements is not known for any organism. To ascertain this distribution for human proteins, we combined data on pathogenic missense mutations, on human non-synonymous SNPs and on human-chimpanzee divergence of orthologous proteins. Fractions of amino acid replacements which reduce fitness by >10(-2), 10(-2)-10(-4), 10(-4)-10(-5) and <10(-5) are 25, 49, 14 and 12%, respectively. On average, the strength of selection against a replacement is substantially higher when chemically dissimilar amino acids are involved, and the Grantham's index of a replacement explains 35% of variance in the average logarithm of selection coefficients associated with different replacements. Still, the impact of a replacement depends on its context within the protein more than on its own nature. Reciprocal replacements are often associated with rather different selection coefficients, in particular, replacements of non-polar amino acids with polar ones are typically much more deleterious than replacements in the opposite direction. However, differences between evolutionary fluxes of reciprocal replacements are only weakly correlated with the differences between the corresponding selection coefficients.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614-1710, USA
| | | | | |
Collapse
|
18
|
Kashuk CS, Stone EA, Grice EA, Portnoy ME, Green ED, Sidow A, Chakravarti A, McCallion AS. Phenotype-genotype correlation in Hirschsprung disease is illuminated by comparative analysis of the RET protein sequence. Proc Natl Acad Sci U S A 2005; 102:8949-54. [PMID: 15956201 PMCID: PMC1157046 DOI: 10.1073/pnas.0503259102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (> or = 116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease.
Collapse
Affiliation(s)
- Carl S Kashuk
- McKusick-Nathans Institute of Genetic Medicine and Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Badagnani I, Chan W, Castro RA, Brett CM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Ferrin TE, Carlson EJ, Burchard EG, Giacomini KM. Functional analysis of genetic variants in the human concentrative nucleoside transporter 3 (CNT3; SLC28A3). THE PHARMACOGENOMICS JOURNAL 2005; 5:157-65. [PMID: 15738947 DOI: 10.1038/sj.tpj.6500303] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human concentrative nucleoside transporter, CNT3 (SLC28A3), plays an important role in mediating the cellular entry of a broad array of physiological nucleosides and synthetic anticancer nucleoside analog drugs. As a first step toward understanding the genetic basis for interindividual differences in the disposition and response to antileukemic nucleoside analogs, we examined the genetic and functional diversity of CNT3. In all, 56 variable sites in the exons and flanking intronic region of SLC28A3 were identified in a collection of 270 DNA samples from US populations (80 African-Americans, 80 European-Americans, 60 Asian-Americans, and 50 Mexican-Americans). Of the 16 coding region variants, 12 had not been previously reported. Also, 10 resulted in amino-acid changes and three of these had total allele frequencies of >/=1%. Nucleotide diversity (pi) at nonsynonymous and synonymous sites was estimated to be 1.81 x 10(4) and 18.13 x 10(4), respectively, suggesting that SLC28A3 is under negative selection. All nonsynonymous variants, constructed by site-directed mutagenesis and expressed in Xenopus laevis oocytes, transported purine and pyrimidine model substrates, except for c. 1099G>A (p. Gly367Arg). This rare variant alters an evolutionarily conserved site in the putative substrate recognition domain of CNT3. The presence of three additional evolutionarily conserved glycine residues in the vicinity of p. Gly367Arg that are also conserved in human paralogs suggest that these glycine residues are critical in the function of the concentrative nucleoside transporter family. The genetic analysis and functional characterization of CNT3 variants suggest that this transporter does not tolerate nonsynonymous changes and is important for human fitness.
Collapse
Affiliation(s)
- I Badagnani
- Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 2005; 83:970-9. [PMID: 15177551 DOI: 10.1016/j.ygeno.2003.12.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 12/31/2003] [Indexed: 01/03/2023]
Abstract
Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant from Tolerant (SIFT) classified 226 of 508 variants (44%) as "Intolerant." Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as "Probably or possibly damaging." Another 9-15% of the variants were classed as "Potentially intolerant or damaging." The results from the two algorithms are highly associated, with concordance in predicted impact observed for approximately 62% of the variants. Twenty-one to thirty-one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as "Tolerant" or "Benign." Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.
Collapse
Affiliation(s)
- Tong Xi
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | |
Collapse
|
21
|
van den Berg L, Imholz S, Versteeg SA, Leegwater PAJ, Zijlstra C, Bosma AA, van Oost BA. Isolation and characterization of the canine serotonin receptor 1B gene (htr1B). Gene 2004; 326:131-9. [PMID: 14729271 DOI: 10.1016/j.gene.2003.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serotonin receptor 1B gene (htr1B) has been suggested to be implicated in mental disorders in both humans and other species. We have isolated a canine bacterial artificial chromosome (BAC) clone containing htr1B, revealed the coding and surrounding DNA sequence of canine htr1B and designed primer sets for genomic sequencing of the gene. A mutation scan in 10 dogs revealed five single nucleotide polymorphisms in the htr1B coding sequence. By random sequencing of subclones of the BAC a polymorphic microsatellite repeat was found. We found evidence for at least four extended haplotypes in six dogs of the same breed. The chromosomal localization of the gene was confirmed by fluorescence in situ hybridisation and radiation hybrid mapping. This work provides a starting point for mutation scans and association studies on dogs with behavioural problems.
Collapse
Affiliation(s)
- Linda van den Berg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 8, 3584 CM, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chamary JV, Hurst LD. Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Mol Biol Evol 2004; 21:1014-23. [PMID: 15014158 DOI: 10.1093/molbev/msh087] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals divergence at fourfold degenerate sites in codons (K(4)) and intronic sequence (K(i)) are both used to estimate the mutation rate, under the supposition that both evolve neutrally. Does it matter which of these we use? Using either class of sequence can be defended because (1) K(4) is the same as K(i) (at least in rodents) and (2) there is no selectively driven codon usage (hence no systematic selection on third sites). Here we re-examine these findings using 560 introns (for 136 genes) in the mouse-rat comparison, aligned by eye and using a new maximum likelihood protocol. We find that the rate of evolution at fourfold sites and at intronic sites is similar in magnitude, but only after eliminating putatively constrained sites from introns (first introns and sites flanking intron-exon junctions). Any approximate congruence between the two rates is not, however, owing to an underlying similarity in the mode of sequence evolution. Some dinucleotides are hypermutable and differently abundant in exons and introns (e.g., CpGs). More importantly, after controlling for relative abundance, all dinucleotides starting with A or T are more prevalent in mismatches in exons than in introns, whereas C-starting dinucleotides (except CG) are more common in introns. Although C content at intronic sites is lower than at flanking fourfold sites, G content is similar, demonstrating that there exists a strong strand-specific preference for C nucleotides that is unique to exons. Transcription-coupled mutational processes and biased gene conversion cannot explain this, as they should affect introns and flanking exons equally. Therefore, by elimination, we propose this to be strong evidence for selectively driven codon usage in mammals.
Collapse
Affiliation(s)
- Jean-Vincent Chamary
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|