1
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
2
|
Philippe C, Chaïb A, Jaomanjaka F, Claisse O, Lucas PM, Samot J, Cambillau C, Le Marrec C. Characterization of the First Virulent Phage Infecting Oenococcus oeni, the Queen of the Cellars. Front Microbiol 2021; 11:596541. [PMID: 33519734 PMCID: PMC7838156 DOI: 10.3389/fmicb.2020.596541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
There has been little exploration of how phages contribute to the diversity of the bacterial community associated with winemaking and may impact fermentations and product quality. Prophages of Oenococcus oeni, the most common species of lactic acid bacteria (LAB) associated with malolactic fermentation of wine, have been described, but no data is available regarding phages of O. oeni with true virulent lifestyles. The current study reports on the incidence and characterization of the first group of virulent oenophages named Vinitor, isolated from the enological environment. Vinitor phages are morphologically very similar to siphoviruses infecting other LAB. Although widespread during winemaking, they are more abundant in musts than temperate oenophages. We obtained the complete genomic sequences of phages Vinitor162 and Vinitor27, isolated from white and red wines, respectively. The assembled genomes shared 97.6% nucleotide identity and belong to the same species. Coupled with phylogenetic analysis, our study revealed that the genomes of Vinitor phages are architecturally mosaics and represent unique combinations of modules amongst LAB infecting-phages. Our data also provide some clues to possible evolutionary connections between Vinitor and (pro)phages associated to epiphytic and insect-related bacteria.
Collapse
Affiliation(s)
- Cécile Philippe
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| | - Amel Chaïb
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| | - Fety Jaomanjaka
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| | - Olivier Claisse
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
- INRA, ISVV, USC 1366 Oenologie, Villenave d’Ornon, France
| | - Patrick M. Lucas
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| | - Johan Samot
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Claire Le Marrec
- University of Bordeaux, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
- Bordeaux INP, ISVV, EA4577 Œnologie, Villenave d’Ornon, France
| |
Collapse
|
3
|
Comparative Genomic Analysis of Lactobacillus plantarum: An Overview. Int J Genomics 2019; 2019:4973214. [PMID: 31093491 PMCID: PMC6481158 DOI: 10.1155/2019/4973214] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Background Lactobacillus plantarum is widely used in the manufacture of dairy products, fermented foods, and bacteriocins. The genomes of the strains contain multiple genes which may have been acquired by horizontal gene transfer. Many of these genes are important for the regulation, metabolism, and transport of various sugars; however, other genes may carry and spread virulence and antibiotic resistance determinants. In this way, monitoring these genomes is essential to the manufacture of food. In this study, we aim to provide an overview of the genomic properties of L. plantarum based on approaches of comparative genomics. Results The finding of the current study indicates that the core genome of L. plantarum presents 1425 protein-coding genes and is mostly related to the metabolic process. The accessory genome has on average 1320 genes that encodes protein involved in processes as the formation of bacteriocins, degradation of halogen, arsenic detoxification, and nisin resistance. Most of the strains show an ancestral synteny, similar to the one described in the genomes of L. pentosus KCA1 and L. plantarum WCFS1. The lifestyle island analyses did not show a pattern of arrangement or gene content according to habitat. Conclusions Our results suggest that there is a high rate of transfer of genetic material between the strains. We did not identify any virulence factors and antibiotic resistance genes on the genomes. Thus, the strains may be useful for the biotechnology, bioremediation, and production of bacteriocins. The potential applications are, however, restricted to particular strains.
Collapse
|
4
|
Yamamura ET. Construction of Rhodococcus expression vectors and expression of the aminoalcohol dehydrogenase gene in Rhodococcus erythropolis. Biosci Biotechnol Biochem 2018; 82:1396-1403. [DOI: 10.1080/09168451.2018.1463154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ABSTRACT
NADP+-dependent aminoalcohol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 produces double chiral aminoalcohols, which are used as pharmaceuticals. However, the genetic manipulation of Rhodococcus strains to increase their production of such industrially important enzymes is not well studied. Therefore, I aimed to construct Rhodococcus expression vectors, derived from the Rhodococcus–Escherichia coli shuttle vector pRET1102, to express aadh. The plasmid pRET1102 could be transformed into many actinomycete strains, including R. erythropolis. The transformation efficiency for a species closely related to R. erythropolis was higher than that for other actinomycete strains. Promoters of various strengths, hsp, 1200rep, and TRR, were obtained from Gram-positive bacteria. The activity of TRR was stronger than that of hsp and 1200rep. The aadh-expressing plasmid pRET1172 with TRR could be transformed into many actinomycete strains to increase their AADH production. The Rhodococcus expression vector, pRET11100, constructed by removing aadh from the pRET1172 plasmid may be useful for bioconversion.
Collapse
Affiliation(s)
- Ei-Tora Yamamura
- Technical Department, Kyowa Pharma Chemical Co., Ltd., Takaoka, Toyama, Japan
| |
Collapse
|
5
|
Chen X, Xi Y, Zhang H, Wang Z, Fan M, Liu Y, Wu W. Characterization and adsorption of Lactobacillus virulent phage P1. J Dairy Sci 2016; 99:6995-7001. [PMID: 27372579 DOI: 10.3168/jds.2016-11332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry.
Collapse
Affiliation(s)
- X Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China.
| | - Y Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - H Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Z Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - M Fan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Y Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - W Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| |
Collapse
|
6
|
Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 2015; 6:1199. [PMID: 26579105 PMCID: PMC4627465 DOI: 10.3389/fmicb.2015.01199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/15/2015] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.
Collapse
Affiliation(s)
- Tilman Schultze
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Rolf Hilker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany ; Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Gopala K Mannala
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Katrin Gentil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Neda Farmani
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Anita C Windhorst
- Institute of Medical Informatics, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| |
Collapse
|
7
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
8
|
Characterization of two virulent phages of Lactobacillus plantarum. Appl Environ Microbiol 2012; 78:8719-34. [PMID: 23042172 DOI: 10.1128/aem.02565-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.
Collapse
|
9
|
Kelly D, O'Sullivan O, Mills S, McAuliffe O, Ross RP, Neve H, Coffey A. Genome sequence of the phage clP1, which infects the beer spoilage bacterium Pediococcus damnosus. Gene 2012; 504:53-63. [PMID: 22564705 DOI: 10.1016/j.gene.2012.04.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/29/2012] [Accepted: 04/27/2012] [Indexed: 11/25/2022]
Abstract
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.
Collapse
Affiliation(s)
- David Kelly
- Department of Biological Sciences, Cork Institute of Technology, Co. Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
10
|
Kuzuwa S, Yokoi KJ, Kondo M, Kimoto H, Yamakawa A, Taketo A, Kodaira KI. Properties of the inulinase gene levH1 of Lactobacillus casei IAM 1045; cloning, mutational and biochemical characterization. Gene 2012; 495:154-62. [DOI: 10.1016/j.gene.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/17/2011] [Accepted: 12/02/2011] [Indexed: 11/26/2022]
|
11
|
Yoon BH, Jang SH, Chang HI. Sequence analysis of the Lactobacillus temperate phage Sha1. Arch Virol 2011; 156:1681-4. [PMID: 21701917 DOI: 10.1007/s00705-011-1048-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Bacteriophage Sha1, a newly isolated temperate phage from a mitomycin-C-induced lysate of Lactobacillus plantarum isolated from Kimchi, has an isometric head (58 nm × 60 nm) and a long tail (259 nm × 11 nm). The double-strand DNA genome of the phage Sha1 was 41,726 base pairs (bp) long, with a G+C content of 40.61%. Bioinformatic analysis of Sha1 shows that this phage contains 58 putative open reading frames (ORFs). Sha1 can be classified as a member of the large family Siphoviridae by genomic structure and morphology. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage Sha1 from wild-type L. plantarum isolated from kimchi in Korea.
Collapse
Affiliation(s)
- Bo Hyun Yoon
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea
| | | | | |
Collapse
|
12
|
Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 2008; 74:4601-9. [PMID: 18539811 DOI: 10.1128/aem.00010-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, PhiAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.
Collapse
|
13
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
14
|
Daniel A, Bonnen PE, Fischetti VA. First complete genome sequence of two Staphylococcus epidermidis bacteriophages. J Bacteriol 2006; 189:2086-100. [PMID: 17172342 PMCID: PMC1855768 DOI: 10.1128/jb.01637-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is an important opportunistic pathogen causing nosocomial infections and is often associated with infections in patients with implanted prosthetic devices. A number of virulence determinants have been identified in S. epidermidis, which are typically acquired through horizontal gene transfer. Due to the high recombination potential, bacteriophages play an important role in these transfer events. Knowledge of phage genome sequences provides insights into phage-host biology and evolution. We present the complete genome sequence and a molecular characterization of two S. epidermidis phages, phiPH15 (PH15) and phiCNPH82 (CNPH82). Both phages belonged to the Siphoviridae family and produced stable lysogens. The PH15 and CNPH82 genomes displayed high sequence homology; however, our analyses also revealed important functional differences. The PH15 genome contained two introns, and in vivo splicing of phage mRNAs was demonstrated for both introns. Secondary structures for both introns were also predicted and showed high similarity to those of Streptococcus thermophilus phage 2972 introns. An additional finding was differential superinfection inhibition between the two phages that corresponded with differences in nucleotide sequence and overall gene content within the lysogeny module. We conducted phylogenetic analyses on all known Siphoviridae, which showed PH15 and CNPH82 clustering with Staphylococcus aureus, creating a novel clade within the S. aureus group and providing a higher overall resolution of the siphophage branch of the phage proteomic tree than previous studies. Until now, no S. epidermidis phage genome sequences have been reported in the literature, and thus this study represents the first complete genomic and molecular description of two S. epidermidis phages.
Collapse
Affiliation(s)
- Anu Daniel
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
15
|
Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath S, Claesson MJ, Li Y, Leahy S, Walker CD, Zink R, Neviani E, Steele J, Broadbent J, Klaenhammer TR, Fitzgerald GF, O'toole PW, van Sinderen D. Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Appl Environ Microbiol 2006; 72:3130-46. [PMID: 16672450 PMCID: PMC1472345 DOI: 10.1128/aem.72.5.3130-3146.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11/a, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tuohimaa A, Riipinen KA, Brandt K, Alatossava T. The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages. Arch Virol 2005; 151:947-65. [PMID: 16328134 DOI: 10.1007/s00705-005-0672-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/28/2005] [Indexed: 12/01/2022]
Abstract
The complete 36,466-bp genome sequence of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus was determined. The linear dsDNA with a GC-content of 44.2% contained 3' single-stranded cohesive ends of 12 nucleotides. A total of 51 putative open reading frames (orfs) were predicted. Lc-Nu showed to be evolutionary closely related to the temperate Lactobacillus casei phages phi AT3 and A2. High DNA homology with phi AT3 was shared over the late transcribed genes, and the highest homology with A2 was within the genetic switch region. The truncated cI-like repressor was the only lysogeny related gene left, which strongly suggested Lc-Nu to be recently evolved from a temperate origin. Three putative methylases and endonucleases were detected from the region of early-transcribed genes. The putative origin of replication within the putative gene orf34 homologous to replisome organizers resembled to that of lambdoid phages. The present study suggested Lc-Nu to be a new candidate for the proposed Sfi21-like species.
Collapse
Affiliation(s)
- A Tuohimaa
- Department of Biology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
17
|
Lu Z, Altermann E, Breidt F, Predki P, Fleming HP, Klaenhammer TR. Sequence analysis of the Lactobacillus plantarum bacteriophage PhiJL-1. Gene 2005; 348:45-54. [PMID: 15777728 DOI: 10.1016/j.gene.2004.12.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/16/2004] [Accepted: 12/27/2004] [Indexed: 11/24/2022]
Abstract
The complete genomic sequence of a Lactobacillus plantarum virulent phage PhiJL-1 was determined. The phage possesses a linear, double-stranded, DNA genome consisting of 36,677 bp with a G+C content of 39.36%. A total of 52 possible open reading frames (ORFs) were identified. According to N-terminal amino acid sequencing and bioinformatic analyses, proven or putative functions were assigned to 21 ORFs (41%), including 5 structural protein genes. The PhiJL-1 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication, DNA packaging, head and tail morphogenesis, and lysis. This type of modular genomic organization was similar to several other phages infecting lactic acid bacteria. The structural gene maps revealed that the order of the head and tail genes is highly conserved among the genomes of several Siphoviridae phages, allowing the assignment of probable functions to certain uncharacterized ORFs from phage PhiJL-1 and other Siphoviridae phages.
Collapse
Affiliation(s)
- Z Lu
- Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yokoi KJ, Kawahigashi N, Uchida M, Sugahara K, Shinohara M, Kawasaki KI, Nakamura S, Taketo A, Kodaira KI. The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli. Gene 2005; 351:97-108. [PMID: 15848115 DOI: 10.1016/j.gene.2005.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/21/2005] [Accepted: 03/01/2005] [Indexed: 11/25/2022]
Abstract
From the genome library of Staphylococcus warneri M, the two successive cell-lysis genes (holWMY and lytWMY) were cloned and characterized. The lytWMY gene encoded a protein (LysWMY), whose calculated molecular mass and pI were 54 kDa and 8.95, respectively. When overproduced in Escherichia coli, lysWMY directed a protein of 45 kDa (smaller than the predicted molecular mass), having N-terminal 13 residues identical with those predicted from DNA. Comparative analysis revealed that LysWMY significantly resembles the putative N-acetylmuramoyl-L-alanine amidases encoded by the staphylococcal phages phi11, 80 alpha, and Twort. Examination of modular organization of LysWMY identified three putative domains CHAP (for D-alanyl-glycyl endopeptidase), amidase (L-muramoyl-L-alanine amidase), and SH3 (cell wall recognition). Gene knockout analysis revealed that each of the two domains of CHAP and amidase was responsible for cell-lytic activity on a zymogram gel. Site-directed mutation of Cys29Ala, His92Ala, or Asn114Ala in the CHAP domain substantially reduced cell-lytic activity, suggesting that this Cys-His-Asn triad is crucial for the enzymatic function. On the other hand, the holWMY gene encoded a protein (HolWMY) with molecular mass and pI of 16 kDa and 4.36; this protein contained two potential transmembrane helices, resembling other predicted holins (a cytoplasmic membrane-disrupting protein) encoded by the S. aureus phage, phi11, 80 alpha, and Twort. Upon mitomycin C exposure of S. warneri M, a prophage (phiWMY) was induced and the virion was examined under electron microscopy. PCR amplification and sequencing revealed the presence of the holWMY-lysWMY genes in the phage genome.
Collapse
Affiliation(s)
- Ken-Ji Yokoi
- Molecular Biology Group, Faculty of Engineering, Toyama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yokoi KJ, Kawasaki KI, Taketo A, Kodaira KI. Characterization of lytic enzyme activities of Lactobacillus gasseri with special reference to autolysis. Int J Food Microbiol 2004; 96:273-9. [PMID: 15454317 DOI: 10.1016/j.ijfoodmicro.2004.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 11/23/2022]
Abstract
Lactobacillus gasseri JCM 1130 and JCM 1131(T) exhibited autolytic activity in agar containing autoclaved cells of each strain as substrate. By zymogram analysis of JCM 1131(T), two lytic bands with apparent molecular masses of 54.5 and 35 kDa, were detected. Similarly, JCM 1130 yielded two lytic bands with apparent molecular masses of 35 and 33.5 kDa. In simple buffers as well, JCM 1131(T) suffered a drastic decrease in cell turbidity, but JCM 1130 did not undergo the decrease. The optimal pH for autolysis of JCM 1131(T) was in the range of 6.0-7.0, and the lysis was completely inhibited at pH 4-5. The lysis of JCM 1131(T) was suppressed by NaCl, in a concentration-dependent way. When subjected to UV irradiation or mitomycin C (MMC) treatment, cultures of both strains elicited conspicuous turbidity decrease after 2-4 h of growth, suggesting the occurrence of prophage induction. The 35-kDa lytic band of JCM 1131(T) and the 33.5-kDa protein of JCM 1130 were considerably increased by UV irradiation.
Collapse
Affiliation(s)
- Ken-ji Yokoi
- Molecular Biology Group, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | |
Collapse
|
20
|
Ventura M, Canchaya C, Pridmore RD, Brüssow H. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology 2004; 320:229-42. [PMID: 15016546 DOI: 10.1016/j.virol.2003.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 11/04/2003] [Accepted: 11/11/2003] [Indexed: 11/17/2022]
Abstract
Two non-inducible, but apparently complete prophages were identified in the genome of the sequenced Lactobacillus johnsonii strain NCC 533. The 38- and 40-kb-long prophages Lj928 and Lj965 represent distinct lineages of Sfi11-like pac-site Siphoviridae unrelated at the DNA sequence level. The deduced structural proteins from Lj928 demonstrated aa sequence identity with Lactococcus lactis phage TP901-1, while Lj965 shared sequence links with Streptococcus thermophilus phage O1205. With the exception of tRNA genes, inserted between DNA replication and DNA packaging genes, the transcription of the prophage was restricted to the genome segments near both attachment sites. Transcribed genes unrelated to phage functions were inserted between the phage repressor and integrase genes; one group of genes shared sequence relatedness with a mobile DNA element in Staphylococcus aureus. A short, but highly transcribed region was located between the phage lysin and right attachment site; it lacked a protein-encoding function in one prophage.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd., CH-1026 Lausanne, Switzerland
| | | | | | | |
Collapse
|
21
|
Ventura M, Canchaya C, Kleerebezem M, de Vos WM, Siezen RJ, Brüssow H. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 2004; 316:245-55. [PMID: 14644607 DOI: 10.1016/j.virol.2003.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Lactobacillus plantarum commensal WCFS1 contains four prophage elements in its genome. Lp1 and Lp2 are two about 40-kb-long uninducible prophages that share closely related DNA packaging, head and tail genes defining a second lineage of pac-site Siphoviridae in L. plantarum, distinct from L. plantarum phage phig1e, but related to Bacillus phage SPP1 and Lactococcus phage TP901-1. Northern analysis revealed transcribed prophage genes exclusively near both attachment sites. Comparative genomics identified candidate lysogenic conversion genes (LCG) downstream of the lysis cassette and within the lysogeny module. Notable are genes with sequence similarities to putative LCG from Streptococcus pyogenes prophages and to a Bacillus plasmid. Both prophages harbored tRNA genes. R-Lp3 and R-Lp4 represent short prophage remnants; R-Lp3 abuts Lp2 and displays sequence links to cos-site Siphoviridae.
Collapse
Affiliation(s)
- Marco Ventura
- Nestle Research Center, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 2003; 50:303-17. [PMID: 14507382 DOI: 10.1046/j.1365-2958.2003.03684.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PSA is a temperate phage isolated from Listeria monocytogenes strain Scott A. We report its complete nucleotide sequence, which consists of a linear 37 618 bp DNA featuring invariable, 3'-protruding single stranded (cohesive) ends of 10 nucleotides. The physical characteristics were confirmed by partial denaturation mapping and electron microscopy of DNA molecules. Fifty-seven open reading frames were identified on the PSA genome, which are apparently organized into three major transcriptional units, in a life cycle-specific order. Functional assignments could be made to 33 gene products, including structural proteins, lysis components, DNA packaging proteins, lysogeny control functions and replication proteins. Bioinformatics demonstrated relatedness of PSA to phages infecting lactic acid bacteria and other low G + C Gram-positives, but revealed only few similarities to Listeria phage A118. Virion proteins were analysed by amino acid sequencing and mass spectrometry, which enabled identification of major capsid and tail proteins, a tape measure and a putative portal. These analyses also revealed an unusual form of translational frameshifting, which occurs during decoding of the mRNAs specifying the two major structural proteins. Frameshifting yields different length forms of Cps (gp5) and Tsh (gp10), featuring identical N-termini but different C-termini. Matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) of tryptic peptide fragments was used to identify the modified C-termini of the longer protein species, by demonstration of specific sequences resulting from + 1 programmed translational frameshifting. A slippery sequence with overlapping proline codons near the 3' ends of both genes apparently redirects the ribosomes and initiates the recoding event. Two different cis-acting factors, a shifty stop and a pseudoknot, presumably stimulate frameshifting efficiency. PSA represents the first case of + 1 frameshifting among dsDNA phages, and appears to be the first example of a virus utilizing a 3' pseudoknot to stimulate such an event.
Collapse
Affiliation(s)
- Markus Zimmer
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | | | | | | | | |
Collapse
|
23
|
Viollier PH, Shapiro L. A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole. Mol Microbiol 2003; 49:331-45. [PMID: 12828633 DOI: 10.1046/j.1365-2958.2003.03576.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two distinct protein complexes, the flagellum and the pilus biogenesis machinery, are asymmetrically assembled at one pole of the Caulobacter predivisional cell. Cell division yields dissimilar daughter cells: a stalked cell and a swarmer cell that assembles several pili at the flagellated cell pole. Strains bearing mutations in the pleA gene are pililess and non-flagellated. The PleA protein contains a region that is similar to a peptidoglycan-hydrolytic active site, and a point mutation at this site in PleA results in the loss of flagellum and pili biogenesis. PleA was found to be required for the insertion of the outer membrane pilus secretion channel at the cell pole and for the accumulation of the PilA pilin subunit. PleA is also required for the assembly of substructures of the flagellar basal body hook complex that are located in or traverse the peptidoglycan layer. These results argue that PleA facilitates the assembly of envelope-spanning structures at the cell pole. In support of this, PleA was found to be present only during a short interval in the cell cycle that coincides with the assembly of the flagellum and the pilus secretion apparatus.
Collapse
Affiliation(s)
- Patrick H Viollier
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center, B343, 279 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
24
|
Canchaya C, Desiere F, McShan WM, Ferretti JJ, Parkhill J, Brüssow H. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 2002; 302:245-58. [PMID: 12441069 DOI: 10.1006/viro.2002.1570] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitomycin C inducible prophage SF370.1 from the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 showed a 41-kb-long genome whose genetic organization resembled that of SF11-like pac-site Siphoviridae. Its closest relative was prophage NIH1.1 from an M3 serotype S. pyogenes strain, followed by S. pneumoniae phage MM1 and Lactobacillus phage phig1e, Listeria phage A118, and Bacillus phage SPP1 in a gradient of relatedness. Sequence similarity with the previously described prophages SF370.2 and SF370.3 from the same polylysogenic SF370 strain were mainly limited to the tail fiber genes. As in these two other prophages, SF370.1 encoded likely lysogenic conversion genes between the phage lysin and the right attachment site. The genes encoded the pyrogenic exotoxin C of S. pyogenes and a protein sharing sequence similarity with both DNases and mitogenic factors. The screening of the SF370 genome revealed further prophage-like elements. A 13-kb-long phage remnant SF370.4 encoded lysogeny and DNA replication genes. A closely related prophage remnant was identified in S. pyogenes strain Manfredo at a corresponding genome position. The two prophages differed by internal indels and gene replacements. Four phage-like integrases were detected; three were still accompanied by likely repressor genes. All prophage elements were integrated into coding sequences. The phage sequences complemented the coding sequences in all cases. The DNA repair genes mutL and mutS were separated by the prophage remnant SF370.4; prophage SF370.1 and S. pneumoniae phage MM1 integrated into homologous chromosomal locations. The prophage sequences were interpreted with a hypothesis that predicts elements of cooperation and an arms race between phage and host genomes.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Nestec Ltd. Vers-chez-les-Blanc, CH Lausanne 26, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Kakikawa M, Yokoi KJ, Kimoto H, Nakano M, Kawasaki KI, Taketo A, Kodaira KI. Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phig1e. Gene 2002; 299:227-34. [PMID: 12459270 DOI: 10.1016/s0378-1119(02)01076-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The putative cell-lysis gene lys of Lactobacillus plantarum G1e phage phig1e encodes for a 442 amino-acids protein Lys. The N-terminal region (about 80 amino acids) of Lys consists of two discrete regions (the signal-peptide-like domain and the DE domain containing putative active sites of endolysin). To elucidate functions of the regions of Lys, mutational (random, site-directed, and/or fusion) analysis was performed. The plasmid pNdEHL, expressing the wild type Lys protein under promoter of lacZ' gene in Escherichia coli, was constructed. Two molecular species (44 kDa; referred to as pre-Lys, and 42 kDa; mature-Lys) from the protein extract of XL1-Blue/pNdEHL were detected on a sodium dodecyl sulfate gel and zymogram with L. plantarum G1e cells. Based on the N-terminal amino acid sequences, the two molecules were determined as; pre-Lys (the amino acid position deduced from lys gene, 1-7) MKLKNKL, mature-Lys (27-33) QTLSSQS. The mature Lys was hardly detected in the cells treated with sodium azide. These results suggested that the N-terminal 26 amino acids region of Lys precursor form is possibly processed posttranslationally, by a SecA-dependent manner at least in E. coli. Analysis of the point mutants (pLD36A, pLE39A, pLE55A, pLE67A and pLD71A), indicated that the acidic residues (aspartic acids at position 36, 71 and glutamic acids at position 39, 55) of N-terminal region and the serine at the position 48 of phig1e Lys are essential for the lytic activity.
Collapse
Affiliation(s)
- Makiko Kakikawa
- Molecular Biology Group, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Starter cultures for fermented foods are today developed mainly by design rather than by screening. The design principles are based on knowledge of bacterial metabolism and physiology as well as on the interaction with the food product. In the genomics era, we will obtain a wealth of data making design on a rational basis even simpler. The design tools available are food grade tools for genetic, metabolic and protein engineering and an increased use of laboratory automation and high throughput screening methods. The large body of new data will influence the future patterns of regulation. It is currently difficult to predict in what direction the future regulatory requirements will influence innovation in the food industry. It can either become a promoting force for the practical use of biotechnology to make better and safer products, or it can be limiting the use of starter cultures to a few strains with official approval. Successful cultures based on modern technology is expected to be launched in the areas of: probiotics, bioprotection, general improvement of yield and performance for the existing culture market and probably the introduction of cultures for fermenting other food products. A scientific basis for dramatic innovations that could transform the culture industry is currently being established.
Collapse
|
27
|
Binishofer B, Moll I, Henrich B, Bläsi U. Inducible promoter-repressor system from the Lactobacillus casei phage phiFSW. Appl Environ Microbiol 2002; 68:4132-5. [PMID: 12147520 PMCID: PMC124056 DOI: 10.1128/aem.68.8.4132-4135.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the aim to extend the presently available inducible gene expression systems for lactobacilli, we have isolated a thermoinducible promoter-repressor cassette from the temperate Lactobacillus casei phage phiFSW-TI in Escherichia coli. The phiFSW-TI promoter fragment was abutted to the plasmid-borne promoterless beta-glucuronidase (gusA) reporter gene and shown to direct its transcription in L. casei. In addition, the functionality of the promoter-repressor system was verified in the L. casei phiFSW-TI lysogen by showing that the gusA reporter gene, controlled by the isolated phiFSW-TI promoter, was repressed at 28 degrees C and expressed at 42 degrees C. Moreover, a homology search revealed that the C terminus of the isolated phiFSW repressor shows a high similarity to the small mutS-related domain of the MutS2 protein family that is unprecedented for phage-encoded repressor proteins.
Collapse
Affiliation(s)
- Bernhard Binishofer
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Zimmer M, Scherer S, Loessner MJ. Genomic analysis of Clostridium perfringens bacteriophage phi3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 2002; 184:4359-68. [PMID: 12142405 PMCID: PMC135250 DOI: 10.1128/jb.184.16.4359-4368.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 05/17/2002] [Indexed: 11/20/2022] Open
Abstract
Two temperate viruses, phi3626 and phi8533, have been isolated from lysogenic Clostridium perfringens strains. Phage phi3626 was chosen for detailed analysis and was inspected by electron microscopy, protein profiling, and host range determination. For the first time, the nucleotide sequence of a bacteriophage infecting Clostridium species was determined. The virus belongs to the Siphoviridae family of the tailed phages, the order Caudovirales. Its genome consists of a linear double-stranded DNA molecule of 33,507 nucleotides, with invariable 3'-protruding cohesive ends of nine residues. Fifty open reading frames were identified, which are organized in three major life cycle-specific gene clusters. The genes required for lytic development show an opposite orientation and arrangement compared to the lysogeny control region. A function could be assigned to 19 gene products, based upon bioinformatic analyses, N-terminal amino acid sequencing, or experimental evidence. These include DNA-packaging proteins, structural components, a dual lysis system, a putative lysogeny switch, and proteins that are involved in replication, recombination, and modification of phage DNA. The presence of genes encoding a putative sigma factor related to sporulation-dependent sigma factors and a putative sporulation-dependent transcription regulator suggests a possible interaction of phi3626 with onset of sporulation in C. perfringens. We found that the phi3626 attachment site attP lies in a noncoding region immediately downstream of int. Integration of the viral genome occurs into the bacterial attachment site attB, which is located within the 3' end of a guaA homologue. This essential housekeeping gene is functionally independent of the integration status, due to reconstitution of its terminal codons by phage sequence.
Collapse
Affiliation(s)
- Markus Zimmer
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, D-85350 Freising, Germany
| | | | | |
Collapse
|
29
|
Crutz-Le Coq AM, Cesselin B, Commissaire J, Anba J. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. MICROBIOLOGY (READING, ENGLAND) 2002; 148:985-1001. [PMID: 11932445 DOI: 10.1099/00221287-148-4-985] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete 31754 bp genome of bIL170, a virulent bacteriophage of Lactococcus lactis belonging to the 936 group, was analysed. Sixty-four ORFs were predicted and the function of 16 of them was assigned by significant homology to proteins in databases. Three putative homing endonucleases of the HNH family were found in the early region. An HNH endonuclease with zinc-binding motif was identified in the late cluster, potentially being part of the same functional module as terminase. Three putative structural proteins were analysed in detail and show interesting features among dairy phages. Notably, gpl12 (putative fibre) and gpl20 (putative baseplate protein) of bIL170 are related by at least one of their domains to a number of multi-domain proteins encoded by lactococcal or streptococcal phages. A 110- to 150-aa-long hypervariable domain flanked by two conserved motifs of about 20 aa was identified. The analysis presented here supports the participation of some of these proteins in host-range determination and suggests that specific adsorption to the host may involve a complex multi-component system. Divergences in the genome of phages of the 936 group, that may have important biological properties, were noted. Insertions/deletions of units of one or two ORFs were the main source of divergence in the early clusters of the two entirely sequenced phages, bIL170 and sk1. An exchange of fragments probably affected the regions containing the putative origin of replication. It led to the absence in bIL170 of the direct repeats recognized in sk1 and to the presence of different ORFs in the ori region. Shuffling of protein domains affected the endolysin (putative cell-wall binding part), as well as gpl12 and gpl20.
Collapse
Affiliation(s)
- Anne-Marie Crutz-Le Coq
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Bénédicte Cesselin
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Jacqueline Commissaire
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Jamila Anba
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
30
|
Abstract
Bacteriophages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to their economical importance, dairy phages became the most thoroughly sequenced phage group in the database. Comparative genomics identified related cos-site and pac-site phages, respectively, in lactococci, lactic streptococci and lactobacilli. Each group was represented with closely related temperate and virulent phages. Over the structural genes their gene maps resembled that of lambdoid coliphages, suggesting distant evolutionary relationships. Despite a lack of sequence similarity, a number of biochemical characteristics of these dairy phages are lambda-like (genetic switch, DNA packaging, head and tail morphogenesis, and integration, but not excision). These dairy phages thus provide interesting variations to the phage lambda paradigm. The structural gene cluster of Lactococcus phage r1t resembled that of phages from mycobacteria. Virulent lactococcal phages with prolate heads (c2-like genus of Siphoviridae), in contrast, have no known counterparts in other bacterial genera.
Collapse
Affiliation(s)
- H Brussow
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| |
Collapse
|
31
|
McGrath S, Fitzgerald GF, van Sinderen D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 2002; 43:509-20. [PMID: 11985726 DOI: 10.1046/j.1365-2958.2002.02763.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sie2009 gene, which is situated between the genes encoding the repressor and integrase, on the lysogeny module of the temperate lactococcal bacteriophage Tuc2009, was shown to mediate a phage-resistance phenotype in Lactococcus lactis against a number of bacteriophages. The Sie2009 protein is associated with the cell membrane and its expression leaves phage adsorption, transfection and plasmid transformation unaffected, but interferes with plasmid transduction, as well as phage replication. These observations indicate that this resistance is as a result of DNA injection blocking, thus representing a novel superinfection exclusion system. A polymerase chain reaction (PCR)-based strategy was used to screen a number of lactococcal strains for the presence of other prophage-encoded phage-resistance systems. This screening resulted in the identification of two such systems, without homology to sie2009, which were shown to mediate a phage-resistance phenotype similar to that conferred by sie2009. To our knowledge, this is the first description of a phage-encoded super-infection exclusion/injection blocking mechanism in the genus Lactococcus.
Collapse
Affiliation(s)
- Stephen McGrath
- National Food Biotechnology Centre, University College Cork, Ireland
| | | | | |
Collapse
|
32
|
Mahanivong C, Boyce JD, Davidson BE, Hillier AJ. Sequence analysis and molecular characterization of the Lactococcus lactis temperate bacteriophage BK5-T. Appl Environ Microbiol 2001; 67:3564-76. [PMID: 11472933 PMCID: PMC93057 DOI: 10.1128/aem.67.8.3564-3576.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3' single-stranded overhang with the sequence 5'-CACACACATAGG-3'. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).
Collapse
Affiliation(s)
- C Mahanivong
- Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010
| | | | | | | |
Collapse
|
33
|
Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 2001; 29:2205-16. [PMID: 11376138 PMCID: PMC55702 DOI: 10.1093/nar/29.11.2205] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/12/2022] Open
Abstract
Similarity between the DNA substrates and products of integrase-mediated site-specific recombination reactions results in a single recombinase enzyme being able to catalyze both the integration and excision reactions. The control of directionality in these reactions is achieved through a class of small accessory factors that favor one reaction while interfering with the other. These proteins, which we will refer to collectively as recombination directionality factors (RDFs), play architectural roles in reactions catalyzed by their cognate recombinases and have been identified in conjunction with both tyrosine and serine integrases. Previously identified RDFs are typically small, basic and have diverse amino acid sequences. A subset of RDFs, the cox genes, also function as transcriptional regulators. We present here a compilation of all the known RDF proteins as well as those identified through database mining that we predict to be involved in conferring recombination directionality. Analysis of this group of proteins shows that they can be grouped into distinct sub-groups based on their sequence similarities and that they are likely to have arisen from several independent evolutionary lineages. This compilation will prove useful in recognizing new proteins that confer directionality upon site-specific recombination reactions encoded by plasmids, transposons, phages and prophages.
Collapse
Affiliation(s)
- J A Lewis
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
34
|
Madsen SM, Mills D, Djordjevic G, Israelsen H, Klaenhammer TR. Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Appl Environ Microbiol 2001; 67:1128-39. [PMID: 11229902 PMCID: PMC92705 DOI: 10.1128/aem.67.3.1128-1139.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA sequence of the replication module, part of the lysis module, and remnants of a lysogenic module from the lytic P335 species lactococcal bacteriophage phi31 was determined, and its regulatory elements were investigated. The identification of a characteristic genetic switch including two divergent promoters and two cognate repressor genes strongly indicates that phi31 was derived from a temperate bacteriophage. Regulation of the two early promoters was analyzed by primer extension and transcriptional promoter fusions to a lacLM reporter. The regulatory behavior of the promoter region differed significantly from the genetic responses of temperate Lactococcus lactis phages. The cro gene homologue regulates its own production and is an efficient repressor of cI gene expression. No detectable cI gene expression could be measured in the presence of cro. cI gene expression in the absence of cro exerted minor influences on the regulation of the two promoters within the genetic switch. Homology comparisons revealed a replication module which is most likely expressed from the promoter located upstream of the cro gene homologue. The replication module encoded genes with strong homology to helicases and primases found in several Streptococcus thermophilus phages. Downstream of the primase homologue, an AT-rich noncoding origin region was identified. The characteristics and location of this region and its ability to reduce the efficiency of plaquing of phi31 10(6)-fold when present at high copy number in trans provide evidence for identification of the phage origin of replication. Phage phi31 is an obligately lytic phage that was isolated from commercial dairy fermentation environments. Neither a phage attachment site nor an integrase gene, required to establish lysogeny, was identified, explaining its lytic lifestyle and suggesting its origin from a temperate phage ancestor. Several regions showing extensive DNA and protein homologies to different temperate phages of Lactococcus, Lactobacillus, and Streptococcus were also discovered, indicating the likely exchange of DNA cassettes through horizontal gene transfer in the dynamic ecological environment of dairy fermentations.
Collapse
Affiliation(s)
- S M Madsen
- Biotechnological Institute, Department of Lactic Acid Bacteria, 2970-Hørsholm, Denmark
| | | | | | | | | |
Collapse
|
35
|
Zou D, Kaneko J, Narita S, Kamio Y. Prophage, phiPV83-pro, carrying panton-valentine leukocidin genes, on the Staphylococcus aureus P83 chromosome: comparative analysis of the genome structures of phiPV83-pro, phiPVL, phi11, and other phages. Biosci Biotechnol Biochem 2000; 64:2631-43. [PMID: 11210127 DOI: 10.1271/bbb.64.2631] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcus aureus P83 has Panton-Valentine leukocidin (PVL)-like genes, lukM and lukF-PV. Here, lukM and lukF-PV genes were found on the genome of a prophage, which was designated as phiPV83-pro. The precise genome size was 45,636 bp with att core sequences of 10 base pairs. Sixty-four ORFs were identified on the phiPV83-pro genome, including two extra operons, lukM-lukF-PV and orfs63-64. The lukM-lukF-PV cluster was located 2.1 kb upstream of the attL site. The most striking feature of the phiPV83-pro genome was a constituent of at least 4 regions from phi11, phiPVL, and other phages, i.e., (i) att sites identical with those of phi11, (ii) a cos sequence and the genes encoding packaging and head proteins of phiPVL (occupied half region of phiPV83-pro), and (iii) the other two regions which showed no significant similarity with known phages (occupied about 40% of phiPV83-pro). Furthermore, two insertion sequences, ISSA1 and ISSA2 were integrated into attL site and orf44, respectively. PhiPV83-pro was not induced as phage particles from S. aureus P83 regardless of its treatment with mitomycin C. The insertion of ISSA1 into the attL site was one of the reasons of the failure of the induction of the phage particles by mitomycin C treatment of the strain P83.
Collapse
Affiliation(s)
- D Zou
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
36
|
Desiere F, Pridmore RD, Brüssow H. Comparative genomics of the late gene cluster from Lactobacillus phages. Virology 2000; 275:294-305. [PMID: 10998330 DOI: 10.1006/viro.2000.0498] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three prophage sequences were identified in the Lactobacillus johnsoni strain NCC533. Prophage Lj965 predicted a gene map very similar to those of pac-site Streptococcus thermophilus phages over its DNA packaging and head and tail morphogenesis modules. Sequence similarity linked the putative DNA packaging and head morphogenesis genes at the protein level. Prophage Lj965/S. thermophilus phage Sfi11/Lactococcus lactis phage TP901-1 on one hand and Lactobacillus delbrueckii phage LL-H/Lactobacillus plantarum phage phig1e/Listeria monocytogenes phage A118 on the other hand defined two sublines of structural gene clusters in pac-site Siphoviridae from low-GC Gram-positive bacteria. Bacillus subtilis phage SPP1 linked both sublines. The putative major head and tail proteins from Lj965 shared weak sequence similarity with phages from Gram-negative bacteria. A clearly independent line of structural genes in Siphoviridae from low-GC Gram-positive bacteria is defined by temperate cos-site phages including Lactobacillus gasseri phage adh, which also shared sequence similarity with phage D3 infecting a Gram-negative bacterium. A phylogenetic tree analysis demonstrated that the ClpP-like protein identified in four cos-site Siphoviridae from Lactobacillus, Lactococcus, Streptococcus, and Pseudomonas showed graded sequence relationships. The tree suggested that the ClpP-like proteins from the phages were not acquired by horizontal gene transfer from their corresponding bacterial hosts.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000, Switzerland
| | | | | |
Collapse
|
37
|
Moscoso M, Suárez JE. Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei. Virology 2000; 273:101-11. [PMID: 10891412 DOI: 10.1006/viro.2000.0382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adjacent to the lysis/lysogeny cassette of the A2 phage genome lies a stretch of over 8 kb, which contains a series of genes probably involved in DNA replication. Fifteen open reading frames (orfs) were identified, 13 of which are encoded on the main coding strand and only two on the complementary strand. Database searches and comparative analyses allowed the identification of an open reading frame (orf455) that shows similarity with DNA helicases and contains a variant zinc-finger motif known from the phage T7 helicase/primase. Orf770 showed similarity to putative plasmid and phage DNA primases. Downstream of orf770 is a noncoding 258-bp region rich in direct and inverted repeats, which specifically binds to proteins whose synthesis is induced during phage infection. When present in a plasmid, this region can direct a partial bacteriophage resistance phenotype due to interference with phage DNA replication, both under laboratory conditions and during milk fermentation. It is deduced that this stretch contains the origin of replication of phage A2.
Collapse
Affiliation(s)
- M Moscoso
- Area de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, c/Julián Clavería s/n, Oviedo, E-33006, Spain
| | | |
Collapse
|
38
|
Yamamura E, Sayama M, Kakikawa M, Mori M, Taketo A, Kodaira K. Purification and biochemical properties of an N-hydroxyarylamine O-acetyltransferase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:10-6. [PMID: 10806332 DOI: 10.1016/s0304-4165(00)00038-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The N-hydroxyarylamine O-acetyltransferase of Escherichia coli has been expressed as a histidine tagged fusion protein and purified using immobilized nickel column chromatography. The molecular mass of the histidine tagged N-hydroxyarylamine O-acetyltransferase was estimated to be 60.0 kDa by gel filtration and 34.0 kDa by SDS-PAGE and DNA sequence, suggesting that the native enzyme exists as homo dimer. The catalytic properties were investigated using o-aminobenzoic acid as a substrate. No difference in acetyltransfer activity was observed between histidine tagged protein and untagged enzyme. Kinetic studies indicated a ping-pong bi bi mechanism of the catalysis. Inhibition by N-ethylmaleimide and salicylic acid was competitive with o-aminobenzoic acid and non-competitive with acetyl-CoA.
Collapse
Affiliation(s)
- E Yamamura
- Molecular Biology Group, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kakikawa M, Ohkubo S, Sakate T, Sayama M, Taketo A, Kodaira K. Purification and DNA-binding properties of the cro-type regulatory repressor protein cng encoded by the Lactobacillus plantarum phage phi g1e. Gene 2000; 249:161-9. [PMID: 10831850 DOI: 10.1016/s0378-1119(00)00146-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The putative repressor protein Cng (10kDa on an SDS gel) for the lytic pathway of Lactobacillus plantarum phage φg1e was purified using the Escherichia coli Pt7 system, and its DNA-binding ability for the seven operator-like sequences, the GATAC-boxes (Gb1 to Gb7), was investigated in vitro. In gel-shift assays, Cng selectively bound to the DNA fragments containing the GATAC-box(es). In addition, DNase I footprinting analysis with supercoiled DNA demonstrated that Cng can specifically cover about a 25bp region centered around each of the GATAC-boxes, although two boxes, Gb4 and Gb6, were only partially protected. Moreover, protein crosslinking experiments using glutaraldehyde suggested that Cng most likely functions as a dimer. On the other hand, the binding ability of Cpg for the GATAC-boxes in supercoiled DNA was also examined under the same conditions as in Cng; unlike Cng, Cpg covered Gb4 and Gb6 completely sufficiently as well as the other five boxes. Thus, the present and previous [Kakikawa et al., Gene 215 (1998) 371-379; 242 (2000) 155-166] results indicate a possibility that the two proteins Cng and Cpg selectively bind to the GATAC-boxes that act as operators, and can decide between the lytic or lysogenic pathways through repression of the promoter activity of P(R) as well as P(L).
Collapse
Affiliation(s)
- M Kakikawa
- Molecular Biology Group, Toyama University, Gofuku, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Kakikawa M, Ohkubo S, Syama M, Taketo A, Kodaira KI. The genetic switch for the regulatory pathway of Lactobacillus plantarum phage (phi)g1e: characterization of the promoter P(L), the repressor gene cpg, and the cpg-encoded protein Cpg in Escherichia coli. Gene 2000; 242:155-66. [PMID: 10721708 DOI: 10.1016/s0378-1119(99)00531-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structural and functional features of the approximately 530 bp P(L)/Gb5-Gb6-cpg-Gb7 region (P(L) overlaps Gb5) for the lysogenic pathway of L. plantarum phage (phi)gle were investigated using the cat gene of E. coli plasmid pKK232-8 as a reporter. In E. coli XL1-Blue, a recombinant plasmid pKPL2 (cat under P(L)/Gb5-Gb6) exhibited distinct CAT activity, whereas the activity of pKPLCP1 (cat under P(L)/Gb5-Gb6-cpg) was only marginal. When pKPL2 was coexistent with a compatible derivative of plasmid pACYC177 carrying P(L)/Gb5-Gb6-cpg, the CAT activity was declined to the level of pKPLCP1. On the other hand, the cpg-encoded protein Cpg was overproduced in E. coli under P(T7). The molecular mass of the purified Cpg (14.5 kDa on a SDS gel) corresponded well with that (15.1 kDa) predicted from the DNA sequence. Gel-shift and footprinting assays demonstrated that Cpg selectively binds to about 25 bp bases centered around the GATAC-box (from 1 to 7). Moreover, protein crosslinking experiments using glutaraldehyde showed that Cpg most likely functions as a dimeric form. Thus, the present results indicate that Cpg probably represses P(L) through binding to the operator GATAC-box(es), and the P(L)/cpg region might participate in the lysogenic pathway.
Collapse
Affiliation(s)
- M Kakikawa
- Molecular Biology Group, Faculty of Engineering, Toyama University, Japan
| | | | | | | | | |
Collapse
|
41
|
Loessner MJ, Inman RB, Lauer P, Calendar R. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 2000; 35:324-40. [PMID: 10652093 DOI: 10.1046/j.1365-2958.2000.01720.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A118 is a temperate phage isolated from Listeria monocytogenes. In this study, we report the entire nucleotide sequence and structural analysis of its 40 834 bp DNA. Electron microscopic and enzymatic analyses revealed that the A118 genome is a linear, circularly permuted, terminally redundant collection of double-stranded DNA molecules. No evidence for cohesive ends or for a terminase recognition (pac) site could be obtained, suggesting that A118 viral DNA is packaged via a headful mechanism. Partial denaturation mapping of DNA cross-linked to the tail shaft indicated that DNA packaging proceeds from left to right with respect to the arbitrary genomic map and the direction of genes necessary for lytic development. Seventy-two open reading frames (ORFs) were identified on the A118 genome, which are apparently organized in a life cycle-specific manner into at least three major transcriptional units. N-terminal amino acid sequencing, bioinformatic analyses and functional characterizations enabled the assignment of possible functions to 26 ORFs, which included DNA packaging proteins, morphopoetic proteins, lysis components, lysogeny control-associated functions and proteins necessary for DNA recombination, modification and replication. Comparative analysis of the A118 genome structure with other bacteriophages revealed local, but sometimes extensive, similarities to a number of phages spanning a broader phylogenetic range of various low G+C host bacteria, which implies relatively recent exchange of genes or genetic modules. We have also identified the A118 attachment site attP and the corresponding attB in Listeria monocytogenes, and show that site-specific integration of the A118 prophage by the A118 integrase occurs into a host gene homologous to comK of Bacillus subtilis, an autoregulatory gene specifying the major competence transcription factor.
Collapse
Affiliation(s)
- M J Loessner
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | | | | | | |
Collapse
|
42
|
Radlinska M, Bujnicki JM, Piekarowicz A. Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11: N4-cytosine specific M.NgoMXV and nonfunctional 5-cytosine-type M.NgoMorf2P. Proteins 1999; 37:717-28. [PMID: 10651285 DOI: 10.1002/(sici)1097-0134(19991201)37:4<717::aid-prot20>3.0.co;2-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two adjacent genes encoding DNA methyltransferases (MTases) of Neisseria gonorrhoeae MS11, an active N4-cytosine specific M. NgoMXV and an inactive 5-cytosine type M. NgoMorf2P, were cloned into Escherichia coli and sequenced. We analyzed the deduced amino acid sequence of both gene products and localized conserved regions characteristic for DNA MTases. Structure prediction, threading-derived alignments, and comparison with the common fold for DNA MTases allowed for construction of super-secondary and tertiary models for M.NgoMorf2P and M.NgoMXV, respectively. These models helped in identification of amino acids and structural elements essential for function of both enzymes. The implications of this putative structural model on the catalytic mechanism of M.NgoMXV and its possible relation to the common ancestor of modern DNA amino-MTases are also discussed.
Collapse
Affiliation(s)
- M Radlinska
- Institute of Microbiology, University of Warsaw, Poland.
| | | | | |
Collapse
|
43
|
Petersen A, Josephsen J, Johnsen MG. TPW22, a lactococcal temperate phage with a site-specific integrase closely related to Streptococcus thermophilus phage integrases. J Bacteriol 1999; 181:7034-42. [PMID: 10559170 PMCID: PMC94179 DOI: 10.1128/jb.181.22.7034-7042.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage TPW22, induced from Lactococcus lactis subsp. cremoris W22, and the evolutionarily interesting integrase of this phage were characterized. Phage TPW22 was propagated lytically on L. lactis subsp. cremoris 3107, which could also be lysogenized by site-specific integration. The attachment site (attP), 5'-TAAGGCGACGGTCG-3', of phage TPW22 was present on a 7.5-kb EcoRI fragment, a 3.4-kb EcoRI-HindIII fragment of which was sequenced. Sequence information revealed the presence of an integrase gene (int). The deduced amino acid sequence showed 42 and 28% identity with integrases of streptococcal and lactococcal phages, respectively. The identities with these integrase-encoding genes were 52 and 45%, respectively, at the nucleotide level. This could indicate horizontal gene transfer. A stable integration vector containing attP and int was constructed, and integration in L. lactis subsp. cremoris MG1363 was obtained. The existence of an exchangeable lactococcal phage integration module was suggested. The proposed module covers the phage attachment site, the integrase gene, and surrounding factor-independent terminator structures. The phages phiLC3, TP901-1, and TPW22 all have different versions of this module. Phylogenetically, the TPW22 Int links the phiLC3 lactococcal integrase with known Streptococcus thermophilus integrases.
Collapse
Affiliation(s)
- A Petersen
- Department of Dairy, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
44
|
Lucchini S, Desiere F, Brüssow H. Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 1999; 263:427-35. [PMID: 10544115 DOI: 10.1006/viro.1999.9959] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temperate Siphoviridae from an evolutionarily related branch of low GC content gram-positive bacteria share a common genetic organization of lysogeny-related genes and the predicted proteins are linked by many sequence similarities. Their compact lysogeny modules [integrase/1-2 orfs (phage exclusion? and metalloproteinase motif proteins)/cI-like repressor/cro-like repressor/antirepressor (optional)] differ clearly from that of lambda-like and L5-like viruses, the two currently established genera of temperate Siphoviridae, while they resemble those of the P2-like genus of Myoviridae. In all known temperate Siphoviridae from low GC content gram-positive bacteria the lysogeny module is flanked by the lysis module and the DNA replication module. This modular organization is again distinct from that of the known genera of temperate Siphoviridae. On the basis of comparative sequence analysis we propose a new genus of Siphoviridae: "Sfi21-like" phages. With a larger database of phage sequences it might be possible to establish a genomics-based phage taxonomy and to retrace the evolutionary history of selected phage modules or individual phage genes. The antirepressor of Sfi21-like phages has an unusual widespread distribution since proteins with high aa similarity (40%) were found not only in phages from gram-negative bacteria, but also in insect viruses.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
45
|
Altermann E, Klein JR, Henrich B. Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage (phi)adh. Gene 1999; 236:333-46. [PMID: 10452953 DOI: 10.1016/s0378-1119(99)00236-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complete DNA sequence of the Lactobacillus (Lb.) gasseri temperate phage (phi)adh was determined. The linear and double-stranded genome consists of 43.785bp with a G+C content of 35. 3% and 3' protruding cohesive ends of 12nt. Sixty-two possible ORFs were identified. On the basis of homology comparisons, some of them could be assigned to possible functions, such as a helicase, a nucleic acid polymerase and a protease. In a non-coding area of the (phi)adh genome, structural features of a potential replication origin were detected. After subcloning, this region was functional as a replicon in Lb. gasseri and Lactococcus lactis. N-terminal aa sequencing and electron microscopic analysis of intact and defective phage particles enabled the identification of two capsid protein genes. One of their products, the major head protein, seems to be processed on the posttranslational level.
Collapse
Affiliation(s)
- E Altermann
- Fachbereich Biologie, Abteilung Mikrobiologie, Universität Kaiserslautern, Postfach 3049, D-67653, Kaiserslautern, Germany
| | | | | |
Collapse
|
46
|
Lucchini S, Desiere F, Brüssow H. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 1999; 260:232-43. [PMID: 10417258 DOI: 10.1006/viro.1999.9814] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome consisting of 44 open reading frames all encoded on the same DNA strand. The genome of the temperate cos-site S. thermophilus phage Sfi21 is 3.3 kb longer (40,740 bp, 53 orfs). Both genomes are very similarly organized and differed mainly by gene deletion and DNA rearrangement events in the lysogeny module; gene replacement, duplication, and deletion events in the DNA replication module, and numerous point mutations. The level of point mutations varied from <1% (lysis and DNA replication modules) to >15% (DNA packaging and head morphogenesis modules). A dotplot analysis showed nearly a straight line over the left 25 kb of their genomes. Over the right genome half, a more variable dotplot pattern was observed. The entire lysogeny module from Sfi21 comprising 12 genes was replaced by 7 orfs in Sfi19, six showed similarity with genes from temperate pac-site S. thermophilus phages. None of the genes implicated in the establishment of the lysogenic state (integrase, superinfection immunity, repressor) or remnants of it were conserved in Sfi19, while a Cro-like repressor was detected. Downstream of the highly conserved DNA replication module 11 and 13 orfs were found in Sfi19 and phiSfi21, respectively: Two orfs from Sfi21 were replaced by a different gene and a duplication of the phage origin of replication in Sfi19; a further orf was only found in Sfi21. All other orfs from this region, which included a second putative phage repressor, were closely related between both phages. Two noncoding regions of Sfi19 showed sequence similarity to pST1, a small cryptic plasmid of S. thermophilus.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
47
|
McGrath S, Seegers JF, Fitzgerald GF, van Sinderen D. Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl Environ Microbiol 1999; 65:1891-9. [PMID: 10223975 PMCID: PMC91272 DOI: 10.1128/aem.65.5.1891-1899.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specific fragment of the genome of Tuc2009, a temperate lactococcal bacteriophage, was shown to contain several open reading frames, whose deduced protein products exhibited similarities to proteins known to be involved in DNA replication and modification. In this way, a putative single-stranded binding protein, replisome organizer protein, topoisomerase I, and a methylase were identified. When the genetic information coding for the putative replisome organizer protein of Tuc2009, Rep2009, was supplied on a high-copy-number plasmid vector, it was shown to confer a phage-encoded resistance (Per) phenotype on its lactococcal host UC509.9. The presence of this recombinant plasmid was shown to cause a marked reduction in Tuc2009 DNA replication, suggesting that the observed phage resistance was due to titration of a factor, or factors, required for Tuc2009 DNA replication. Further experiments delineated the phage resistance-conferring region to a 160-bp fragment rich in direct repeats. Gel retardation experiments, which indicated a protein-DNA interaction between this 160-bp fragment and the Rep2009 protein, were performed. UC509.9 strains harboring plasmids with randomly mutated versions of this fragment were shown to display a variable phage resistance phenotype, depending on the position of the mutations.
Collapse
Affiliation(s)
- S McGrath
- National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
48
|
Tremblay DM, Moineau S. Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 1999; 255:63-76. [PMID: 10049822 DOI: 10.1006/viro.1998.9525] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus thermophilus lytic bacteriophage DT1, isolated from a mozzarella whey, was characterized at the microbiological and molecular levels. Phage DT1 had an isometric head of 60 nm and a noncontractile tail of 260 x 8 nm, two major structural proteins of 26 and 32 kDa, and a linear double-stranded DNA genome with cohesive ends at its extremities. The host range of phage DT1 was limited to 5 of the 21 S. thermophilus strains tested. Using S. thermophilus SMQ-301 as a host, phage DT1 had a burst size of 276 +/- 36 and a latent period of 25 min. The genome of phage DT1 contained 34,820 bp with a GC content of 39.1%. Forty-six open reading frames (ORFs) of more than 40 codons were found and putative functions were assigned to 20 ORFs, mostly in the late region of phage DT1. Comparative genomic analysis of DT1 with the completely sequenced S. thermophilus temperate phage O1205 revealed two large homologous regions interspersed by two heterologous segments. The homologous regions consisted of the early replication genes, the late morphogenesis genes, and the lysis cassette. The divergent segments contained the DNA packaging machinery, the major structural proteins, and remnants of a lysogeny module.
Collapse
Affiliation(s)
- D M Tremblay
- Faculté de Médecine Dentaire, Université Laval, Québec, G1K 7P4, Canada
| | | |
Collapse
|
49
|
Kakikawa M, Watanabe N, Funawatashi T, Oki M, Yasukawa H, Taketo A, Kodaira KI. Promoter/repressor system of Lactobacillus plantarum phage og1e: characterization of the promoters pR49-pR-pL and overproduction of the cro-like protein cng in Escherichia coli. Gene 1998; 215:371-9. [PMID: 9714836 DOI: 10.1016/s0378-1119(98)00289-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Lactobacillus plantarum phage og1e (42<HSP SP = "0. 25">259<HSP SP = "0.25">bp) has two repressor-like genes cng and cpg oriented oppositely, accompanied by three potential promoters pR, pL and pR49, and seven operator-like sequences (GATAC-boxes) (Kodaira et al., 1997). In this study, the og1e putative promoters were introduced into the Escherichia coli promoter-detecting plasmid pKK232-8. In E. coli CK111, pR (pKPR1), pL (pKPL1) and pR49 (pKPR49) exhibited distinct CAT activities. When pKPR1 or pKPL1 was coexistent with a compatible plasmid pACYC184 carrying pR-cng (pA4PRCN1), the CAT activity was decreased significantly. On the other hand, cng directed a protein (Cng) of 10.1 kDa in E. coli under the control of T7 promoter. Gel mobility-shift assays demonstrated that Cng binds specifically to a DNA region containing the GATAC-boxes. In addition, primer extension analyses demonstrated that the two sequences pR and pL act as a promoter in L. plantarum as well as in E. coli. These results suggested that the potential promoters pR and pL probably function for the lytic and lysogenic pathways, respectively, and Cng may act as a repressor presumably through the GATAC-boxes as operators.
Collapse
Affiliation(s)
- M Kakikawa
- Molecular Biology Group, Faculty of Engineering, Toyama University, 3190, Gofuku, Toyama 930, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Engel G, Altermann E, Klein JR, Henrich B. Structure of a genome region of the Lactobacillus gasseri temperate phage phiadh covering a repressor gene and cognate promoters. Gene 1998; 210:61-70. [PMID: 9599081 DOI: 10.1016/s0378-1119(98)00012-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By sequencing the DNA regions which flank the intG gene encoding integrase of the temperate Lactobacillus (Lb.) gasseri bacteriophage phiadh, a continuous sequence of 6590 bp was established. It encompasses five newly identified ORFs, of which four are located upstream, and one (orfC) downstream of intG. Proteins corresponding to the expected products of the intG upstream coding regions, orfA (33 kDa), orf2 (14 kDa), rad (12.1 kDa), and tec (7.9 kDa), were identified by in vitro expression of subcloned DNA fragments. Rad shares homology with transcription regulators, including SinR of Bacillus species and the repressor of phage phi105. The gporf2 is similar to predicted products of topologically equivalent coding regions of the Lactococcus lactis phage TP901-1 and the B. subtilis phage phi105. Promoters for the divergently oriented rad and tec genes were mapped within the 435-bp region between them and specify overlapping transcripts with extended 5'-untranslated sequences. As shown with lacZ fusions, Rad repressed transcription from the tec and rad promoters 20- and 5-fold, respectively. In Lb. gasseri, weak expression of cloned rad ws sufficient to mediate immunity towards phiadh.
Collapse
Affiliation(s)
- G Engel
- Fachereich Biologie, Abteilung Mikrobiologie, Universitat Kaiserslautern, Kaiserslautern, Germany
| | | | | | | |
Collapse
|