1
|
Jeong HJ, Kim EJ, Kim JK, Kim YG, Lee CS, Ko BJ, Kim BG. Expression of soluble recombinant human matrix metalloproteinase 9 and generation of its monoclonal antibody. Protein Expr Purif 2021; 187:105931. [PMID: 34197919 DOI: 10.1016/j.pep.2021.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
We have successfully produced a recombinant human matrix metalloproteinase 9 (hMMP9) antigen with high yield and purity and used it to generate a hybridoma cell-culture-based monoclonal anti-hMMP9 antibody. We selected the most effective antibody for binding antigens and successfully identified its nucleotide sequence. The entire antigen and antibody developmental procedures described herein can be a practical approach for producing large amounts of monoclonal antibodies against hMMP9 and other antigens of interest. Additionally, the nucleotide sequence information of the anti-hMMP9 monoclonal antibody revealed herein will be useful for the generation of recombinant antibodies or antibody fragments against hMMP9.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea.
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
| | - Joo-Kyung Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Byung-Gee Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Isolation and characterization of a novel serine protease inhibitor, SjSPI, from Schistosoma japonicum. Parasitol Int 2018; 67:415-424. [DOI: 10.1016/j.parint.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022]
|
3
|
Expression, purification, refolding and in vitro recovery of active full length recombinant human gelatinase MMP-9 in Escherichia coli. Protein Expr Purif 2016; 126:42-48. [PMID: 27164034 DOI: 10.1016/j.pep.2016.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/28/2016] [Indexed: 11/24/2022]
Abstract
Human gelatinase (MMP-9) is a member of matrix metalloproteinases family (MMPs), which has been associated with malignant tumor progression and metastasis by matrix degradation. Herein, active full length recombinant human MMP-9 (amino acid residues 107-707) has been expressed in the form of inclusion bodies in Escherichia coli BL21, using pET21a vector. Solubilization of inclusion bodies was carried out in Tris-HCl buffer with 6 M urea, and refolding was performed using dilution and urea gradient methods. Tris-HCl buffer with 5 mM CaCl2 and 1 μM ZnCl2 at pH 7.8 was used as a refolding buffer. Analysis of the structure by fluorescence and far-UV circular dichroism showed a well-formed structure by urea gradient method. Kinetic parameters in refolding conditions of rhMMP-9 were also analyzed, depicting increase in the enzyme's activity without any aggregation.
Collapse
|
4
|
Rasch MG, Lund IK, Illemann M, Høyer-Hansen G, Gårdsvoll H. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells. Protein Expr Purif 2010; 72:87-94. [PMID: 20214994 DOI: 10.1016/j.pep.2010.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 01/27/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a 92-kDa soluble pro-enzyme implicated in pathological events including cancer invasion. It is therefore an attractive target for therapeutic intervention studies in mouse models. Development of inhibitors requires sufficient amounts of correctly folded murine MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full-length and truncated versions were 5 mg/l and 2 mg/l, respectively. The products were >95% pure after gelatin Sepharose chromatography and possessed proteolytic activity when analyzed by gelatin zymography. Using the purified full-length murine MMP-9 we raised polyclonal antibodies by immunizations of rabbits. These antibodies specifically identified pro-MMP-9 in incisional skin wound extracts from mice when used for Western blotting. Immunohistochemical analysis of paraffin embedded skin wounds from mice showed that MMP-9 protein was localized at the leading-edge keratinocytes in front of the migrating epidermal layer. No immunoreactivity was observed when the antibody was probed against skin wound material from MMP-9 deficient mice. In conclusion, we have generated and purified two proteolytically active recombinant murine MMP-9 protein constructs, which are critical reagents for future cancer drug discovery studies.
Collapse
Affiliation(s)
- Morten G Rasch
- The Finsen Laboratory, Rigshospitalet Section 3735, Copenhagen Biocenter, Ole Maaløes Vej 5, Building 3.3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
5
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences. Biochemistry 2007; 46:3724-33. [PMID: 17338550 PMCID: PMC2569894 DOI: 10.1021/bi062199j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The turnover of the collagen triple-helical structure (collagenolysis) is a tightly regulated process in normal physiology and has been ascribed to a small number of proteases. Several members of the matrix metalloproteinase (MMPs) family possess collagenolytic activity, and the mechanisms by which these enzymes process triple helices are beginning to be unraveled. The present study has utilized two triple-helical sequences to compare the cleavage-site specificities of 10 MMPs. One substrate featured a continuous Gly-Xxx-Yyy sequence (Pro-Leu-Gly approximately Met-Arg-Gly), while the other incorporated an interruption in the Gly-Xxx-Yyy repeat (Pro-Val-Asn approximately Phe-Arg-Gly). Both sequences were selectively cleaved by MMP-13 while in linear form, but neither proved to be selective within a triple helix. This suggests that the conformational presentation of substrate sequences to a MMP active site is critical for enzyme specificity, in that activities differ when sequences are presented from an unwound triple helix versus an independent single strand. Differences in specificity between secreted and membrane-type (MT) MMPs were also observed for both sequences, where MMP-2 and MT-MMPs showed an ability to hydrolyze a triple helix at an additional site (Gly-Gln bond). Interruption of the triple helix had different effects on secreted MMPs and MT-MMPs, because MT-MMPs could not hydrolyze the Asn-Phe bond but instead cleaved the triple helix closer to the C terminus at a Gly-Gln bond. It is possible that MT-MMPs have a requirement for Gly in the P1 subsite to be able to efficiently process a triple-helical molecule. Analysis of individual kinetic parameters and activation energies indicated different substrate preferences within secreted MMPs, because MMP-13 preferred the interrupted sequence, while MMP-8 showed little discrimination between non-interrupted and interrupted triple helices. On the basis of the present and prior studies, we can assign unique triple-helical peptidase behaviors to the collagenolytic MMPs. Such differences may be significant for understanding MMP mechanisms of action and aid in the development of selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Janelle L. Lauer-Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Christopher M. Overall
- University of British Columbia Centre for Blood Research and the Canadian Institutes for Health Research Group in Matrix Dynamics and the Departments of Biochemistry and Molecular Biology, Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Duanqing Pei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Keith Brew
- College of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Marcia L. Moss
- BioZyme, Inc., 1513 Old White Oak Church Road, Apex, NC 27523-9299
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
- Correspondence should be addressed to this author at the Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431-0991. Tel: 561-297-2093; Fax: 561-297-2759; E-mail:
| |
Collapse
|
6
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB. The Roles of Substrate Thermal Stability and P2 and P1′ Subsite Identity on Matrix Metalloproteinase Triple-helical Peptidase Activity and Collagen Specificity. J Biol Chem 2006; 281:38302-13. [PMID: 17065155 DOI: 10.1074/jbc.m606004200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
De-Simone SG, Correa-Netto C, Antunes OAC, De-Alencastro RB, Silva FP. Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:1-9. [PMID: 15994137 DOI: 10.1016/j.jchromb.2005.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 04/06/2005] [Accepted: 04/16/2005] [Indexed: 11/16/2022]
Abstract
Snake venoms contain several trypsin-like enzymes with equivalent physicochemical characteristics and similar inhibition profiles. These are rather difficult to separate by classical purification procedures and therefore constitute a good model for affinity chromatography analysis. Some of these trypsin homologues present fibrinogenase activity, mimicking one or more features of the central mammalian coagulation enzyme, thrombin. It was previously demonstrated that a number of amidine derivatives are able to interact specifically with some of these serine proteases. To understand the enzyme-sorbent interactions we have investigated the ability of two commercially available benzamidine affinity matrices to purify thrombin-like serine proteases (TLSP) with similar biological properties from two snake venoms (Bothrops jararacussu and Lachesis muta rhombeata). Curiously, each sorbent retained a single but distinct TLSP from each venom with high yield. Molecular modeling analysis suggested that hydrophobic interactions within a specific region on the surface of these enzymes could be generated to explain this exquisite specificity. In addition, it was demonstrated that a specific tandem alignment of the two benzamidine sorbents enables the purification of three other enzymes from B. jararacussu venom.
Collapse
Affiliation(s)
- S G De-Simone
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, 21045-900 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Ma D, Wu W, Yang G, Li J, Li J, Ye Q. Tetrahydroisoquinoline based sulfonamide hydroxamates as potent matrix metalloproteinase inhibitors. Bioorg Med Chem Lett 2004; 14:47-50. [PMID: 14684295 DOI: 10.1016/j.bmcl.2003.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis and MMP inhibitory activity of a series of tetrahydroisoquinoline based sulfonamide hydroxamates are described. In nine MMPs tested, most of the compounds display potent inhibition activity except for MMP-7. Some subtle isozyme selectivity is observed by varying the substituents at the 6- and 7-positions and aromatic ring of arylsulfonyl groups.
Collapse
Affiliation(s)
- Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
9
|
Schröder J, Henke A, Wenzel H, Brandstetter H, Stammler HG, Stammler A, Pfeiffer WD, Tschesche H. Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J Med Chem 2001; 44:3231-43. [PMID: 11563922 DOI: 10.1021/jm010887p] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a new generation of heterocyclic nonpeptide matrix metalloproteinase (MMP) inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. A screening effort was utilized to identify some chiral 6-methyl-1,3,4-thiadiazines that are weak inhibitors of the catalytic domain of human neutrophil collagenase (cdMMP-8). Further optimization of the lead compounds revealed general design principles that involve the placement of a phenyl or thienyl group at position 5 of the thiadiazine ring, to improve unprimed side affinity; the incorporation of an amino group at position 2 of the thiadiazine ring as the chelating agent for the catalytic zinc; the placement of a N-sulfonamide-substituted amino acid residue at the amino group, to improve primed side affinity; and the attachment of diverse functional groups at position 4 or 5 of the phenyl or thienyl group at the unprimed side, to improve selectivity. The new compounds were assayed against eight different matrix metalloproteinases, MMP-1, cdMMP-2, cdMMP-8, MMP-9, cdMMP-12, cdMMP-13, cdMMP-14, and the ectodomain of MMP-14, respectively. A unique combination of the above-described modifications produced the selective inhibitor (2R)-N-[5-(4-bromophenyl)-6H-1,3,4-thiadiazin-2-yl]-2-[(phenylsulfonyl)amino]propanamide with high affinity for MMP-9 (K(i) = 40 nM). X-ray crystallographic data obtained for cdMMP-8 cocrystallized with N-allyl-5-(4-chlorophenyl)-6H-1,3,4-thiadiazin-2-amine hydrobromide gave detailed design information on binding interactions for thiadiazine-based MMP inhibitors.
Collapse
Affiliation(s)
- J Schröder
- Abt. Biochemie I, Universität Bielefeld, Fakultät für Chemie, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Babé LM, Linnevers CJ, Schmidt BF. Production of active mammalian and viral proteases in bacterial expression systems. Biotechnol Genet Eng Rev 2001; 17:213-52. [PMID: 11255667 DOI: 10.1080/02648725.2000.10647993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- L M Babé
- Axys Pharmaceuticals Inc., 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
11
|
Wang Y, Johnson AR, Ye QZ, Dyer RD. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. J Biol Chem 1999; 274:33043-9. [PMID: 10551873 DOI: 10.1074/jbc.274.46.33043] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|