1
|
Almatrafi AM, Hibshi AM, Basit S. Exome Sequencing to Identify Novel Variants Associated with Secondary Amenorrhea and Premature Ovarian Insufficiency (POI) in Saudi Women. Biomedicines 2024; 12:785. [PMID: 38672141 PMCID: PMC11048260 DOI: 10.3390/biomedicines12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Post-pubertal disappearance of menstrual cycles (secondary amenorrhea) associated with premature follicular depletion is a heterogeneous condition. Patients with this disease have low levels of gonadal hormones and high levels of gonadotropins. It is one of the causes of female infertility and a strong genetic component is attributed as an underlying cause of this condition. Although variants in several genes have been associated with the condition, the cause of the disease remains undetermined in the vast majority of cases. Methodology and Materials: Ten Saudi married women experiencing secondary amenorrhea were referred to a center for genetics and inherited diseases for molecular investigation. A family-based study design was used. Intensive clinical examinations, including pelvic ultra-sonography (U/S) and biochemical evaluations, were carried out. Karyotypes were normal in all cases and polycystic ovarian syndrome (PCOS) was excluded by using Rotterdam consensus criteria. Patients' DNA samples were whole-exome sequenced (WES). Bidirectional Sanger sequencing was then utilized to validate the identified candidate variants. The pathogenicity of detected variants was predicted using several types of bioinformatics software. RESULTS Most of the patients have a normal uterus with poor ovarian reserves. Exome sequence data analysis identified candidate variants in genes associated with POI in 60% of cases. Novel variants were identified in HS6ST1, MEIOB, GDF9, and BNC1 in POI-associated genes. Moreover, a homozygous variant was also identified in the MMRN1 gene. Interestingly, mutations in MMRN1 have never been associated with any human disease. The variants identified in this study were not present in 125 healthy Saudi individuals. CONCLUSIONS WES is a powerful tool to identify the underlying variants in genetically heterogeneous diseases like secondary amenorrhea and POI. In this study, we identified six novel variants and expanded the genotype continuum of POI. Unravelling the genetic landscape of POI will help in genetic counselling, management, and early intervention.
Collapse
Affiliation(s)
- Ahmed M. Almatrafi
- Department of Biology, College of Science, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia
| | - Ali M. Hibshi
- Department of Obstetrics & Gynecology, King Sulman Medical City-Madinah Maternity and Children Hospital, Al Madinah Al Munawarah 42319, Saudi Arabia;
| | - Sulman Basit
- Department of Basic Medical Sciences, College of Medicine, and Centre for Genetics and Inherited Diseases, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia;
| |
Collapse
|
2
|
Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, Ye X, Shen X, Ying Y, Chen J, Chen R, Zhang Y, Sun X, Wang S, Xu X, Chen C, Guo J, Zhang D. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nat Commun 2022; 13:5871. [PMID: 36198708 PMCID: PMC9534854 DOI: 10.1038/s41467-022-33323-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by premature exhaustion of primordial follicles. POI causes infertility, severe daily life disturbances and long-term health risks. However, the underlying mechanism remains largely unknown. We previously identified a Basonuclin 1 (BNC1) mutation from a large Chinese POI pedigree and found that mice with targeted Bnc1 mutation exhibit symptoms of POI. In this study, we found that BNC1 plays key roles in ovarian reserve and maintaining lipid metabolism and redox homeostasis in oocytes during follicle development. Deficiency of BNC1 results in premature follicular activation and excessive follicular atresia. Mechanistically, BNC1 deficiency triggers oocyte ferroptosis via the NF2-YAP pathway. We demonstrated that pharmacologic inhibition of YAP signaling or ferroptosis significantly rescues Bnc1 mutation-induced POI. These findings uncover a pathologic mechanism of POI based on BNC1 deficiency and suggest YAP and ferroptosis inhibitors as potential therapeutic targets for POI. Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction that results in infertility. Here they show that BCN1 mutation results in premature ovarian follicle activation and atresia through dysregulation of ferroptosis.
Collapse
Affiliation(s)
- Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xilin Shen
- College of Computer Science and Technology, Zhejiang University, Zhejiang, 310027, PR China
| | - Yue Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, People's Republic of China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Xiao Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China. .,Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Zhang D, Liu Y, Zhang Z, Lv P, Liu Y, Li J, Wu Y, Zhang R, Huang Y, Xu G, Qian Y, Qian Y, Chen S, Xu C, Shen J, Zhu L, Chen K, Zhu B, Ye X, Mao Y, Bo X, Zhou C, Wang T, Chen D, Yang W, Tan Y, Song Y, Zhou D, Sheng J, Gao H, Zhu Y, Li M, Wu L, He L, Huang H. Basonuclin 1 deficiency is a cause of primary ovarian insufficiency. Hum Mol Genet 2019; 27:3787-3800. [PMID: 30010909 DOI: 10.1093/hmg/ddy261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
Primary ovarian insufficiency (POI) leads to infertility and premature menopause in young women. The genetic etiology of this disorder remains unknown in most patients. Using whole exome sequencing of a large Chinese POI pedigree, we identified a heterozygous 5 bp deletion inducing a frameshift in BNC1, which is predicted to result in a non-sense-mediated decay or a truncated BNC1 protein. Sanger sequencing identified another BNC1 missense mutation in 4 of 82 idiopathic patients with POI, and the mutation was absent in 332 healthy controls. Transfection of recombinant plasmids with the frameshift mutant and separately with the missense mutant in HEK293T cells led to abnormal nuclear localization. Knockdown of BNC1 was found to reduce BMP15 and p-AKT levels and to inhibit meiosis in oocytes. A female mouse model of the human Bnc1 frameshift mutation exhibited infertility, significantly increased serum follicle-stimulating hormone, decreased ovary size and reduced follicle numbers, consistent with POI. We report haploinsufficiency of BNC1 as an etiology of human autosomal dominant POI.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhou Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingping Lv
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Runjv Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Gufeng Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yeqing Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuli Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Songchang Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Chenming Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linling Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Kai Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoqun Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuchan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xingsheng Bo
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tingting Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, BC Canada V6T, Canada
| | - Dianfu Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zhejiang, China
| | - Weijun Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zhejiang, China
| | - Yajing Tan
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yang Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Daizhan Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Zhejiang, China
| | - Huijuan Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Meigen Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Liping Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Lin He
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hefeng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Jin H, Jeon S, Kang GY, Lee HJ, Cho J, Lee YS. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes. Int J Radiat Biol 2016; 93:184-193. [DOI: 10.1080/09553002.2017.1235297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Seulgi Jeon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Ga-Young Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
5
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
6
|
Vanhoutteghem A, Djian P. The human basonuclin 2 gene has the potential to generate nearly 90,000 mRNA isoforms encoding over 2000 different proteins. Genomics 2007; 89:44-58. [PMID: 16942855 DOI: 10.1016/j.ygeno.2006.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/12/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
The number of mRNAs and proteins that can be produced from a single gene is known to be increased by the number of start sites and by multiple splicing of products. A few genes have been found to generate extraordinarily large numbers of splicing isoforms. In the human, the largest number, nearly 2000 mRNA isoforms, has been reported for the neurexin 3alpha gene. However, the biological significance of alternative splicing often remains unclear because many alternative transcripts contain early translational stops and are thought to be rapidly degraded. We demonstrate here that human basonuclin 2 (bn2; approved gene symbol BNC2) transcripts are initiated from six promoters, are alternatively spliced at multiple positions, and are polyadenylated at four sites. Characterization of nearly 100 bn2 mRNA isoforms suggests that each promoter, splice site, and poly(A) addition site is used independently. The bn2 gene has therefore the potential to generate up to 90,000 mRNA isoforms encoding more than 2000 different proteins. Because alternative exons affect the position of the first methionine codon, the length of the coding region, and the position of the translational stop, the encoded proteins range in size from 43 to 1211 amino acids and some bear no sequence similarity to others. PCR analysis and transient expression in HeLa cells show that the major bn2 mRNA isoforms are stable and are translated into equally stable proteins, even when the mRNA bears an early translational stop.
Collapse
Affiliation(s)
- Amandine Vanhoutteghem
- Unité Propre de Recherche 2228, Centre National de la Recherche Scientifique, Institut Interdisciplinaire des Sciences du Vivant des Saints-Pères, Université René Descartes, 45 Rue des Saints-Pères, 75006 Paris, France
| | | |
Collapse
|
7
|
Abstract
Ribosomal RNA transcription was one of the first model systems for molecular characterization of a transcription regulatory mechanism and certainly one of the best studied in the widest range of organisms. In multicellular organisms, however, the issue of cell-type-specific regulation of rRNA transcription has not been well addressed. Here I propose that a systematic study of cell-type-specific regulation of rRNA transcription may reveal new regulatory mechanisms that have not been previously realized. Specifically, issues concerning the cell-type-specific requirement for rRNA production, the universality of Pol I transcription complex and the division of rDNA into regulatory subdomains are discussed.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, Department of Cell and Developmental Biology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, CRB Room 242B, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Romano RA, Li H, Tummala R, Maul R, Sinha S. Identification of Basonuclin2, a DNA-binding zinc-finger protein expressed in germ tissues and skin keratinocytes. Genomics 2004; 83:821-33. [PMID: 15081112 DOI: 10.1016/j.ygeno.2003.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/11/2003] [Indexed: 11/20/2022]
Abstract
We used a bioinformatics approach to identify Basonuclin2, the second member of the Basonuclin zinc-finger family of transcription factors. The mouse Basonuclin2 protein consists of 1049 amino acids and contains three pairs of zinc fingers in the C-terminus that show a high level of amino acid sequence similarity with Basonuclin1. In addition, other characteristic domains of Basonuclin1, such as the serine strip and a nuclear localization signal, are also present in Basonuclin2. We used genomic and in silico database analysis to identify the human and rat homologs of basonuclin2. A search of the mouse genome showed that the basonuclin2 gene maps to chromosome 4 and consists of six exons spanning approximately 300 kb. Northern blot analysis revealed multiple transcripts of basonuclin2 in tissues of the reproductive system (ovary and testis) and also in kidney and skin. We demonstrate that, as expected from sequence conservation, recombinant Basonuclin2 can bind to a sequence in the promoter of a rRNA gene previously characterized as a Basonuclin-binding site. Full-length Basonuclin2 exclusively localizes to the nucleus, indicating that it likely plays an important role in nuclear function, probably in gene regulation. Our study establishes Basonuclin2 as a novel member of the Basonuclin family. Moreover, the structural and functional similarities with Basonuclin1 suggest that Basonuclin2 may play an analogous function in germ cells and skin keratinocytes.
Collapse
Affiliation(s)
- Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
9
|
Cui C, Elsam T, Tian Q, Seykora JT, Grachtchouk M, Dlugosz A, Tseng H. Gli proteins up-regulate the expression of basonuclin in Basal cell carcinoma. Cancer Res 2004; 64:5651-8. [PMID: 15313903 DOI: 10.1158/0008-5472.can-04-0801] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumorigenesis is frequently accompanied by enhanced rRNA transcription, but the signaling mechanisms responsible for such enhancement remain unclear. Here, we report evidence suggesting a novel link between deregulated Hedgehog signaling and the augmented rRNA transcription in cancer. Aberrant activation of the Hedgehog pathway in keratinocytes is a hallmark of basal cell carcinoma (BCC), the most common cancer in light-skinned individuals. We show that Gli proteins, downstream effectors of the Hedgehog pathway, increase expression of a novel rRNA gene (rDNA) transcription factor, basonuclin, whose expression is markedly elevated in BCCs. The promoter of the human basonuclin gene contains a Gli-binding site, which is required for Gli protein binding and transcriptional activation. We show also that the level of 47S pre-rRNA is much higher in BCCs than in normal epidermis, suggesting an accelerated rRNA transcription in the neoplastic cells. Within BCC, those cells expressing the highest level of basonuclin also exhibit the greatest increase in 47S pre-rRNA, consistent with a role for basonuclin in increasing rRNA transcription in these cells. Our data suggest that Hedgehog-Gli pathway enhances rRNA transcription in BCC by increasing basonuclin gene expression.
Collapse
Affiliation(s)
- Chunhua Cui
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Vanhoutteghem A, Djian P. Basonuclin 2: an extremely conserved homolog of the zinc finger protein basonuclin. Proc Natl Acad Sci U S A 2004; 101:3468-73. [PMID: 14988505 PMCID: PMC373485 DOI: 10.1073/pnas.0400268101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Indexed: 11/18/2022] Open
Abstract
Basonuclin is a zinc finger protein specific to basal keratinocytes and germ cells. In keratinocytes, basonuclin behaves as a stem cell marker and is thought to be a transcription factor that maintains proliferative capacity and prevents terminal differentiation. The human gene is located on chromosome 15. We have discovered in the chicken the existence of basonuclin 2, a basonuclin homolog. We also report the entire sequence of mouse and human basonuclin 2; the corresponding genes are located on mouse chromosome 4 and human chromosome 9. Although the amino acid sequence of basonuclin 2 differs extensively from that of basonuclin 1, the two proteins share essential features. Both contain three paired zinc fingers, a nuclear localization signal, and a serine stripe. The basonuclin 2 mRNA has a wider tissue distribution than the basonuclin 1 mRNA: it is particularly abundant in testis, kidney, uterus, and intestine. The extreme conservation of the basonuclin 2 amino acid sequence across vertebrates suggests that basonuclin 2 serves an important function, presumably as a regulatory protein of DNA transcription.
Collapse
Affiliation(s)
- Amandine Vanhoutteghem
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Institut Interdisciplinaire des Sciences du Vivant des Saints-Pères, Université René Descartes, 75006 Paris, France
| | | |
Collapse
|
11
|
Tseng H, Biegel JA, Brown RS. Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes. J Cell Sci 1999; 112 Pt 18:3039-47. [PMID: 10462520 DOI: 10.1242/jcs.112.18.3039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basonuclin is a zinc finger protein mainly expressed in keratinocytes of the basal layer of epidermis and the outer root sheath of hair follicles. It is also found in abundance in the germ cells of testis and ovary. In cultured keratinocytes, basonuclin is associated with chromatin in all phases of the cell cycle, including mitosis. By immunocytochemical methods, we demonstrate here that in mitosis basonuclin is associated with the short arms of the acrocentric chromosomes and with other loci on many metaphase chromosomes of human keratinocytes. Using the evolutionarily highly conserved N-terminal pair of zinc fingers in an electrophoresis mobility shift assay, we demonstrate that the DNA target sequences of basonuclin on the acrocentric chromosomes are likely to be within the promoter region of the 45S rRNA gene transcription unit. DNase I footprinting shows that basonuclin zinc fingers interact with the upstream control element of this promoter, which is necessary for the high level of transcription of the rRNA genes. This result suggests that basonuclin may be a tissue-specific transcription factor for the ribosomal RNA genes.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Human/genetics
- Chromosomes, Human/metabolism
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/metabolism
- DNA Footprinting
- DNA Primers/genetics
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins
- Deoxyribonuclease I
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Keratinocytes/metabolism
- Male
- Mitosis
- Phosphoproteins
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- RNA, Ribosomal/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- H Tseng
- Department of Dermatology and Cancer Center, and Division of Human Genetics, the Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
12
|
Tang W, Tseng H. A GC-rich sequence within the 5' untranslated region of human basonuclin mRNA inhibits its translation. Gene 1999; 237:35-44. [PMID: 10524234 DOI: 10.1016/s0378-1119(99)00299-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By the method of RNase protection, the 5' ends of the basonuclin mRNA were mapped to four sites distributed over 400 bases of the genomic sequence, a result implying four different basonuclin transcripts within the cell. Despite the heterogeneity at the 5' end, all four basonuclin mRNA shared the same translation initiation codon. However, only two transcripts contained, in their 5' untranslated region (UTR), a GC-rich sequence of approx. 180 bases. The ability of this GC-rich sequence to form a large and stable secondary structure was suggested by experimental results from primer extension, RNase resistance, and computer analysis of the sequence. In vitro study showed that translation of basonuclin RNA containing this putative structure could not be initiated efficiently from the first two AUGs, whereas those that lacked it could.
Collapse
Affiliation(s)
- W Tang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
13
|
Iuchi S, Green H. Basonuclin, a zinc finger protein of keratinocytes and reproductive germ cells, binds to the rRNA gene promoter. Proc Natl Acad Sci U S A 1999; 96:9628-32. [PMID: 10449744 PMCID: PMC22260 DOI: 10.1073/pnas.96.17.9628] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basonuclin is a protein containing three pairs of C(2)H(2) zinc fingers. The protein has been found in the basal (germinal) cell layer of stratified squamous epithelia, such as the epidermis, and in germ cells of the testis and ovary. We show here that the human protein has specific affinity for a segment of the promoter of the gene for rRNA. Basonuclin interacts with two separate parts of the promoter, each possessing dyad symmetry. The upstream part, but not the downstream part, is known to bind UBF1, a transcription factor for rDNA. Basonuclin is likely to be a cell-type-specific regulatory protein for rDNA transcription.
Collapse
Affiliation(s)
- S Iuchi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston MA 02115, USA
| | | |
Collapse
|
14
|
Matsuzaki K, Iuchi S, Green H. Conservation of human and mouse basonuclins as a guide to important features of the protein. Gene 1997; 195:87-92. [PMID: 9300825 DOI: 10.1016/s0378-1119(97)00176-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of mouse basonuclin has been determined from its cDNA by PCR and compared with the previously known sequence of human basonuclin. Overall, there is 88% identity in the encoded amino acid sequences, but some regions have been much more conserved than others. Zinc fingers 2 and 6, the region containing the nuclear localization signal and the region containing the serine stripe encode identical amino acid sequences in the two species, but differ by numerous silent nucleotide substitutions, suggesting that these regions are likely to be important for the functions of the protein common to the two species. Similarly, zinc fingers 1 and 5 diverge at only a single amino acid residue. In contrast, other regions of the sequence have diverged considerably, such as zinc fingers 3 and 4. The region adjacent to the N-terminus is very divergent and this aids in locating the translation start site. The highly conserved regions are likely to be essential for the common function of the proteins, and the more divergent regions may be either unconstrained or adapted to different requirements in the two species.
Collapse
Affiliation(s)
- K Matsuzaki
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|